Open Source
Computer Vision
Library

Reference Manual

Copyright © 1999-2001 Intel Corporation
All Rights Reserved

Issued in U.S.A.

Order Number: TBD

World Wide Web: http://developer.intel.com

http://developer.intel.com

Version Version History Date
-001 Original Issue December 8, 2000

This Open Source Computer Vision Library Reference Manual as well as the software described in it is furnished under license and may
only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only,
is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in associa-
tion with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means without the express written consent of Intel Corporation.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel
assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including
liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellec-
tual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to
specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them.

The Open Source Computer Vision Library may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Copyright © Intel Corporation 1999-2001.

*Third-party brands and names are the property of their respective owners.

Contents

Contents
Chapter 1
Image Functions
L@ YT = PSPPI 1-1
RETEIENCE ... 1-4
cvCreatelmageHeader.............uviiiiiiii e 1-4
oAV @R 7=T= 1 (=] 11 = T L= 1-5
cVReleaselmageHeader ... 1-5
CVREIEASEIMAGEcevviiiiii i e e e eeaes 1-6
CVCreatelmMageData.ccuvviviiiiiiiiiiiii 1-6
CVReleaselmageDatac.cuvuiiiiiii i e 1-7
CVSELIMAGEDALAeeeeviieeiiiiiei e 1-7
CVSEIMAGECON .. i e 1-8
CVSEtIMAGERON ... 1-8
cvGetimageRawData.........ccoovvviiiiiiceei e 1-9
CVINILIMAGEHEAUET ... 1-9
(03 V(@ 0] 0V 11 4= T [PSSP 1-10
PixXel ACCESS MACKOS ...cceeeeeeeeeee e e 1-10
OVBIVIBW ..ttt ettt ettt et e e et e e e e e e e e e e e e e e e e e aeaaaeaaaaaaaeaens 1-10
CV_INIT_PIXEL_POS ...ttt 1-12
CV_MOVE_TO .ottt 1-13
CV_MOVE ...ttt ettt ettt e e e e e e e 1-13
CV_MOVE_WRAP ..ottt 1-14
CV_MOVE_PARAM ...ttt ettt ettt ettt a e e e aa e 1-14
intgl. v

OpenCV Reference Manual Contents

CV_MOVE_PARAM_WRAP ...ttt 1-15
Chapter 2
Dynamic Data Structures
MEMOIY STOTAGE ... ettt e e e e e e e ereeeeeeeeeeeeas 2-1
OVEBIVIBW ...ttt ettt s e e e e e e 2-1
CVCreateMemMSIOrageccooeieeeii e 2-3
cvCreateChildMemSIOrage.......ccovvvviiiiii e e 2-3
CVREICASEMEMSIOIAgE. ... eeveiieeeiiiiiiiiie ettt 2-4
CVCIEArMEMSIOTA0E ..cevvvii i e ettt e e e e e e e e e e e 2-4
cvSaveMemStoragePos. ... 2-5
CVRestoreMemStoragePosSo.vuoiviieiii e 2-5
SBOUEBNCES. ..ttt s 2-7
L@ =T Q= S 2-7
[0V (@3 (== 1 (=3 =T o PP 2-10
CVSELSEQBIOCKSIZE ... 2-11
CVSEOPUSN ... e e 2-12
CVSEOPOP ..ot 2-13
CVSEQPUSHFIONL ... e 2-13
CVSEOPOPFIONT ... 2-13
CVSEQPUSAMUI ... e 2-14
CVSEAPOPMUILE ...t 2-14
(03 V ST =T | 01T o USRI 2-15
CVSEOREMOVE.....cciiii e e 2-16
(0[O [T T ST = o PSS 2-16
CVGEISEEIEM ... 2-17
CVSEQEIEMIAX ... e 2-17
CVCVESEATOAITAY ..ot e 2-18
cvMakeSeqHeaderFOrArray..........ceeiiie e e 2-18
Writing and Reading SEQUENCESuuiiiiiiieiiiiiieee e 2-19
OVEBIVIBW ...ttt e e 2-19
] (=] (= o PP 2-21
(oA VAS] r= 1 VAN o] 01T 0 To l [0 1T =T [PPSR 2-21

OpenCV Reference Manual Contents

CVSTANWITEESEQ et ie e ettt e e 2-21
(o] = a1 VAT A4 (SIS <o 2-22
CVFIUSNSEQWIILET oo 2-23
CVSTANREAUISE. .. .cccieeeeeeii i e e 2-23
CVGEtSEQREATEIPOSeeiiiiiieiiiiii e 2-24
CVSELSEOREAUEIPOS......uui i e 2-25
.. 2-25
S S e 2-25
L@ Y= T PP 2-25
R EIBINCE ... 2-29
CVCTEALE SO ittt e 2-29
CVSEEAAA .. 2-29
CVSEIREMOVE e 2-30
CVGELSEtEIEM ... 2-30
CVCIBAISEL ... 2-31
GrAPNS .o 2-32
OVBIVIBW ...ttt et e ee e e e 2-32
RETEIEINCE ...t ee e e e eeeeees 2-35
CVCIEateGraph.....cciii e 2-35
CVGTAPNAGAVEIX ... 2-36
CVGIaphREMOVEVIX ...c.ccviiiiii et 2-36
CVGIraphRemMOVEVIXBYPIIccooiiiiiiiiiiiie et 2-37
CVGIaphAdAEdgE.ccoeeiiii e e 2-37
CVGIraphAddEAGEBYPIIcoiiiiiiiiieee e 2-38
CVGIraphRemMOVEEAQE.........ocoeiieeeice e 2-39
cvGraphRemoveEdgeBYPIr ... 2-39
CVFINAGraphEdgeoceeeiiie e e 2-40
CVFINAGraphEdgEBYPIIcoviiiiiiiiiie e 2-40
[0V €] =T o] AV (=T o | (=T 2-41
CVGTraphVixDegreeBYPIr.........ccoiiiiiiiiiiiiee e 2-42
CVClEarGraph......cccc e 2-42
CVGEIGTAPNVIX ..ot 2-43

int9|® Vii

OpenCV Reference Manual Contents

CVGTAPNVIXIAX ...t 2-43
(oA V€] =1 o] =T [0 = o b QS 2-44
Chapter 3
Contour Processing
OVEBIVIEW ...ttt et et e e et e e e et e e e e e e e e e e ebtaeeeees 3-1
BasiC DEfiNitioNS.........oiiiiieiieiiie e 3-1
Contour Representationcccoviveeviieeeeiiiee e e e e e 3-4
Contour Retrieving Algorithm ... 3-5
Polygonal ApproXimation.............ceiieeeeeieeeiiiiiiien e ee e e 3-6
Douglas-Peucker APProxXimationc..eeeeeeeeeninnimineeeeeesesniieneees 3-9
CoNtoUrs MOMENLS.......coiii e 3-10
Hierarchical Representation of CONtOUrScccvvvveeeeerniinnnne. 3-13
Data SIUCTUIES ...t e eaa e eaes 3-19
RETEIENCE ... e 3-20
(03V =1 g To [@F0] o] (01U] ¢3RRI 3-20
CVSTIArtFINACONIOUIS ...t 3-21
CVFINANEXICONTOUT ...cvvvieeieie et e e 3-22
CVSUDSHIULECONTOUL ..uviiiii e 3-23
CVENAFINACONIOUISeviiiiieiieeeeee et 3-23
(03N o] o] 0)1 (@ g T= 1] 1< RS 3-24
cvStartReadChainPointS........cooouveiiiiieee e 3-25
CVREeadChainPointcooiiiiiiiiee e 3-25
CVAPPIOXPOIY ...t 3-26
CVDIaWCONTOUIS ... 3-26
CVCONIOUISIMOMENTS ...t e e e e e eaes 3-27
(03YOL0] 0] (011 | ¢ == U 3-28
CVMALCRCONIOUISccveiieeee et 3-28
CVCreateCoONtOUITIEEu i 3-30
cvCONtOUrFIOMCONIOUITIEE ...ccviiiiieeee e 3-30
CVMaAtChCONIOUITIEES ... it 3-31
Chapter 4

inte|® viii

OpenCV Reference Manual Contents

Geometry
OVEIVIBW ...ttt ettt e e e e e e e e e e e ettt e e e e e e e e e e aeba e e e eas 4-1
0 TST =0 11 T 4-1
LiNE FItlING..ceeeeeeiieie e 4-2
ConvexXity DEfECEScoiie i 4-3
REFEIENCE e e 4-4
LAV 11 =1 4-4
(oA | (T =2 S TOPTRR 4-5
CVFITLINE3D .. 4-6
CVPTOJECEBD ...t 4-8
CVCONVEXHUIL ... 4-9
cvContourConVEXHUIL ..o 4-9
CVCONVEXHUIAPPIOX ..t e e 4-10
cvContourConVEXHUIADPPIOXccoiiiiiiiiiiiee et 4-11
CVCheckContoUrCONVEXItYccovveeuiiiii i i eeeee e e e e e e 4-12
CVCONVEXItYDETECTS. ... 4-12
CVMINAIEARECT ... 4-13
CVCAICPGH ... e e 4-14
CVMINENCIOSINGCIICIE ..oveviiie e e 4-15

Chapter 5

Features

FIXEA FIIEIS ... e e e e e e e e e e e aaeas 5-1
OVEIVIBWottt e e e e e e e et e e e e e e e e e e e ettt s e e e e e e eeeenreanans 5-1
SODElI DErVALIVES ... 5-1
Optimal Filter Kernels with Floating Point Coefficients 5-5
FIrST DEIVALIVES.evtiiiiiiiiiiiieeeiieie ettt ee e e e e e e e e e aa s 5-5
SecoNd DENVALIVESccoiiieiiiiiiie et a e e 5-6
Laplacian ApproXimationeeeieeeeeiieeiiiiiine e e 5-6
REFEIENCE e 5-7
LoV = o] = o = 5-7
CVSODEL ... e 5-7
Feature Detection FUNCHIONS............uuiiiiiiiiiiiiiiiiiieieieeeeeeeeeee e e 5-8

OpenCV Reference Manual Contents

L@)T V1= PR 5-8
(Of0] g 1= gl B T=Y (=Tox i] o VO SUPTPPRRN 5-8
Canny Edge DEteCIOr.......cuuiiiiiiiiieiiieee et 5-9
RETEIENCE ... e e 5-11
CVCANNY .t 5-11
CVPIreCornerDetecCto 5-12
cvCornerEigenValSANAVECScc.evvviiiiiiiiiiiiiei e 5-12
cvCornerMINEIGENValccoooiiiiiiece e 5-13
CVFINACOINEIrSUDPIX ...vviieiei e 5-14
CVGOOdFeatureSTOTIACKuuiiiiiiieeeiiee et 5-16
HOUGh TranSfOrm ... 5-17
OVEBIVIEBW ...ttt ettt et e e e e e e e et e e e e e 5-17
RETEIENCE ... e e 5-18
CVHOUQNLINES ... 5-18
CVHOUQNLINESSDIV ...ceeeiiiiiie et e e 5-19
D11 Yo U 1T (o] o FR 5-19
CVHOUQNLINESPo 5-19
DTS Y o U 1T (o] o FA 5-20
Chapter 6
Image Statistics

OVEBIVIBW ...ttt ettt e e e e e e e e e e e e e s e e e e e st e e e e e rranans 6-1
RETEIENCE . .coieeee e e 6-2
(03Y[010101011 \\[0] V=Y o F PSPPI 6-2
CVSUMPIXEIS .. 6-2
(oY1= o 6-3
CVMEAN_StUDEV......cc it e s 6-3
CVMINMAXLOCuuieiiii et eeaan 6-4
L3V 1 Lo o T 6-4
(oY A1/ [0] 1 U= o1 1 6-6
cvGetSPatialMOMENteiii e e 6-7
CVGEtCeNtralMOMENTcoveieeeeee e e 6-7
cvGetNormalizedCentralMoOmeNt..........ccooovviiieiiiiiiiieeee e, 6-8

OpenCV Reference Manual Contents

CVGETHUMOMENTS ... e s 6-9
Chapter 7
Pyramids
(@ Y= QT 7-1
] (=] €= o7 PP 7-6
CVPYIDOWN ...t e 7-6
OV P YU e 7-6
CVPYIrSEgmMEeNtation...........uviiiiiieeiiiiiii e 7-7
Chapter 8
Morphology
(@Y= QT 8-1
Flat Structuring Elements for Gray Scale...........cccvvvvieeiiiiiiiiiiieeeeen, 8-3
[N (=] =70 o7 PP 8-6
cvCreateStructuringElementEX............viiiiiiii e 8-6
cVvReleaseStructuringElementcccooovov i 8-7
CVEIOQE ... 8-7
CVDIMALE e 8-8
CVMOIPRNOIOGYEX ...ceieiiiiiiiiiii ettt 8-9
Chapter 9
Background Subtraction
L@ Y= Q= S 9-1
RETEIEINCE ... e e e e e e e e e 9-2
(037 o o UP PP 9-2
L0V ST 0 U= T =Y o o P 9-3
CVMUIIPIYACC ...t 9-3
CVRUNNINGAVJ ..ttt e e e e e e e e e e e e e 9-4
Chapter 10
Distance Transform
OVERIVIBW.....iiiei e e 10-1
=] (=] =0 o7 2P 10-1

int9|® Xi

OpenCV Reference Manual Contents

CVDISTTIANSTOIM ceveceee e e 10-1
Chapter 11
Threshold Functions
L@)T V1= 11-1
RETEIENCE ... 11-2
CVAdaptiveThreshold ... 11-2
[0V I 01 =1 g [o] Lo IR R PPRRRRPIN 11-3
Chapter 12
Flood Fill
OVEBIVIEW ...ttt ettt e e e et e e e et e e e et e e e e et e e eebaans 12-1
R LY (=] €=] a1 TR 12-2
(03] = (o To o | 1| TR 12-2
Chapter 13
Camera Calibration
L@)T V1= P 13-1
Camera Parameters ..o 13-1
HOMOGraphy ... 13-2
= 11 (=] 3 1 [13-3
(=T S B T1=y (o] 1 1o] o SR 13-3
Rotation Matrix and Rotation Vectorccccvieiiiiiiiiieeiennnnnn. 13-5
RETEIENCE ..o ans 13-5
CVCalibrateCameracoevuuiiiiiee e 13-5
cvCalibrateCamera_64dcoooeeeiiiiii i 13-6
cvFIndEXxtrinsicCameraParams..........ccooeeeeeeiiieeiiiiiin e 13-7
cvFindExtrinsicCameraParams_64d...........cccccveeeeiiie, 13-8
(oA Lo To [4T U =SS 13-9
CVROANQUES_B4d......ci et 13-9
CVUNDISIOMONCE. ... it 13-10
CVUNDISTOIINIE c.eeeeeeee e 13-11
CVUNDISTOI ... e e e 13-12

int9|® Xii

OpenCV Reference Manual Contents

CcVFIiNdChessBoardCorNerGUESSESccoeeeeeeeeieeieeeinnnnnnnenenes 13-12
Chapter 14
View Morphing
OVEIVIEW....cc e e 14-1
AlGOTtRM e e 14-1
Using Functions for View Morphing Algorithmccccccoevinee 14-4
RETEIBINCE ...t 14-5
cvFindFundamentalMatriXooooeeeeeeiiii e 14-5
CVMaKeSCanliNesS ..o 14-6
CVPIEWaArPIMAGEcovieieiiiiie e e 14-7
CVFINARUNS ..o 14-8
cvDynamicCorreSpondMulti...........c..uvvviiiiiiiiiiiiiee e 14-9
CVMaKeAIphaSCaNliNeS.........ccoiiiiiiiiiiiiiee e 14-9
CVMOrphEPIlINESMUItI.....cvvvieii e e, 14-10
CVPOSIWAIPIMAGEceeeiiiiiiei e 14-11
CVDEIBEMOIIE ... 14-12
Chapter 15
Motion Templates
OVEIVIBW.....eeeeeee e e 15-1
Motion Representation and Normal Optical Flow Method 15-1
Motion Representationcoovvvviiiniiie e 15-1
A) Updating MHI IMAgES........ouviiiiiiiiiiiiieee e 15-2
B) Making Motion Gradient Imagecccvevvvviiiin e, 15-2
C) Finding Regional Orientation or Normal Optical Flow 15-4
Motion SegmMeNntationcovviiriiiiii e e 15-6
=] 1] (= o7 2P 15-8
cvUpdateMotioNHISIONY........viiiiiiieeee e 15-8
cvCalcMOotioNGradient...........covvvveiiieeiee e, 15-8
cvCalcGlobalOrientation ... 15-9
CVSEGMENTMOTION ..ot 15-10

int9|® xiii

OpenCV Reference Manual Contents

Chapter 16
CamShift
OVEBIVIBW ...ttt et e e e e e e e e e e e e e e e e et e b e e e e e e e eeeererbaaanees 16-1
Mass Center Calculation for 2D Probability Distribution 16-3
CamShift AIGOrtNMeiiiiiii e 16-3
Calculation of 2D Orientationeeeeeeeeeeieeeieeeeeeeeeeeeeeeeeeeee. 16-6
REFEIENCE e 16-7
CVCAMSHITL .o 16-7
CVMEANSIM ..eeee e s 16-8
Chapter 17
Active Contours
OVEBIVIBW ...ttt et e e e e e et e e e e e e e e e e et e b e e e e e e e eeeerebbaaaan s 17-1
REFEIENCE e 17-3
(0 ST T 1] 1= o [17-3
Chapter 18
Optical Flow
OVERIVIBW.....eieieee e e 18-1
Lucas & Kanade TeChNiQUEccooiiiiiiiiiiiieiiiiieece e 18-2
Horn & Schunck TechniquUe..........cvceiiiiiiiiieec e, 18-2
BlOCK MAICNINGeiiiiiiiiiee e 18-3
RETEIBINCE ... bbb 18-4
CvCalcOPLiCAIFIOWHS ..o 18-4
(oA V[OF=1[o{@] o] i]or= 11 [0 1T N RS 18-4
cvCalcOPLiCAIFIOWBMooiiiiiiiiiiee e 18-5
cvCalcOptiCalFIOWPYILK.......coo i 18-6
Chapter 19
Estimators
OVEIVIBW.....ieiee e e 19-1
Definitions and Motivationcccooveieeriiiiicice e, 19-1
MOAEIS.....eieiiiiiiiite e 19-1

i ntGI ® Xiv

OpenCV Reference Manual Contents

ESHMALOIS ..eviiiiiiiiieiiiiie ettt e e e e e e e e e e e e e e eas 19-2
Kalman Filteringuuvoi i 19-2
=] 1= = o7 2P 194
CVCreateKalman ..o 19-4
CVReleaseKalman ... 19-5
cvKalmanUpdateBYTIMeccovvviiieiiiiiii e 19-5
cvKalmanUpdateByMeasurementcccooevevveiiiieeniiiiiiiiiieee e 19-6
ConDensation Algorithmccooo i 19-6
Implementation of Nonlinear Modelscccoooviiiiiiiiiiniiiiiieeeen, 19-7
L] (=] €= o7 PP 19-7
CVCreateConDeNSatioN..........coeeeieiie e 19-7
CVReleaseConDensationcooooiieiiiiiiiiie e 19-8
cvConDensInitSampleSet ... 19-8
cvConDensUpdatebyTimeooiiiiiiiiiiie e 19-9
Chapter 20
POSIT
OVEIVIBW...cc e e 20-1
== o3 1 | {0 1 o PR 20-1
Camera Parameterscccccuuiiiriiiiiiiiie e 20-1
Geometric Image FOrmationccccvvevviiiiien e 20-2
Pose Approximation Method ..o 20-3
AlGOTtRM .. 20-5
=] (=T =0 o7 2P 20-7
CVCreatePOSITODJECT ...uvvuii i e 20-7
CVP OSIT et e e e e 20-7
CVReEleasePOSITODJECToiii e e 20-8
Chapter 21
Histogram
OVERIVIEW.....iiee e 21-1
Histograms and SIigNatUIeS..........ccoouiiiiiriiieeeeniiiiieee e 21-2
Example Ground DIStanCescceevviveeiieeieiiiiii e 21-5
intgl. "

OpenCV Reference Manual Contents

Lower Boundary for EMD...........ccooiiiiiiiiiiiiieeiiee e 21-6
L] (=] €= o7 2P 21-6
CVCIEALEHIST ..coee e 21-6
CVREICASEHISE ... 21-7
CVMaKeHIStHEAdEIFOIAITAYociuiiiiiiie et 21-8
CVQUETIYHIStVAIUE_ 1Dcciiiiiiiiieece e e 21-8
cvQueryHiIistValue_2D.........coovviiviiiii e, 21-9
CVQUETIYHISIVAIUE_3D ... e 21-9
cvQueryHistValue _ND........ccooooiiiiiii 21-10
CVGetHIStValue 1Douiiiiiiieiieeeeecs e e 21-10
cVGetHIstValue_2D ... 21-11
CVGEtHISIValUE 3Dcoeiiiiiiii e 21-11
CVGEtHIStValue ND......covvieiii e 21-12
cvGetMinMaxHistValue..............ooooo oo 21-12
CVNOIrMaliZeHISt ... 21-13
CVTHreshHISt ... 21-13
CVCOMPArEHISTo c e e e 21-14
CVCOPYHIST. ...ttt 21-15
CVSEtHISIBINRANGESvvviiiii i 21-15
CVCAICHIST ... 21-16
CVCalCBaCKPIOJECTcceeiiieie e e e 21-16
cvCalcBackProjeCtPatChooooviiiiiiieiiiiee e 21-17
CVCAICEMD ... 21-20
Chapter 22
Gesture Recognition

OVEIVIBW.....eiee e 22-1
=] (=] =g o7 2P 22-4
CVFINAHaNAREQION ..o e 22-4
CVFINAHANAREGIONA ... 22-5
cvCreateHandMasK ..., 22-6
cvCalcimageHOMOGraphyccooi i 22-6
(oY OF=1 (o] =] (o] o] D I=T 0 1S | 4SS 22-7

i ntGI ® XVi

OpenCV Reference Manual Contents

CVMAXRECT ...t et 22-8
Chapter 23
Matrix Operations
L@)T V1= 23-1
RETEIENCE ... 23-2
(03] 072 | [0 TR 23-2
CVMAIOCATTAY ... s e e e e e e e e 23-2
(oY1 01 (= 23-3
(oY 0 a1 £=T= Y N - Y PP 23-3
(03] 0072 [TR 23-3
CVIMISUD ..ttt e e 23-4
(03] 0 0 N Yor= 1[I TR 23-4
(03V/ 00130 1 (Yo ¥ o SRR 23-5
CVMCTIOSSPIOAUCT ...coeeieiiiiii e e 23-5
(037 0011, | PR 23-6
CVMMUITIANSPOSEooeiiiii e e 23-6
CVMTTANSPOSE ... iieeeie ettt e ettt e e e n e e e e e e e e s 23-7
(03 0011 0 1Y= P 23-7
(oY1 1L = U = 23-8
CVIMDDBL. .. e 23-8
[0V 0 110X] o) PR 23-8
CVMSELZEI0 _32f ..o e e 23-9
CVMSELIAENTILYeveeeeeeieeiiie e e s 23-9
cVMMaNalONODIS ..o 23-10
CVIMSVD ..o e 23-10
LAV 0] = o = o Y SR 23-11
CVMPErSPECHVEPTOJECT.....eviiiiieiiiiiiii e 23-12
Chapter 24
Eigen Objects
L@) T V1= PR 24-1
RETEIENCE . .coi e e e 24-2

int9|® XVii

OpenCV Reference Manual Contents

CVCaAICCOVAIMALIIXEX ... ccievviieieeiee ettt e e e 24-2
(oY OF=1 (o] =i To =T 0 [@] o] =T o £ 24-3
CVCalcDeCOMPCOETT ... 24-4
CVEIQENDECOMPOSILE ...ovvviiiiiii i e e e ee e 24-5
CVEIQENPIOJECTION ..o 24-6
USE Of FUNCLIONScoveiiiiii e 24-6
Chapter 25
Embedded Hidden Markov Models
OVEBIVIEW....ete ettt et e e et e e e et e e e et e e e e et e e e e e baans 25-1
HMM STIUCTUIES ...ttt eaa e eaes 25-1
RETEIENCE ... e e 25-3
CVCIEatE2DHMMcovniii e 25-3
CVREIEASEZDHMMoeeiiiei e e 25-3
CVCreateObSINTO......ccve i 25-4
CVREIEASEODSINTO ..covveeieeee e 25-4
CVIMQTOODS DCT ... e 25-5
CVUNITFOrMIMQSEgM ..o 25-6
CVINIEMIXSEOIM ... e e e 25-6
cVEstimateHMMStateParamsccccceeeeiieeiiiiiciice e, 25-7
CVEStIMateTranSProboiiiiiii e 25-7
CVEStIMateObSPIoboovevie e 25-8
CVEVIEIDI. ..o 25-8
CVMIXSEOMLZ ..ot 25-9
Chapter 26
Drawing Primitives
(@)Y= V1= O 26-1
RETEIENCE ... e 26-2
CVLINE e 26-2
CVLINEBAA et 26-3
CVRECTANGIE ... 26-4
CVCITCIE ..ttt e e 26-4

inte|® Xviii

OpenCV Reference Manual Contents

CVEIPSE ..o 26-5
CVEIPSEAA ... e e e 26-6
CVFIIIPOIY .. 26-7
CVFIlICONVEXPOIY ... e 26-8
CVPOIYLING ..o 26-8
CVPOIYLINEAA ... e e 26-9
CVINITFONT oo e 26-10
CVPULTEXL oo aaans 26-10
CVGBITEXESIZE oot 26-11

Chapter 27

System Functions

R LY (=] €=] a1 TR 27-1

CVLOAAPTIMITIVES .. .coiivi et 27-1
CVGetLIbraryInfo ..o s 27-2

Chapter 28

Utility

REFEIENCE ... e e e 28-1

CVADSDIT ..ot 28-1
CVADSDIFTS .o 28-2
CVMALCNTEMPIALE ...cooeiieeeee e 28-2
CVCVIPIXTOPIANEo e 28-5
CVCVEPIANETOPIX .. e 28-5
CVCONVEISCAIE... ..o i e e 28-6
CVINIELINEIEIALON .. e 28-7
CVSAMPIELINE ...eieee e 28-8
CVGEIRECISUDPIX. ..cceivi it 28-8
CVDFASTAICIAN ... e e 28-9
(032 To | o TR 28-10
(03] 0 1 | TS 28-10
CVINVSOIT oo e 28-11
(03] 0] 01V Yo | S 28-11

i ntel ® XixX

OpenCV Reference Manual

Contents

cvbReciprocal
cvbCartToPolar
cvbFastExp
cvbFastLog
cvRandInit
cvbRand
cvFilllmage
cvRandSetRange
cvKMeans

Bibliography

Index

XX

Image Functions

The chapter describes basic functions for manipulating raster images.

Overview

OpenCV library represents images in the format I pl | mage that comes from Intel®
Image Processing Library (IPL). IPL reference manual gives detailed information
about the format, but, for completeness, it is also briefly described here.

Example 1-1 Iplimage Structure Definition

typedef struct _Ipllmage {
int nSize; /* size of ipllmage struct */
int 1D, /* inmge header version */
i nt nChannel s;
i nt al phaChannel ;
int depth; /* pixel depth in bits */
char col or Model [4];
char channel Seq| 4] ;
int dataOrder;
int origin;
int align; /* 4- or 8-byte align */
int width;
i nt height;
struct _IplRO *roi; /* pointer to RO if any */
struct _Ipllnmage *maskRO; /*pointer to mask RO if any */
void *inmageld; /* use of the application */
struct _IplTilelnfo *tilelnfo; /* contains information on tiling
*/
int inmgeSize; /* useful size in bytes */
char *imageData; /* pointer to aligned inmage */
int wdthStep; /* size of aligned line in bytes */
int BorderMode[4]; /* the top, bottom Ileft,
and right border node */
int BorderConst[4]; /* constants for the top, bottom
left, and right border */
char *imageDataOrigin; /* ptr to full, nonaligned i mage */

OpenCV Reference Manual Image Functions 1

Example 1-1 Iplimage Structure Definition (continued)

} Ipllmage;

Only a few of the most important fields of the structure are described here. The fields
wi dt h and hei ght contain image width and height in pixels, respectively. The field
dept h contains information about the type of pixel values.

All possible values of the field dept h listed in i pl . h header file include:
| PL_DEPTH_8U - unsigned 8-bit integer value (unsigned char),
| PL_DEPTH 8S - signed 8-bit integer value (signed char or simply char),
| PL_DEPTH_16S - signed 16-bit integer value (shorti nt),
| PL_DEPTH_32S - signed 32-bit integer value (i nt),
| PL_DEPTH_32F - 32-bit floating-point single-precision value (f I oat).

In the above list the corresponding types in C are placed in parentheses. The parameter
nChannel s means the number of color planes in the image. Grayscale images contain a
single channel, while color images usually include three or four channels. The
parameter or i gi n indicates, whether the top image row (origin==1PL_ORI G N_TL)
or bottom image row (ori gi n ==1PL_ORI G N_BL) goes first in memory. Windows
bitmaps are usually bottom-origin, while in most of other environments images are
top-origin. The parameter dat aOr der indicates, whether the color planes in the color
image are interleaved (dat aOr der == | PL_DATA_ORDER Pl XEL) or separate

(dat aOr der == | PL_DATA_ORDER_PLANE). The parameter wi dt hSt ep contains the
number of bytes between points in the same column and successive rows. The
parameter wi dt h is not sufficient to calculate the distance, because each row may be
aligned with a certain number of bytes to achieve faster processing of the image, so
there can be some gaps between the end of i th row and the start of (i +1) th row. The
parameter i mageDat a contains pointer to the first row of image data. If there are
several separate planes in the image (when dat aOr der == | PL_DATA_ORDER _PLANE),
they are placed consecutively as separate images with hei ght *nChannel s rows total.

1-2

OpenCV Reference Manual Image Functions 1

It is possible to select some rectangular part of the image or a certain color plane in the
image, or both, and process only this part. The selected rectangle is called "Region of
Interest" or ROI. The structure | pl | mage contains the field r oi for this purpose. If the
pointer not NULL, it points to the structure | pl RO that contains parameters of selected
ROI, otherwise a whole image is considered selected.

Example 1-2

IpIROI Structure Definition

typedef struct _Ipl RO

}

int coi; /* channel of interest or CO */
int xOfset;
int yOfset;
int wdth;
int height;
| pl RO ;

As can be seen, IpIROI includes ROI origin and size as well as COI (“Channel of
Interest”) specification. The field coi, equal to 0, means that all the image channels are
selected, otherwise it specifies an index of the selected image plane.

Unlike IPL, OpenCV has several limitations in support of | pl | mage:

— Each function supports only a few certain depths and/or number of channels.

For example, image statistics functions support only single-channel or
three-channel images of the depth | PL_DEPTH_8U, | PL_DEPTH_8S or

| PL_DEPTH_32F. The exact information about supported image formats is
usually contained in the description of parameters or in the beginning of the
chapter if all the functions described in the chapter are similar. It is quite
different from IPL that tries to support all possible image formats in each
function.

OpenCV supports only interleaved images, not planar ones.

The fields col or Model , channel Seq, Bor der Mode, and Bor der Const are
ignored.

The field al i gn is ignored and wi dt hSt ep is simply used instead of
recalculating it using the fields wi dt h and al i gn.

The fields maskRO and ti | el nf o must be zero.

COI support is very limited. Now only image statistics functions accept
non-zero COI values. Use the functions cvCvt Pi xToPl ane and
cvCvt Pl aneToPi x as a work-around.

1-3

OpenCV Reference Manual Image Functions 1

— ROIs of all the input/output images have to match exactly one another. For
example, input and output images of the function cvEr ode must have ROIs
with equal sizes. It is unlike IPL again, where the ROIs intersection is actually
affected.

Despite all the limitations, OpenCV still supports most of the commonly used image
formats that can be supported by I pl | mage and, thus, can be successfully used with
IPL on common subset of possible I pl | rage formats.

The functions described in this chapter are mainly short-cuts for operations of creating,
destroying, and other common operations on | pl | mage, and they are often
implemented as wrappers for original IPL functions.

Reference

cvCreatelmageHeader

Allocates, initializes, and returns structure
Ipllmage.

I pl I mage* cvCreat el mageHeader (CvSi ze size, int depth, int channels);

si ze Image width and height.
depth Image depth.

channel s Number of channels.
Discussion

The function cvCreat el mageHeader allocates, initializes, and returns the structure
I pl I mage. This call is a shortened form of

i pl Creat el mageHeader (channels, 0, depth,
channels == 1 ? "GRAY" : "R&B",
channels == 1 ? "GRAY" : channels == 3 ? "BGR' : "BGRA",
| PL_DATA ORDER PI XEL, I|PL_ORIG N TL, 4,

1-4

OpenCV Reference Manual Image Functions

si ze.wi dth, size. height,
0,0,0,0);

cvCreatelmage

Creates header and allocates data.

I pl I mage* cvCreatel mage(CvSize size, int depth, int channels);

si ze Image width and height.
depth Image depth.

channel s Number of channels.
Discussion

The function cvCreat el mage creates the header and allocates data. This call is a
shortened form of

header = cvCreat el nageHeader (si ze, dept h, channel s);
cvCr eat el mageDat a(header) ;

cvReleaselmageHeader

Releases header:

voi d cvRel easel mageHeader (| pl | mage** i mage);

i mage Double pointer to the deallocated header.

Discussion

The function cvRel easel mageHeader releases the header. This call is a shortened
form of

i f(imge)

OpenCV Reference Manual Image Functions 1

i pl Deal | ocate(*i nmage,
| PL_I MAGE_HEADER | | PL_I MAGE_ RO);

*i mage = 0;

cvReleaselmage

Releases header and image data.

voi d cvRel easel nage(|pl |l mge** image)
i mage Double pointer to the header of the deallocated image.

Discussion

The function cvRel easel mage releases the header and image data. This call is a
shortened form of

i f(imge)

{
i pl Deal | ocate(*inmage, |PL_I MAGE ALL);
*i mage = O;

}

cvCreatelmageData

Allocates image data.

voi d cvCreat el mageDat a(| pl | mrage* inage);
i mage Image header.

intel. 1o

OpenCV Reference Manual Image Functions 1

Discussion
The function cvCreat el negeDat a allocates the image data. This call is a shortened
form of
i f(i mage->depth == | PL_DEPTH 32F)
{
i pl Al'l ocat el mageFP(inmage, 0, 0);
}
el se
{
i pl Al'l ocatel mage(image, 0, 0);
}

cvReleaselmageData

Releases image data.

voi d cvRel easel nageData(| pl | mage* i mage);

i mage Image header.

Discussion

The function cvRel easel nageDat a releases the image data. This call is a shortened
form of

i pl Deal | ocate(image, |PL_I MAGE_DATA);

cvSetimageData

Sets pointer to data and step parameters to given
values.

voi d cvSet | mageData(|pllmge* inmage, void* data, int step);

intel. 17

OpenCV Reference Manual Image Functions 1

i mage Image header.

dat a User data.

step Distance between the raster lines in bytes.
Discussion

The function cvSet | mageDat a sets the pointer to dat a and st ep parameters to given
values.

cvSetimageCOl

Sets channel of interest to given value.

voi d cvSet |l mageCO (| pllmage* inmage, int coi);

i mage Image header.
coi Channel of interest.
Discussion

The function cvSet | negeCO sets the channel of interest to a given value. If ROI is
NULL and coi != 0, ROI is allocated.

cvSetimageROI

Sets image ROI to given rectangle.

voi d cvSetl mageRO (| pl I mage* i mage, CvRect rect);

i mage Image header.

rect ROI rectangle.

tel.

1-8

OpenCV Reference Manual Image Functions 1

Discussion

The function cvSet | mageRO sets the image ROI to a given rectangle. If ROI is NULL
and the value of the parameter r ect is not equal to the whole image, ROI is allocated.

cvGetimageRawData

Fills output variables with image parameters.

voi d cvGet | mageRawbDat a(const | pl | nage* image, uchar** data, int* step,
CvSi ze* roi Size);

i mage Image header.

dat a Pointer to the top-left corner of ROI.

step Full width of the raster line, equals to i mage- >wi dt hSt ep.
roi Size ROI width and height.

Discussion

The function cvGet | mageRawDat a fills output variables with the image parameters.
All output parameters are optional and could be set to NULL.

cvinitimageHeader

Initializes image header structure without
memory allocation.

voi d cvlnitlmgeHeader (| pllnage* i mage, CvSize size, int depth, int channels,
int origin, int align, int clear);

i mage Image header.
si ze Image width and height.
depth Image depth.

OpenCV Reference Manual Image Functions 1

channel s Number of channels.

origin IPL_ORIGIN_TLor I PL_ORI G N_BL.

align Alignment for the raster lines.

cl ear If the parameter value equals 1, the header is cleared before
initialization.

Discussion

The function cvl ni t1 mageHeader initializes the image header structure without
memory allocation.

cvCopylmage

Copies entire image to another without
considering ROL

voi d cvCopyl mage(l pl I mage* src, |pllmge* dst);

src Source image.
dst Destination image.
Discussion

The function cvCopyl mage copies the entire image to another without considering
ROIL. If the destination image is smaller, the destination image data is reallocated.

Pixel Access Macros

Overview

This section describes macros that are useful for fast and flexible access to image
pixels. The basic ideas behind these macros are as follows:

inte|® 1-10

Yangtze
高亮

OpenCV Reference Manual Image Functions 1

Example 1-3

Some structures of CvPi xel Access type are introduced. These structures
contain all information about ROI and its current position. The only difference
across all these structures is the data type, not the number of channels.

There exist fast versions for moving in a specific direction, e.g.,
CV_MOVE_LEFT, wrap and non-wrap versions. More complicated and slower
macros are used for moving in an arbitrary direction that is passed as a
parameter.

Most of the macros require the parameter cs that specifies the number of the
image channels to enable the compiler to remove superfluous multiplications
in case the image has a single channel, and substitute faster machine
instructions for them in case of three and four channels.

CvPixelPosition Structures Definition

typedef struct _CvPi xel Position8u

unsi gned char* currline;

/* pointer to the start of the current
pi xel line */

unsi gned char* topline;

/* pointer to the start of the top pixel
line */

unsi gned char* bottonm i ne;

/* pointer to the start of the first
line which is below the imge */
X; /* current x coordinate (in pixels) */
width; /* width of the image (in pixels)*/
height; /* height of the image (in pixels)*/
step; /* distance between lines (in
el ements of single plane) */
step_arr[3]; /* array: (O, -step, step).
It is used for vertical
novi ng */

} CvPi xel Posi ti on8u;

/*this
t ypedef
{

structure differs fromthe above only in data type*/
struct _CvPi xel Position8s

char* currline;
char* topli ne;
char* bot t om i ne;

int
i nt
i nt
int

X,

wi dt h;
hei ght ;
st ep;

1-11

OpenCV Reference Manual

Image Functions 1

Example 1-3 CvPixelPosition Structures Definition (continued)

int

step_arr[3];

} CvPi xel Posi ti on8s;

/* this structure differs fromthe CvPi xel Position8u only in data type

*/

typedef struct _CvPixel Position32f
{

currline;
topl i ne;
bottonl i ne;
X;

wi dt h;

hei ght ;

st ep;
step_arr[3];

} CvPi xel Posi ti on32f;

CV_INIT_PIXEL_POS

Initializes one of CvPixelPosition structures.

#define CV_IN T_PI XEL_POS(pos, origin, step, roi, X, VY,

pos
origin
step
roi

X, Yy
orientation

Initialization of structure.

Pointer to the left-top corner of ROIL.
Width of the whole image in bytes.
Width and height of ROI.

Initial position.

Image orientation; could be either
CV_ORI G N_TL - top/left orientation, or
CV_ORI G N_BL - bottom/left orientation.

orientation)

1-12

OpenCV Reference Manual Image Functions 1

CV_MOVE_TO

Moves to specified absolute position.

#define CV_MOVE _TQ(pos, X, Yy, CS)

pos Position structure.

X, y Coordinates of the new position.

cs Number of the image channels.
CV_MOVE

Moves by one pixel relative to current position.

#define CV_MOVE_LEFT(pos, cs)
#define CV_MOVE_RI GHT(pos, cs)
#define CV_MOVE_UP(pos, cs)
#define CV_MOVE_DONN(pos, cs)
#define CV_MOVE LU(pos, cs)
#define CV_MOVE_RU(pos, cs)
#define CV_MOVE LI pos, cs)
#define CV_MOVE_RD pos, cs)
pos Position structure.

cs Number of the image channels.

inte|® 1-13

OpenCV Reference Manual

Image Functions 1

CV_MOVE_WRAP

Moves by one pixel relative to current position
and wraps when position reaches image

boundary.

#define CV_MOVE_LEFT_WRAP(pos, cs)
#define CV_MOE_RI GHT_WRAP(pos, cs)
#define CV_MOVE_UP_WRAP(pos, cs)
#defi ne CV_MOVE_DOM_WRAP(pos, cs)
#define CV_MOVE_LU WRAP(pos, cs)
#defi ne CV_MOVE_RU WRAP(pos, cs)
#define CV_MOVE_LD WRAP(pos, cs)
#defi ne CV_MOVE_RD WRAP(pos, cs)

pos

CS

Position structure.

Number of the image channels.

CV_MOVE_PARAM

Moves by one pixel in specified direction.

#defi ne CV_MOVE_PARAM pos, shift, cs)

pos
cs
shift

Position structure.

Number of the image channels.
Direction; could be any of the following:
CV_SH FT_NONE,

CV_SH FT_LEFT,

CV_SH FT_RI GHT,

CV_SH FT_UP,

1-14

OpenCV Reference Manual Image Functions 1

CV_SHI FT_DOMN,
CV_SHI FT_UL,
CV_SH FT_UR,
CV_SHI FT_DL.

CV_MOVE_PARAM_WRAP

Moves by one pixel in specified direction with
wrapping.

#defi ne CV_MOVE_PARAM WRAP(pos, shift, cs)

pos Position structure.
cs Number of the image channels.
shift Direction; could be any of the following:

CV_SHI FT_NONE,
CV_SH FT_LEFT,
CV_SHI FT_RI GHT,
CV_SH FT_UP,
CV_SH FT_DOWN,
CV_SH FT_UL,
CV_SH FT_UR,
CV_SH FT_DL.

inte|® 1-15

OpenCV Reference Manual Image Functions 1

inte|® 1-16

Dynamic Data Structures 2

This chapter describes several resizable data structures and basic functions that are
designed to operate on these structures.

Memory Storage

Overview

Memory storages provide the space for storing all the dynamic data structures
described in this chapter. A storage consists of a header and a double-linked list of
memory blocks. This list is treated as a stack, that is, the storage header contains a
pointer to the block that is not occupied entirely and an integer value, the number of
free bytes in this block. When the free space in the block has run out, the pointer is
moved to the next block, if any, otherwise, a new block is allocated and then added to
the list of blocks. All the blocks are of the same size and, therefore, this technique
ensures an accurate memory allocation and helps avoid memory fragmentation if the
blocks are large enough (see Figure 2-1).

OpenCV Reference Manual Dynamic Data Structures 2

Figure 2-1 Memory Storage Organization

Storage header
BOTTOM
TOP
Free space
_’ _|
S o
——
Memory blocks

Example 2-1 CvMemStorage Structure Definition

typedef struct CvMenttorage
{

CvMenBl ock* bottom/* first allocated bl ock */
CvMenBl ock* top; /*current menory block - top of the stack */
struct CvMentt orage* parent; /* borrows new bl ocks from */
i nt bl ock_size; /* block size */
i nt free_space; /* free space in the current block */
} CvMentt or age;

Example 2-2 CvMemBlock Structure Definition

typedef struct CvMenBl ock
{

struct CvMenBl ock* prev;
struct CvMenBl ock* next;
} CvMenBI ock;

Actual data of the memory blocks follows the header, that is, the i th byte of the
memory block can be retrieved with the expression ((charl)(mem_block_ptr +1))[i]
However, the occasions on which the need for direct access to the memory blocks
arises are quite rare. The structure described below stores the position of the stack top

OpenCV Reference Manual Dynamic Data Structures 2

that can be saved/restored:

Example 2-3 CvMemStoragePos Structure Definition

typedef struct CvMenSt or agePos

CvMenBl ock* t op;
int free_space;

}
CvMentt or agePos;

cvCreateMemStorage

Creates memory storage.

CvMentt or age* cvCreat eMentt orage(int bl ockSi ze=0);
bl ockSi ze Size of the memory blocks in the storage; bytes.

Discussion

The function cvCreat eMentt or age creates a memory storage and returns the pointer
to it. Initially the storage is empty. All fields of the header are set to 0. The parameter

bl ockSi ze must be positive or zero; if the parameter equals 0, the block size is set to

the default value, currently 64K.

cvCreateChildMemStorage

Creates child memory storage.

CvMentt or age* cvCreat eChi | dMentst or age(CvMentt or age* parent);

par ent Parent memory storage.

OpenCV Reference Manual Dynamic Data Structures 2

Discussion

The function cvCreat eChi | dVenft or age creates a child memory storage similar to
the simple memory storage except for the differences in the memory
allocation/de-allocation mechanism. When a child storage needs a new block to add to
the block list, it tries to get this block from the parent. The first unoccupied parent
block available is taken and excluded from the parent block list. If no blocks are
available, the parent either allocates a block or borrows one from its own parent, if any.
In other words, the chain, or a more complex structure, of memory storages where
every storage is a child/parent of another is possible. When a child storage is released
or even cleared, it returns all blocks to the parent. Note again, that in other aspects, the
child storage is the same as the simple storage.

cvReleaseMemStorage

Releases memory storage.

voi d cvCreat eChi | dMentt orage(CvMenft or age** storage);

st or age Pointer to the released storage.

Discussion

The function cvRel easeMenst or age de-allocates all storage memory blocks or
returns them to the parent, if any. Then it de-allocates the storage header and clears the
pointer to the storage. All children of the storage must be released before the parent is
released.

cvClearMemStorage

Clears memory storage

voi d cvC ear Mentt or age(CvMenft or age* storage);

st or age Memory storage.

In

tel.

2-4

OpenCV Reference Manual Dynamic Data Structures 2

Discussion

The function cvC ear Mentt or age resets the top (free space boundary) of the storage
to the very beginning. This function does not de-allocate any memory. If the storage
has a parent, the function returns all blocks to the parent.

cvSaveMemStoragePos

Saves memory storage position.

voi d cvSaveMentst or agePos(CvMenft or age* storage, CvMenttoragePos* pos);

st orage Memory storage.
pos Currently retrieved position of the in-memory storage top.
Discussion

The function cvSaveMentt or agePos saves the current position of the storage top to
the parameter pos. This position can be retrieved further by the function
cVvRest or eMenfst or agePos.

cvRestoreMemStoragePos

Restores memory storage position.

voi d cvRest oreMentst or agePos(CvMentt or age* st orage, CvMenttoragePos* pos);

storage Memory storage.
pos New storage top position.
Discussion

The function cvRest or eMentt or agePos restores the position of the storage top from
the parameter pos. This function and the function cvC ear Mentt or age are the only
methods to release memory occupied in memory blocks.

tel ® 2-5

OpenCV Reference Manual Dynamic Data Structures 2

In other words, the occupied space and free space in the storage are continuous. If the
user needs to process data and put the result to the storage, there arises a need for the
storage space to be allocated for temporary results. In this case the user may simply
write all the temporary data to that single storage. However, as a result garbage appears
in the middle of the occupied part. See Figure 2-2.

Figure 2-2 Storage Allocation for Temporary Results

Input/Output Storage

Input (@(pied) Data

Input/Output Storage

s
p s
p s
s
p s
L]
L]
L]
L]
L]
p s
eeielitadeteetettotetel

RSt
B

R
SR
D2eteatateelo oo to ool

Outpub[Data

—
Temporary Data (Garbage)

Saving/Restoring does not work in this case. Creating a child memory storage,
however, can resolve this problem. The algorithm writes to both storages
simultaneously, and, once done, releases the temporary storage. See Figure 2-3.

OpenCV Reference Manual Dynamic Data Structures 2

Figure 2-3 Release of Temporary Storage

Input/Output Storage

s
B AR
R85

essssissssss: N N N RN

SIS
RSy
R

Temporary Child Storage

Sequences

Overview

A sequence is a resizable array of arbitrary type elements located in the memory
storage. The sequence is discontinuous. Sequence data may be partitioned into several
continuous blocks, called sequence blocks, that can be located in different memory
blocks. Sequence blocks are connected into a circular double-linked list to store large
sequences in several memory blocks or keep several small sequences in a single
memory block. For example, such organization is suitable for storing contours. The
sequence implementation provides fast functions for adding/removing elements
to/from the head and tail of the sequence, so that the sequence implements a deque.
The functions for inserting/removing elements in the middle of a sequence are also
available but they are slower. The sequence is the basic type for many other dynamic
data structures in the library, e.g., sets, graphs, and contours; just like all these types,
the sequence never returns the occupied memory to the storage. However, the
sequence keeps track of the memory released after removing elements from the
sequence; this memory is used repeatedly. To return the memory to the storage, the
user may clear a whole storage, or use save/restoring position functions, or keep
temporary data in child storages.

OpenCV Reference Manual Dynamic Data Structures 2

Figure 2-4 Sequence Structure

Storage header
Links between blocks.

Sequence heaaer and, probably, Sequence blocks.
the first sequence block.

Example 2-4 CvSequence Structure Definition

#defi ne CV_SEQUENCE_FI ELDS() \
i nt header _si ze; /* size of sequence header */ \
struct CvSeq* h_prev; /* previous sequence */ \
st ruct CvSeg* h_next; /* next sequence */ \
struct CvSeqg* v_prev; /* 2nd previous sequence */ \
struct CvSeq* v_next; /* 2nd next sequence */ \
i nt fl ags; /* mcsellaneous flags */ \
i nt total; /* total nunber of elenents */ \
i nt elemsize;/* size of sequence elenment in bytes */ \
char* bl ock_max;/* maxi mal bound of the |ast block */ \
char* ptr; /* current wite pointer */ \
i nt delta_elens; /* how nmany el enents al |l ocated when the seq

grows */ \
CvMentst or age* storage; /* where the seq is stored */ \
CvSeqBl ock* free_blocks; [/* free blocks list */ \

CvSeqBl ock* first; /* pointer to the first sequence bl ock */
typedef struct CvSeq

CV_SEQUENCE_FI ELDS()
} OvSeq;

Such an unusual definition simplifies the extension of the structure CvSeq with
additional parameters. To extend CvSeq the user may define a new structure and put
user-defined fields after all CvSeq fields that are included via the macro
CV_SEQUENCE_FI ELDS() . The field header _si ze contains the actual size of the
sequence header and must be more than or equal to si zeof (CvSeq) . The fields

OpenCV Reference Manual Dynamic Data Structures 2

h_prev, h_next,v_prev, v_next can be used to create hierarchical structures from
separate sequences. The fields h_prev and h_next point to the previous and the next
sequences on the same hierarchical level while the fields v_pr ev and v_next point to
the previous and the next sequence in the vertical direction, that is, parent and its first
child. But these are just names and the pointers can be used in a different way. The
field fi r st points to the first sequence block, whose structure is described below. The
field flags contain miscellaneous information on the type of the sequence and should
be discussed in greater detail. By convention, the lowest CV_SEQ ELTYPE BI TS bits
contain the ID of the element type. The current version has Cv_SEQ ELTYPE BI TS
equal to 5, that is, it supports up to 32 non-overlapping element types now. The file
CVvTypes. h declares the predefined types.

Example 2-5 Standard Types of Sequence Elements

#define CV_SEQ ELTYPE_PQO NT

#defi ne CV_SEQ ELTYPE CODE

#define CV_SEQ ELTYPE_PPO NT
#define CV_SEQ ELTYPE_I NDEX
#define CV_SEQ ELTYPE GRAPH EDGE
&t x_d */

#def i ne CV_SEQ ELTYPE_GRAPH VERTEX
#define CV_SEQ ELTYPE_TRI AN _ATR

*

/

#defi ne CV_SEQ ELTYPE_CONNECTED COWP 8 /* connected conponent */
#define CV_SEQ ELTYPE PO NT3D 9 /* (x,y,z) */

I* (x,y) */

/* freeman code: 0..7 */
[* &(x,y) */

[* #(x,y) */

/* &next _o, &next _d, &t x_o,

GORrWNE

~NOo

/* first_edge, &(x,y) */
/* vertex of the binary tree

The next CV_SEQ KI ND_BI TS bits, also 5 in number, specify the kind of the sequence.
Again, predefined kinds of sequences are declared in the file CvTypes. h.

Example 2-6 Standard Kinds of Sequences

#define CV_SEQ KI ND_SET (0 << CV_SEQ ELTYPE_BI TS)
#def i ne CV_SEQ KI ND_CURVE (1 << CV_SEQ ELTYPE BI TS)
#define CV_SEQ KIND BIN TREE (2 << CV_SEQ ELTYPE BI TS)
#define CV_SEQ KI ND_GRAPH (3 << CV_SEQ ELTYPE BI TS)

The remaining bits are used to identify different features specific to certain sequence
kinds and element types. For example, curves made of points

(CV_SEQ KI ND_CURVE| CV_SEQ ELTYPE_PQ NT), together with the flag
CV_SEQ FLAG CLOSED belong to the type CV_SEQ POLYGON or, if other flags are used,
its subtype. Many contour processing functions check the type of the input sequence

2-9

OpenCV Reference Manual Dynamic Data Structures 2

and report an error if they do not support this type. The file CvTypes. h stores the
complete list of all supported predefined sequence types and helper macros designed to
get the sequence type of other properties.

Below follows the definition of the building block of sequences.

Example 2-7 CvSeqBlock Structure Definition

typedef struct CvSeqBl ock
{

struct CvSeqBl ock* prev; /* previous sequence block */
struct CvSeqBl ock* next; /* next sequence block */

i nt start_index; /* index of the first elenent in the block +
sequence->first->start_i ndex */

i nt count; /* nunber of elenents in the block */

char* data; /* pointer to the first elenent of the block */
} CvSeqBl ock;

Sequence blocks make up a circular double-linked list, so the pointers pr ev and next
are never NULL and point to the previous and the next sequence blocks within the
sequence. It means that next of the last block is the first block and pr ev of the first
block is the last block. The fields st art _i ndex and count help to track the block
location within the sequence. For example, if the sequence consists of 10 elements and
splits into three blocks of 3, 5, and 2 elements, and the first block has the parameter
start_index = 2, then pairs <start _i ndex, count > for the sequence blocks are

<2, 3>, <5, 5>, and <10, 2> correspondingly. The parameter st art _i ndex of the first
block is usually 0 unless some elements have been inserted at the beginning of the
sequence.

cvCreateSeq

Creates sequence.

CvSeq* cvCreateSeq(int seqFl ags, int headerSize, int elenSize, CvMenttorage*
st orage);

inte|® 2-10

OpenCV Reference Manual

Dynamic Data Structures 2

seqFl ags

header Si ze

el entSi ze

st or age

Discussion

Flags of the created sequence. If the sequence is not passed to any
function working with a specific type of sequences, the sequence
value may be equal to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

Size of the sequence header; must be more than or equal to
si zeof (CvSeq) . If a specific type or its extension is indicated, this
type must fit the base type header.

Size of the sequence elements in bytes. The size must be consistent
with the sequence type. For example, for a sequence of points to be
created, the element type CV_SEQ ELTYPE_PO NT should be specified
and the parameter el enSi ze must be equal to si zeof (CvPoi nt) .

Sequence location.

The function cvCreat eSeq creates a sequence and returns the pointer to it. The
function allocates the sequence header in the storage block as one continuous chunk
and fills the parameter el enti ze, flags header Si ze, and st or age with passed values,
sets the parameter del t aEl ens (see the function cvSet SeqBl ockSi ze) to the default
value, and clears other fields, including the space behind si zeof (CvSeq) .

=

NOTE. All headers in the memory storage, including sequence
headers and sequence block headers, are aligned with the 4-byte
boundary.

cvSetSeqBlockSize

Sets up sequence block size.

voi d cvSet SeqBl ockSi ze(CvSeq* seq, int blockSize);

intel.

2-11

OpenCV Reference Manual Dynamic Data Structures 2

seq Sequence.
bl ockSi ze Desirable block size.
Discussion

The function cvSet SeqBl ockSi ze affects the memory allocation granularity. When
the free space in the internal sequence buffers has run out, the function allocates

bl ockSi ze bytes in the storage. If this block immediately follows the one previously
allocated, the two blocks are concatenated, otherwise, a new sequence block is created.
Therefore, the bigger the parameter, the lower the sequence fragmentation probability,
but the more space in the storage is wasted. When the sequence is created, the
parameter bl ockSi ze is set to the default value ~1K. The function can be called any
time after the sequence is created and affects future allocations. The final block size
can be different from the one desired, e.g., if it is larger than the storage block size, or
smaller than the sequence header size plus the sequence element size.

The next four functions cvSeqPush, cvSeqPop, cvSeqPushFront, cvSeqPopFront
add or remove elements to/from one of the sequence ends. Their time complexity is
Q(1), that is, all these operations do not shift existing sequence elements.

cvSegPush

Adds element to sequence end.

voi d cvSeqPush(CvSeq* seq, void* elenent);

seq Sequence.
el ement Added element.
Discussion

The function cvSeqPush adds an element to the end of the sequence. Although this
function can be used to create a sequence element by element, there is a faster method
(refer to Writing and Reading Sequences).

2-12

OpenCV Reference Manual Dynamic Data Structures 2

cvSegPop

Removes element from sequence end.

voi d cvSeqPop(CvSeq* seq, void* elenent);
seq Sequence.
el enent Optional parameter. If the pointer is not zero, the function copies the

removed element to this location.
Discussion

The function cvSeqPop removes an element from the sequence. The function reports
an error if the sequence is already empty.

cvSeqPushFront

Adds element to sequence beginning.

voi d cvSeqPushFront (CvSeq* seq, void* elenment);

seq Sequence.
el ement Added element.
Discussion

The function cvSeqPushFront adds an element to the beginning of the sequence.

cvSegPopFront

Removes element from sequence beginning.

voi d cvSeqPopFront(CvSeq* seq, void* element);

inte|® 2-13

OpenCV Reference Manual Dynamic Data Structures 2

seq Sequence.

el ement Optional parameter. If the pointer is not zero, the function copies the
removed element to this location.
Discussion

The function cvSeqPopFront removes an element from the beginning of the
sequence. The function reports an error if the sequence is already empty.

Next two functions cvSeqPushMul ti, cvSeqgPopMilti are batch versions of the
PUSH/POP operations.

cvSegPushMulti

Pushes several elements to sequence end.

voi d cvSeqPushMul ti (CvSeq* seq, void* elements, int count);

seq Sequence.

el ement s Added elements.

count Number of elements to push.
Discussion

The function cvSeqPushMuil ti adds several elements to the end of the sequence. The
elements are added to the sequence in the same order as they are arranged in the input
array but they can fall into different sequence blocks.

cvSegPopMulti

Removes several elements from sequence end.

voi d cvSeqPopMul ti (CvSeq* seq, void* elenments, int count);

In

tel.

2-14

OpenCV Reference Manual Dynamic Data Structures 2

seq Sequence.

el ement s Removed elements.

count Number of elements to pop.
Discussion

The function cvSeqPopMil ti removes several elements from the end of the sequence.
If the number of the elements to be removed exceeds the total number of elements in
the sequence, the function removes as many elements as possible.

cvSeqlinsert

Inserts element in sequence middle.

voi d cvSeql nsert(CvSeq* seq, int beforelndex, void* element);

seq Sequence.

beforelndex Index before which the element is inserted. Inserting before 0 is
equal to cvSeqPushFront and inserting before seq- >t ot al is equal
to cvSeqPush. The index values in these two examples are
boundaries for allowed parameter values.

el ement Inserted element.

Discussion

The function cvSeql nsert shifts the sequence elements from the inserted position to
the nearest end of the sequence before it copies an element there, therefore, the
algorithm time complexity is Q(n/ 2) .

2-15

OpenCV Reference Manual Dynamic Data Structures 2

cvSegRemove

Removes element from sequence middle.

voi d cvSeqRenove(CvSeq* seq, int index);

seq Sequence.
i ndex Index of removed element.
Discussion

The function cvSegRenove removes elements with the given index. If the index is
negative or greater than the total number of elements less 1, the function reports an
error. An attempt to remove an element from an empty sequence is a specific case of
this situation. The function removes an element by shifting the sequence elements
from the nearest end of the sequence i ndex.

cvClearSeq

Clears sequence.

voi d cvd ear Seq(CvSeq* seq);

seq Sequence.

Discussion

The function cvd ear Seq empties the sequence. The function does not return the
memory to the storage, but this memory is used again when new elements are added to
the sequence. This function time complexity is O(1) .

2-16

OpenCV Reference Manual Dynamic Data Structures 2

cvGetSeqElem

Returns n-th element of sequence.

char* cvGet SeqEl en{ CvSeq* seq, int index, CvSeqBl ock** bl ock=0);

seq Sequence.
i ndex Index of element.
bl ock Optional argument. If the pointer is not NULL, the address of the

sequence block that contains the element is stored in this location.

Discussion

The function cvGet SeqEl em finds the element with the given index in the sequence
and returns the pointer to it. In addition, the function can return the pointer to the
sequence block that contains the element. If the element is not found, the function
returns 0. The function supports negative indices, where -1 stands for the last sequence
element, -2 stands for the one before last, etc. If there is a big chance that the sequence
consists of a single sequence block or desired element is located in the first block, then
the macro CV_GET_SEQ ELEM(el enilype, seq, i ndex) should be used, where the
parameter el eniType is the type of sequence elements (CvPoi nt for example), the
parameter seq is a sequence, and the parameter i ndex is the index of the desired
element. The macro checks first whether the desired element belongs to the first block
of the sequence and, if so, returns the element, otherwise the macro calls the main
function cvGet SeqEl em Negative indices always cause the cvGet SeqEl emcall.

cvSeqElemldx

Returns index of concrete sequence element.

int cvSeqEl em dx(CvSeq* seq, void* elenent, CvSeqBl ock** bl ock=0);
seq Sequence.

el ement Pointer to the element within the sequence.

inte|® 2-17

OpenCV Reference Manual Dynamic Data Structures 2

bl ock Optional argument. If the pointer is not NULL, the address of the
sequence block that contains the element is stored in this location.
Discussion

The function cvSeqEl em dx returns the index of a sequence element or a negative
number if the element is not found.

cvCvtSeqToArray

Copies sequence to one continuous block of
memory.

voi d* cvCvt ToArray(CvSeq* seq, void* array, CvSlice slice=CV_WHOLE SEQ seq)
)

seq Sequence.

array Pointer to the destination array that must fit all the sequence
elements.

slice Start and end indices within the sequence so that the

corresponding subsequence is copied.

Discussion

The function cvCvt SeqToArray copies the entire sequence or subsequence to the
specified buffer and returns the pointer to the buffer.

cvMakeSeqgHeaderForArray

Constructs sequence from array.

voi d cvMakeSeqHeader For Array(int seqType, int headerSize, int el enSize, void*
array, int total, CvSeq* sequence, CvSegBl ock* block);

inte|® 2-18

OpenCV Reference Manual Dynamic Data Structures 2

seqType Type of the created sequence.

header Si ze Size of the header of the sequence. Parameter sequence must point to
the structure of that size or greater size.

el enti ze Size of the sequence element.

array Pointer to the array that makes up the sequence.

t ot al Total number of elements in the sequence. The number of array
elements must be equal to the value of this parameter.

sequence Pointer to the local variable that is used as the sequence header.

bl ock Pointer to the local variable that is the header of the single sequence
block.

Discussion

The function cvMakeSeqHeader For Arr ay, the exact opposite of the function

cvCvt SeqToAr r ay, builds a sequence from an array. The sequence always consists of a
single sequence block, and the total number of elements may not be greater than the
value of the parameter t ot al , though the user may remove elements from the
sequence, then add other elements to it with the above restriction.

Writing and Reading Sequences

Overview

Although the functions and macros described below are irrelevant in theory because
functions like cvSeqPush and cvGet SeqEl emenable the user to write to sequences
and read from them, the writing/reading functions and macros are very useful in
practice because of their speed.

The following problem could provide an illustrative example. If the task is to create a
function that forms a sequence from Nrandom values, the PUSH version runs as
follows:

CvSeq* create_seql(CvStorage* storage, int N) {
CvSeq* seq = cvCreateSeq(0, sizeof(*seq), sizeof(int), storage);
for(int i =0; i <N i++) {

2-19

OpenCV Reference Manual Dynamic Data Structures 2

int a=rand();
cvSeqPush(seq, &a);
}

return seq;

}

The second version makes use of the fast writing scheme, that includes the following
steps: initialization of the writing process (creating writer), writing, closing the writer
(flush).

CvSeq* create_seql(CvStorage* storage, int N) {

CvSeqWiter witer;

cvStartWiteSeq(0, sizeof(*seq), sizeof(int),

storage, &witer);

for(int i =0; i <N i++) {

int a = rand();

CV_WRI TE_SEQ ELEM a, writer);

}

return cvEndWiteSeq(&witer);

}

If N= 100000 and 500MHz Pentium® III processor is used, the first version takes 230
milliseconds and the second one takes 111 milliseconds to finish. These characteristics
assume that the storage already contains a sufficient number of blocks so that no new
blocks are allocated. A comparison with the simple loop that does not use sequences
gives an idea as to how effective and efficient this approach is.

int* create_seq3(int* buffer, int N) {

for(i =0; i <N i++) {
buffer[i] = rand();

}

return buffer;

}

This function takes 104 milliseconds to finish using the same machine.

2-20

OpenCV Reference Manual Dynamic Data Structures 2

Generally, the sequences do not make a great impact on the performance and the
difference is very insignificant (less than 7% in the above example). However, the
advantage of sequences is that the user can operate the input or output data even
without knowing their amount in advance. These structures enable him/her to allocate
memory iteratively. Another problem solution would be to use lists, yet the sequences
are much faster and require less memory.

Reference

cvStartAppendToSeq

Initializes process of writing to sequence.

voi d cvStart AppendToSeq(CvSeq* seq, CvSegWiter* witer);
seq Pointer to the sequence.

writer Pointer to the working structure that contains the current status of the
writing process.

Discussion

The function cvSt art AppendToSeq initializes the writer to write to the sequence.
Written elements are added to the end of the sequence. Note that during the writing
process other operations on the sequence may yield incorrect result or even corrupt the
sequence (see Discussion of the function cvFl ushSeqwiter).

cvStartWriteSeq

Creates new sequence and initializes writer for it.

void cvStart WiteSeq(int segFl ags, int headerSize, int el enSi ze, CvMenttorage*
storage, CvSeqWiter* witer);

inte|® 2-21

OpenCV Reference Manual

Dynamic Data Structures 2

seqFl ags

header Si ze

el entSi ze

st or age

writer

Discussion

Flags of the created sequence. If the sequence is not passed to any
function working with a specific type of sequences, the sequence
value may be equal to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

Size of the sequence header. The parameter value may not be less
than si zeof (CvSeq) . If a certain type or extension is specified, it
must fit the base type header.

Size of the sequence elements in bytes; must be consistent with the
sequence type. For example, if the sequence of points is created
(element type CV_SEQ ELTYPE_PO NT), then the parameter el enfSi ze
must be equal to si zeof (CvPoi nt) .

Sequence location.

Pointer to the writer status.

The function cvStart WiteSeq is the exact sum of the functions cvCr eat eSeq and
cvSt art AppendToSeq.

cvEndWriteSeq

Finishes process of writing.

CvSeq* cvEndWiteSeq(CvSeqWiter* witer);

writer

Discussion

Pointer to the writer status.

The function cvEndW it eSeq finishes the writing process and returns the pointer to
the resulting sequence. The function also truncates the last sequence block to return the
whole of unfilled space to the memory storage. After that the user may read freely
from the sequence and modify it.

2-22

OpenCV Reference Manual Dynamic Data Structures 2

cvFlushSeqgWriter

Updates sequence headers using writer state.

voi d cvFlushSegWiter(CvSegWiter* witer);

writer Pointer to the writer status.

Discussion

The function cvFl ushSeqWi t er is intended to enable the user to read sequence
elements, whenever required, during the writing process, e.g., in order to check
specific conditions. The function updates the sequence headers to make reading from
the sequence possible. The writer is not closed, however, so that the writing process
can be continued any time. Frequent flushes are not recommended, the function
cvSeqgPush is preferred.

cvStartReadSeq

Initializes process of sequential reading from
sequence.

voi d cvStart ReadSeq(CvSeq* seq, CvSeqReader* reader, int reverse=0);

seq Sequence.
r eader Pointer to the reader status.
reverse Whenever the parameter value equals 0, the reading process is going

in the forward direction, that is, from the beginning to the end,
otherwise the reading process direction is reverse, from the end to
the beginning.

inte|® 2-23

OpenCV Reference Manual Dynamic Data Structures 2

Discussion

The function cvSt art ReadSeq initializes the reader structure. After that all the
sequence elements from the first down to the last one can be read by subsequent calls
of the macro CV_READ_SEQ ELEM(el em r eader) that is similar to

CV_WRI TE_SEQ ELEM The function puts the reading pointer to the last sequence
element if the parameter r ever se does not equal zero. After that the macro
CV_REV_READ_SEQ ELEM(el em r eader) can be used to get sequence elements from
the last to the first. Both macros put the sequence element to el emand move the
reading pointer forward (CV_READ_SEQ ELEM) or backward (CV_REV_READ SEQ ELEM).
A circular structure of sequence blocks is used for the reading process, that is, after the
last element has been read by the macro CV_READ_SEQ ELEM the first element is read
when the macro is called again. The same applies to CV_REV_READ SEQ ELEM Neither
function ends reading since the reading process does not modify the sequence, nor
requires any temporary buffers. The reader field pt r points to the current element of
the sequence that is to be read first.

cvGetSeqgReaderPos

Returns index of element to read position.

i nt cvGet SeqReader Pos(CvSeqReader* reader);

r eader Pointer to the reader status.

Discussion

The function cvGet SeqReader Pos returns the index of the element in which the
reader is currently located.

2-24

OpenCV Reference Manual Dynamic Data Structures 2

cvSetSeqReaderPos

Moves read position to specified index.

voi d cvGet SeqReader Pos(CvSeqReader* reader, int index, int isRelative=0);

r eader Pointer to the reader status.
i ndex Position where the reader must be moved.
i sRel ative If the parameter value is not equal to zero, the index means an offset

relative to the current position.

Discussion

The function cvSet SeqReader Pos moves the read position to the absolute or relative
position. This function allows for cycle character of the sequence.

Sets

Overview

The set structure is mostly based on sequences but has a totally different purpose. For
example, the user is unable to use sequences for location of the dynamic structure
elements that have links between one another because if some elements have been
removed from the middle of the sequence, other sequence elements are moved to
another location and their addresses and indices change. In this case all links have to be
fixed anew. Another aspect of this problem is that removing elements from the middle
of the sequence is slow, with time complexity of O(n) , where n is the number of
elements in the sequence.

inte|® 2-25

OpenCV Reference Manual Dynamic Data Structures 2

The problem solution lies in making the structure sparse and unordered, that is,
whenever a structure element is removed, other elements must stay where they have
been, while the cell previously occupied by the element is added to the pool of three
cells; when a new element is inserted into the structure, the vacant cell is used to store
this new element. The set (See Example 2-8) operates in this very way.

The set looks like a list yet keeps no links between the structure elements. However,
the user is free to make and keep such lists, if needed. The set is implemented as a
sequence subclass; the set uses sequence elements as cells and organizes a list of free
cells.

See Figure 2-5 for an example of a set. For simplicity, the figure does not show
division of the sequence/set into memory blocks and sequence blocks.

Figure 2-5 Set Structure

Existing set elements

List of free cells

Hea&er of the set
Free cells, linked together

The set elements, both existing and free cells, are all sequence elements. A special bit
indicates whether the set element exists or not: in the above diagram the bits marked
by 1 are free cells and the ones marked by 0 are occupied cells. The macro

intgl. 226

OpenCV Reference Manual Dynamic Data Structures 2

CV_I S _SET_ELEM EXI STS(set _el em ptr) uses this special bit to return a non-zero
value if the set element specified by the parameter set _el em ptr belongs to the set,
and 0 otherwise. Below follows the definition of the structure CvSet :

Example 2-8 CvSet Structure Definition

#define CV_SET_FI ELDS() \
CV_SEQUENCE_FI ELDS() \
CvMenBl ock* free_el ens;

typedef struct CvSet
CV_SET_FI ELDS()

}
CvSet;

In other words, a set is a sequence plus a list of free cells.

There are two modes of working with sets. The first mode uses indices for referencing
the set elements within a sequence while the second mode uses pointers for the same
purpose. Whereas at times the first mode is a better option, the pointer mode is faster
because it does not need to find the set elements by their indices, which is done in the
same way as in simple sequences. The decision on which method should be used in
each particular case depends on the type of operations to be performed on the set and
the way these operations should be performed.

The ways in which a new set is created and new elements are added to the existing set
are the same in either mode, the only difference between the two being the way the
elements are removed from the set. The user may even use both methods of access
simultaneously, provided he or she has enough memory available to store both the
index and the pointer to each element.

Like in sequences, the user may create a set with elements of arbitrary type and specify
any size of the header, which, however, may not be less than si zeof (CvSet) . At the
same time the size of the set elements is restricted to be not less than 8 bytes and
divisible by 4. The reason behind this restriction is the internal set organization: if the
set has a free cell available, the first 4-byte field of this set element is used as a pointer
to the next free cell, which enables the user to keep track of all free cells. The second
4-byte field of the cell contains the cell to be returned when the cell becomes occupied.

2-27

OpenCV Reference Manual Dynamic Data Structures 2

When the user removes a set element while operating in the index mode, the index of
the removed element is passed and stored in the released cell again. The bit indicating
whether the element belongs to the set is the least significant bit of the first 4-byte
field. This is the reason why all the elements must have their size divisible by 4. In this
case they are all aligned with the 4-byte boundary, so that the least significant bits of
their addresses are always 0.

In free cells the corresponding bit is set to 1 and, in order to get the real address of the
next free cell, the functions mask this bit off. On the other hand, if the cell is occupied,
the corresponding bit must be equal to 0, which is the second and last restriction: the
least significant bit of the first 4-byte field of the set element must be 0, otherwise the
corresponding cell is considered free. If the set elements comply with this restriction,
e.g., if the first field of the set element is a pointer to another set element or to some
aligned structure outside the set, then the only restriction left is a non-zero number of
4- or 8-byte fields after the pointer. If the set elements do not comply with this
restriction, e.g., if the user wants to store integers in the set, the user may derive his or
her own structure from the structure CvSet EI emor include it into his or her structure as
the first field.

Example 2-9 CvSetElem Structure Definition

#define CV_SET_ELEM FI ELDS() \
int* aligned_ptr;

typedef struct _CvSetEl em
CV_SET_ELEM FI ELDS()

}
CvSet El em

The first field is a dummy field and is not used in the occupied cells, except the least
significant bit, which is 0. With this structure the integer element could be defined as
follows:

typedef struct _IntSetEl em

{
CV_SET_ELEM FI ELDS()
int val ue;

}

I nt Set El em

2-28

OpenCV Reference Manual Dynamic Data Structures 2

Reference

cvCreateSet

Creates empty set.

CvSet* cvCreateSet(int setFlags, int headerSize, int elenSize, CvMenttorage*

st orage);
set Fl ags Type of the created set.
header Si ze Set header size; may not be less than si zeof (CvSeq) .
el enti ze Set element size; may not be less than 8 bytes, must be divisible by 4.
st or age Future set location.
Discussion

The function cvCreat eSet creates an empty set with the specified header size and
returns the pointer to the set. The function simply redirects the call to the function

cvCr eat eSeq.

cvSetAdd

Adds element to set.

int cvSet Add(CvSet* set, CvSet* elem CvSet** insertedEl em=0);
set Set.

el em Optional input argument, inserted element. If not NULL, the function
copies the data to the allocated cell omitting the first 4-byte field.

i nsertedEl em Optional output argument; points to the allocated cell.

inte|® 2-29

OpenCV Reference Manual Dynamic Data Structures 2

Discussion

The function cvSet Add allocates the new cell, optionally copies input element data to
it, and returns the pointer and the index to the cell. The index value is taken from the
second 4-byte field of the cell. In case the cell was previously deleted and a wrong
index was specified, the function returns this wrong index. However, if the user works
in the pointer mode, no problem occurs and the pointer stored at the parameter

i nsert edEl emmay be used to get access to the added set element.

cvSetRemove

Removes element from set.

voi d cvSet Renmove(CvSet* set, int index);

set Set.
i ndex Index of the removed element.
Discussion

The function cvSet Renove removes an element with specified index from the set.
The function is typically used when set elements are accessed by their indices. If
pointers are used, the macro CV_REMOVE _SET_ELEM set, index, elen), whereel em
is a pointer to the removed element and i ndex is any non-negative value, may be used
to remove the element. Alternative way to remove an element by its pointer is to
calculate index of the element via the function cvSeqEl em dx after which the function
cvSet Renove may be called, but this method is much slower than the macro.

cvGetSetElem

Finds set element by index.

CvSet El ent cvGet Set El en(CvSet* set, int index);

intgl. 230

OpenCV Reference Manual Dynamic Data Structures 2

set Set.
i ndex Index of the set element within a sequence.
Discussion

The function cvGet Set El em finds the set element by index. The function returns the
pointer to it or 0 if the index is invalid or the corresponding cell is free. The function
supports negative indices through calling the function cvGet SeqEl em

E NOTE. The user can check whether the element belongs to the set
= with the help of the macro CV_I S_SET_ELEM EXI STS(el en) once the
pointer is set to a set element.

cvClearSet

Clears set.

void cvCl earSet(CvSet* set);
set Cleared set.

Discussion

The function cvd ear Set empties the set by calling the function cvd ear Seq and
setting the pointer to the list of free cells. The function takes (1) time.

inte|® 2-31

OpenCV Reference Manual Dynamic Data Structures 2

Graphs

Overview

The structure set described above helps to build graphs because a graph consists of two
sets, namely, vertices and edges, that refer to each other.

Example 2-10 CvGraph Structure Definition

#define CV_GRAPH FI ELDS() \
CV_SET_FI ELDS() \
CvSet* edges;

typedef struct _CvGraph

CV_GRAPH _FI ELDS()
}
Cv@& aph;

In OOP terms, the graph structure is derived from the set of vertices and includes a set
of edges. Besides, special data types exist for graph vertices and graph edges.

Example 2-11 Definitions of CvGraphEdge and CvGraphVtx Structures

#define CV_GRAPH _EDGE_FI ELDS() \
struct _CvGraphEdge* next[2]; \
struct _CvG aphVertex* vtx[2];

#defi ne CV_GRAPH VERTEX FI ELDS() \
struct _CvGraphEdge* first;

typedef struct _CvG aphEdge
CV_GRAPH_EDGE_FI ELDS()

%)/Gr aphEdge;

typedef struct _CvGaphVertex

t CV_GRAPH_VERTEX_FI ELDS()

%L\/Gr aphVt x;

inte|® 2-32

OpenCV Reference Manual

Dynamic Data Structures 2

The graph vertex has a single predefined field that assumes the value of 1 when
pointing to the first edge incident to the vertex, or 0 if the vertex is isolated. The edges
incident to a vertex make up the single linked non-cycle list. The edge structure is
more complex: vix[0] and vix[1] are the starting and ending vertices of the edge,
next [0] and next[1] are the next edges in the incident lists for vtx[0] and wvix[1]
respectively. In other words, each edge is included in two incident lists since any edge
is incident to both the starting and the ending vertices. For example, consider the
following oriented graph (see below for more information on non-oriented graphs).

Figure 2-6 Sample Graph

(o~ @
&)

The structure can be created with the following code:

CvG aph* graph = cvCreateG aph(CV_SEQ KI ND_GRAPH |
CV_GRAPH _FLAG ORI ENTED,

si zeof (CvGraph),

si zeof (CvGr aphVt x) +4,

si zeof (CvGr aphEdge) ,

st orage) ;

for(i =0; i <5; i++)

{

cv@ aphAddvt x(graph, 0, 0);/* argunments like in

2-33

OpenCV Reference Manual

Dynamic Data Structures 2

Figure 2-7

cvSet Add*/
}

cvG aphAddEdge(graph, 0, 1, 0, 0); /* connect vertices O

and 1, other two arguments like in cvSetAdd */
cv@ aphAddEdge(graph, 1, 2, 0, 0);
cvG aphAddEdge(graph, 2, 0, 0, 0);
cv@G aphAddEdge(graph, 2, 3, 0, 0);

The internal structure comes to be as follows:

Internal Structure for Sample Graph Shown in Figure 2-6
Graph vertices
0 1 2 4
~~) -~ AN
~< ~ \

Graph edges

Undirected graphs can also be represented by the structure CvG- aph. If the
non-oriented edges are substituted for the oriented ones, the internal structure remains
the same. However, the function used to find edges succeeds only when it finds the
edge from 3 to 2, as the function looks not only for edges from 3 to 2 but also from 2 to
3, and such an edge is present as well. As follows from the code, the type of the graph
is specified when the graph is created, and the user can change the behavior of the edge
searching function by specifying or omitting the flag Cv_GRAPH_FLAG ORI ENTED. Two

2-34

OpenCV Reference Manual

Dynamic Data Structures 2

edges connecting the same vertices in undirected graphs may never be created because
the existence of the edge between two vertices is checked before a new edge is inserted
between them. However, internally the edge can be coded from the first vertex to the
second or vice versa. Like in sets, the user may work with either indices or pointers.
The graph implementation uses only pointers to refer to edges, but the user can choose
indices or pointers for referencing vertices.

Reference

cvCreateGraph
Creates empty graph.

CvG aph* cvCreat eG aph(
CvSt orage* storage);

edgesSi ze,

gr aphFl ags

header Si ze

vert exSi ze

edgeSi ze

st or age

Discussion

int graphFl ags, int headerSize, int vertexSize, int

Type of the created graph. The kind of the sequence must be graph
(CV_SEQ KI ND_GRAPH) and flag CV_GRAPH_FLAG ORI ENTED allows
the oriented graph to be created. User may choose other flags, as well
as types of graph vertices and edges.

Graph header size; may not be less than si zeof (CvG aph) .

Graph vertex size; must be greater than
si zeof (CvG aphVer t ex) and meet all restrictions on the set
element.

Graph edge size; may not be less than si zeof (CvGr aphEdge) and
must be divisible by 4.

Future location of the graph.

The function cvCreat eGr aph creates an empty graph, that is, two empty sets, a set of
vertices and a set of edges, and returns it.

2-35

OpenCV Reference Manual

Dynamic Data Structures 2

cvGraphAddVix

Adds vertex to graph.

int cvG aphAddvt x(CvG aph* graph, CvG aphVtx* vtx, CvG aphVtx** insertedVtx=0

)

graph

vt X

i nsertedVt x

Discussion

Graph.

Optional input argument. Similar to the parameter el em of the
function cvSet Add, the parameter vt x could be used to initialize
new vertices with concrete values. If vt x is not NULL, the function
copies it to a new vertex, except the first 4-byte field.

Optional output argument. If not NULL, the address of the new vertex
is written there.

The function cvG aphAddVt x adds a vertex to the graph and returns the vertex index.

cvGraphRemoveVix

Removes vertex from graph.

voi d cvG aphRenmbveAddVt x(CvGraph* graph, int vtxldx));

graph
vt x| dx

vt X

Discussion

Graph.
Index of the removed vertex.

Pointer to the removed vertex.

The function cvG aphRenoveVt x removes a vertex from the graph together with all
the edges incident to it.

2-36

OpenCV Reference Manual Dynamic Data Structures 2

cvGraphRemoveVixByPtr

Removes vertex from graph.

void cvG aphRenoveVt xByPtr(CvG aph* graph, CvG aphVtx* vtx);

gr aph Graph.
vt X Pointer to the removed vertex.
Discussion

The function cvG aphRenoveVt xByPtr removes a vertex from the graph together
with all the edges incident to it.

cvGraphAddEdge
Adds edge to graph.

int cvG aphAddEdge(CvGraph* graph, int startldx, int endldx, CvG aphEdge*
edge, CvG aphEdge** insertedEdge=0);

gr aph Graph.

start!dx Index of the starting vertex of the edge.

endl dx Index of the ending vertex of the edge.

edge Optional input parameter, initialization data for the edge. If not NULL,

the parameter is copied starting from the 5th 4-byte field.

i nsertedEdge Optional output parameter to contain the address of the inserted edge
within the edge set.

Discussion

The function cvG aphAddEdge adds the edge to the graph given the starting and the
ending vertices. The function returns the index of the inserted edge, which is the value
of the second 4-byte field of the free cell.

inte|® 2-37

OpenCV Reference Manual Dynamic Data Structures 2

The function reports an error if

* the edge that connects the vertices already exists; in this case graph orientation is
taken into account;

® apointer is NULL or indices are invalid;

¢ some of vertices do not exist, that is, not checked when the pointers are passed to
vertices; or

* the starting vertex is equal to the ending vertex, that is, it is impossible to create
loops from a single vertex.

cvGraphAddEdgeByPtr
Adds edge to graph.

i nt cvG aphAddEdgeByPtr(CvG aph* graph, CvGaphVtx* startVtx, CvG aphWt x*
endVt x, CvGraphEdge* edge, CvG aphEdge** insertedEdge=0);

gr aph Graph.

startVtx Pointer to the starting vertex of the edge.

endVt x Pointer to the ending vertex of the edge.

edge Optional input parameter, initialization data for the edge. If not NULL,

the parameter is copied starting from the 5th 4-byte field.

i nsertedEdge Optional output parameter to contain the address of the inserted edge
within the edge set.

Discussion

The function cvG aphAddEdgeByPt r adds the edge to the graph given the starting and
the ending vertices. The function returns the index of the inserted edge, which is the
value of the second 4-byte field of the free cell.

The function reports an error if

* the edge that connects the vertices already exists; in this case graph orientation is
taken into account;

In

tel.

2-38

OpenCV Reference Manual Dynamic Data Structures 2

® apointer is NULL or indices are invalid;

* some of vertices do not exist, that is, not checked when the pointers are passed to
vertices; or

¢ the starting vertex is equal to the ending vertex, that is, it is impossible to create
loops from a single vertex.

cvGraphRemoveEdge
Removes edge from graph.

voi d cvGraphRenoveEdge(CvG aph* graph, int startldx, int endldx);

gr aph Graph.

start|dx Index of the starting vertex of the edge.
endl| dx Index of the ending vertex of the edge.
Discussion

The function cvG aphRenoveEdge removes the edge from the graph that connects
given vertices. If the graph is oriented, the vertices must be passed in the appropriate
order. The function reports an error if any of the vertices or edges between them do not
exist.

cvGraphRemoveEdgeByPtr
Removes edge from graph.

voi d cvG aphRenoveEdgeByPt r(CvG aph* graph, CvG aphVtx* startVtx, CvG aphVtx*

endvtx);
gr aph Graph.
startVtx Pointer to the starting vertex of the edge.

inte|® 2-39

OpenCV Reference Manual Dynamic Data Structures 2

endVt x Pointer to the ending vertex of the edge.

Discussion

The function cvG aphRenoveEdgeByPtr removes the edge from the graph that
connects given vertices. If the graph is oriented, the vertices must be passed in the
appropriate order. The function reports an error if any of the vertices or edges between
them do not exist.

cvFindGraphEdge
Finds edge in graph.

CvG aphEdge* cvFi ndG aphEdge(CvGraph* graph, int startldx, int endldx);

gr aph Graph.

start|dx Index of the starting vertex of the edge.
endl| dx Index of the ending vertex of the edge.
Discussion

The function cvFi ndG aphEdge finds the graph edge that connects given vertices. If
the graph is oriented, the vertices must be passed in the appropriate order. Function
returns NULL if any of the vertices or edges between them do not exist.

cvFindGraphEdgeByPtr
Finds edge in graph.

CvG aphEdge* cvG aphRenmpveEdgeByPtr(CvG aph* graph, CvGaphVtx* startWx,
CvG aphVt x* endVtx);

gr aph Graph.
startVtx Pointer to the starting vertex of the edge.

i ntel @ 2-40

OpenCV Reference Manual Dynamic Data Structures 2

endVt x Pointer to the ending vertex of the edge.

Discussion

The function cvFi ndG aphEdgeByPt r finds the graph edge that connects given
vertices. If the graph is oriented, the vertices must be passed in the appropriate order.
Function returns NULL if any of the vertices or edges between them do not exist.

cvGraphVitxDegree
Finds edge in graph.

int

cvG aphVt xDegree(CvGraph* graph, int vtxlidx);

gr aph Graph.
vt X Pointer to the graph vertex.
Discussion

The function cvG aphVt xDegr ee counts the edges incident to the graph vertex, both
incoming and outcoming, and returns the result. To count the edges, the following code
is used:

CvG aphEdge* edge = vertex->first; int count = O;

whil e(edge) {

edge = CV_NEXT_GRAPH EDGE(edge, vertex);

count ++;

}.

The macro CV_NEXT_GRAPH EDGE(edge, vertex) returns the next edge after the
edge incident to the vertex.

2-41

OpenCV Reference Manual Dynamic Data Structures 2

cvGraphVtxDegreeByPtr
Finds edge in graph.

int cvGaphVtxDegreeByPtr(CvG aph* graph, CvG aphVtx* vtx);

gr aph Graph.
vt X Pointer to the graph vertex.
Discussion

The function cvG aphVt xDegr eeByPt r counts the edges incident to the graph vertex,
both incoming and outcoming, and returns the result. To count the edges, the following
code is used:

CvG aphEdge* edge = vertex->first; int count = O;
whil e(edge) {

edge = CV_NEXT_GRAPH EDGE(edge, vertex);

count ++;

}.

The macro CV_NEXT_GRAPH EDGE(edge, vertex) returns the next edge after the
edge incident to the vertex.

cvClearGraph
Clears graph.

void cvd ear G aph(CvG aph* graph);

gr aph Graph.

Discussion

The function cvd ear G aph removes all the vertices and edges from the graph.
Similar to the function cvd ear Set , this function takes Q(1) time.

2-42

OpenCV Reference Manual Dynamic Data Structures 2

cvGetGraphVix
Finds graph vertex by index.

CvG aphVt x* cvGet G aphvt x(CvG aph* graph, int vtxldx);

graph Graph.
vt x| dx Index of the vertex.
Discussion

The function cvGet G aphVt x finds the graph vertex by index and returns the pointer
to it or, if not found, to a free cell at this index. Negative indices are supported.

cvGraphVixldx

Returns index of graph vertex.

int cvG aphVtxldx(CvG aph* graph, CvG aphVtx* vtx);

gr aph Graph.
vt X Pointer to the graph vertex.
Discussion

The function cvG aphVt x| dx returns the index of the graph vertex by setting pointers
to it.

2-43

OpenCV Reference Manual Dynamic Data Structures 2

cvGraphEdgeldx
Returns index of graph edge.

int cvG aphEdgel dx(CvGraph* graph, CvG aphEdge* edge);

graph Graph.
edge Pointer to the graph edge.
Discussion

The function cvG aphEdgel dx returns the index of the graph edge by setting pointers
to it.

i ntel @ 2-44

Contour Processing

This chapter describes contour processing functions.

Overview

Below follow descriptions of:

* several basic functions that retrieve contours from the binary image and store them
in the chain format;

* functions for polygonal approximation of the chains.

Basic Definitions

Most of the existing vectoring algorithms, that is, algorithms that find contours on the
raster images, deal with binary images. A binary image contains only 0-pixels, that
isthat is, pixels with the value 0, and /-pixels, that is, pixels with the value 1. The set of
connected 0- or 1-pixels makes the 0-(1-) component. There are two common sorts of
connectivity, the 4-connectivity and 8-connectivity. Two pixels with coordinates (x’,
y’) and (x”, y”) are called 4-connected if, and only if, |x —x"|+|y'-y"| = 1 and
8-connected if, and only if, max(|x —x"|,ly'—=y"|) = 1 . Figure 3-1 shows these relations:

3-1

OpenCV Reference Manual Contour Processing 3

Figure 3-1 Pixels Connectivity Patterns

|:| Pixels, 8-connected to black one

|:| Pixels, 4- and 8-connected to black one

Using this relationship, the image is broken into several non-overlapped 1-(0-)
4-connected (8-connected) components. Each set consists of pixels with equal values,
that is, all pixels are either equal to 1 or 0, and any pair of pixels from the set can be
linked by a sequence of 4- or 8-connected pixels. In other words, a 4-(8-) path exists
between any two points of the set. The components shown in Figure 3-2 may have
interrelations.

3-2

OpenCV Reference Manual Contour Processing 3

Figure 3-2 Hierarchical Connected Components

1-components W1, W2, and W3 are inside the frame (0-component B1), that is,
directly surrounded by B1.

0-components B2 and B3 are inside W 1.

1-components W5 and W6 are inside B4, that is inside W3, so these 1-components
are inside W3 indirectly. However, neither W5 nor W6 enclose one another, which
means they are on the same level.

In order to avoid a topological contradiction 0-pixels must be regarded as 8-(4-)
connected pixels in case 1-pixels are dealt with as 4-(8-) connected. Throughout this
document 8-connectivity is assumed to be used with 1-pixels and 4-connectivity with
0-pixels.

Since 0-components are complementary to 1-components, and separate 1-components
are either nested to each other or their internals do not intersect, the library considers
1-components only and only their topological structure is studied, 0-pixels making up
the background. A 0-component directly surrounded by a 1-component is called the
hole of the 1-component. The border point of a 1-component could be any pixel that
belongs to the component and has a 4-connected 0-pixel. A connected set of border
points is called the border.

3-3

OpenCV Reference Manual Contour Processing 3

Each 1-component has a single outer border that separates it from the surrounding
0-component and zero or more hole borders that separate the 1-component from the
0-components it surrounds. It is obvious that the outer border and hole borders give a
full description of the component. Therefore all the borders, also referred to as
contours, of all components stored with information about the hierarchy make up a
compressed representation of the source binary image. See Reference for description
of the functions cvFi ndContours, cvStartFindContours, and

cvFi ndNext Cont our that build such a contour representation of binary images.

Contour Representation

The library uses two methods to represent contours. The first method is called the
Freeman method or the chain code. For any pixel all its neighbors with numbers from 0
to 7 can be enumerated:

Figure 3-3 Contour Representation in Freeman Method

3121
4 0
516|7

The 0-neighbor denotes the pixel on the right side, etc. As a sequence of 8-connected
points, the border can be stored as the coordinates of the initial point, followed by
codes (from 0 to 7) that specify the location of the next point relative to the current one

(see Figure 3-4).

3-4

OpenCV Reference Manual Contour Processing 3

Figure 3-4 Freeman Coding of Connected Components

| —Initial point

Chain code for the curve: 34445670007654443

The chain code is a compact representation of digital curves and an output format of
the contour retrieving algorithms described below.

Polygonal representation is a different option in which the curve is coded as a
sequence of points, vertices of a polyline. This alternative is often a better choice for
manipulating and analyzing contours over the chain codes; however, this
representation is rather hard to get directly without much redundancy. Instead,
algorithms that approximate the chain codes with polylines could be used.

Contour Retrieving Algorithm

Four variations of algorithms described in [Suzuki85] are used in the library to retrieve
borders. The first algorithm finds only the extreme outer contours in the image and
returns them linked to the list. Figure 3-2 shows these external boundaries of Wi, W2,
and W3 domains. The second algorithm returns all contours linked to the list.

Figure 3-2 shows the total of 8 such contours. The third algorithm finds all connected
components by building a two-level hierarchical structure: on the top are the external
boundaries of 1-domains and every external boundary contains a link to the list of
holes of the corresponding component. The third algorithm returns all the connected
components as a two-level hierarchical structure: on the top are the external
boundaries of 1-domains and every external boundary contour header contains a link
to the list of holes in the corresponding component. The list can be accessed via v_next
field of the external contour header.

tel ® 3-5

OpenCV Reference Manual Contour Processing 3

Figure 3-2 shows that W2, W5, and W6 domains have no holes; consequently, their
boundary contour headers refer to empty lists of hole contours. W1 domain has two
holes - the external boundary contour of W1 refers to a list of two hole contours.
Finally, W3 external boundary contour refers to a list of the single hole contour.

The fourth algorithm returns the complete hierarchical tree where all the contours
contain a list of contours surrounded by the contour directly, that is, the hole contour of
W3 domain has two children: external boundary contours of W5 and W6 domains.

All algorithms make a single pass through the image; there are, however, rare
instances when some contours need to be scanned more than once. The algorithms do
line-by-line scanning.

Whenever an algorithm finds a point that belongs to a new border the border following
procedure is applied to retrieve and store the border in the chain format. During the
border following procedure the algorithms mark the visited pixels with special positive
or negative values. If the right neighbor of the considered border point is a 0-pixel and,
at the same time, the 0-pixel is located in the right hand part of the border, the border
point is marked with a negative value. Otherwise, the point is marked with the same
magnitude but of positive value, if the point has not been visited yet. This can be easily
determined since the border can cross itself or tangent other borders. The first and
second algorithms mark all the contours with the same value and the third and fourth
algorithms try to use a unique ID for each contour, which can be used to detect the
parent of any newly met border.

Polygonal Approximation

As soon as all the borders have been retrieved from the image, the shape representation
can be further compressed. Several algorithms are available for the purpose, including
RLE coding of chain codes, higher order codes (see Figure 3-5), polygonal
approximation, etc.

3-6

OpenCV Reference Manual Contour Processing 3

Figure 3-5 Higher Order Freeman Codes

24-point extended chain code

Polygonal approximation is the best method in terms of the output data simplicity for
further processing. Below follow descriptions of two polygonal approximation
algorithms. The main idea behind them is to find and keep only the dominant points,
that is, points where the local maximums of curvature absolute value are located on the
digital curve, stored in the chain code or in another direct representation format. The
first step here is the introduction of a discrete analog of curvature. In the continuous
case curvature is determined as the speed of the tangent angle changing:

1 "y,

K = X:In_xzI
,2 2,372
(X"+y")

In the discrete case different approximations are used. The simplest one, called L1
curvature, is the difference between successive chain codes:

¢M = ((f;-f,_,+4)mod8) -4 . (3.1)

This method covers the changes from 0, that corresponds to the straight line, to 4, that
corresponds to the sharpest angle, when the direction is changed to reverse.

The following algorithm is used for getting a more complex approximation. First, for
the given point (x;, y;) the radius m of the neighborhood to be considered is selected.
For some algorithms m is a method parameter and has a constant value for all points;
for others it is calculated automatically for each point. The following value is
calculated for all pairs (X; _y, Yi-x) and (Xj 4k, Yi +x) (k=1. .. m):

(2 (i)

C, = ——— = cos(a,,b,)
ik ‘aikHbik‘ ik ik ’

In

tel.

3-7

OpenCV Reference Manual Contour Processing 3

where & = (5 =Xy =Y) s Bie T XY= Y)

The next step is finding the index h; suchthat ¢, <c,_;<...<c, 2¢, ;. The value
¢, 1s regarded as the curvature value of the i'h point. The point value changes from
—1 (straight line) to 1 (sharpest angle). This approximation is called the k-cosine

curvature.

Rosenfeld-Johnston algorithm [Rosenfeld73] is one of the earliest algorithms for
determining the dominant points on the digital curves. The algorithm requires the
parameter m the neighborhood radius that is often equal to 1/10 or 1/15 of the number
of points in the input curve. Rosenfeld-Johnston algorithm is used to calculate
curvature values for all points and remove points that satisfy the condition

Oui-jlsh/2 5 ¢y <Cjn,

The remaining points are treated as dominant points. Figure 3-6 shows an example of
applying the algorithm.

Figure 3-6 Rosenfeld-Johnston Output for F-Letter Contour

Source Image Rosenfeld-Johnston Algorithm Output

The disadvantage of the algorithm is the necessity to choose the parameter mand
parameter identity for all the points, which results in either excessively rough, or
excessively precise contour approximation.

The next algorithm proposed by Teh and Chin [Teh89] includes a method for the
automatic selection of the parameter mfor each point. The algorithm makes several
passes through the curve and deletes some points at each pass. At first all points with
zero ¢V curvatures are deleted (see Equation 3.1). For other points the parameter m

3-8

OpenCV Reference Manual Contour Processing 3

and the curvature value are determined. After that the algorithm performs a
non-maxima suppression, same as in Rosenfeld-Johnston algorithm, deleting points
whose curvature satisfies the previous condition where for ¢” the metric h; is set to
m . Finally, the algorithm replaces groups of two successive remaining points with a
single point and groups of three or more successive points with a pair of the first and
the last points. This algorithm does not require any parameters except for the curvature
to use. Figure 3-7 shows the algorithm results.

Figure 3-7 Teh-Chin Output for F-Letter Contour

Source Picture Teh-Chin Algorithm Output

Douglas-Peucker Approximation

Instead of applying a rather sophisticated Teh-Chin algorithm to the chain code, the
user may try another way to get a smooth contour on a little number of vertices. The
idea is to apply some very simple approximation techniques to the chain code with
polylines, such as substituting ending points for horizontal, vertical, and diagonal
segments, and then use the approximation algorithm on polylines. This preprocessing
reduces the amount of data without any accuracy loss. Teh-Chin algorithm also
involves this step, but uses removed points for calculating curvatures of the remaining
points.

The algorithm to consider is a pure geometrical algorithm by Douglas-Peucker for
approximating a polyline with another polyline with required accuracy:

3-9

OpenCV Reference Manual Contour Processing 3

1. Two points on the given polyline are selected, thus the polyline is
approximated by the line connecting these two points. The algorithm
iteratively adds new points to this initial approximation polyline until the
required accuracy is achieved. If the polyline is not closed, two ending points
are selected. Otherwise, some initial algorithm should be applied to find two
initial points. The more extreme the points are, the better.

2. The algorithm iterates through all polyline vertices between the two initial
vertices and finds the farthest point from the line connecting two initial
vertices. If this maximum distance is less than the required error, then the
approximation has been found and the next segment, if any, is taken for
approximation. Otherwise, the new point is added to the approximation
polyline and the approximated segment is split at this point. Then the two parts
are approximated in the same way, since the algorithm is recursive. For a
closed polygon there are two polygonal segments to process.

Contours Moments

The moment of order (p, g) of an arbitrary region R is given by
Vpq = ”xp ydxdy . 3.2)
R

If p = g = 0, we obtain the area a of R. The moments are usually normalized by the
area a of R. These moments are called normalized moments:

Upq = (1/a)“xp G%dxdy . (3.3)

R

Thus oy, = 1. For p+qg=2 normalized central moments of R are usually the ones of
interest:

Mpg = l/a”(x—alo)p [y —ag;) dxdy (3.4)
R

It is an explicit method for calculation of moments of arbitrary closed polygons.
Contrary to most implementations that obtain moments from the discrete pixel data,
this approach calculates moments by using only the border of a region. Since no

3-10

OpenCV Reference Manual Contour Processing 3

explicit region needs to be constructed, and because the border of a region usually
consists of significantly fewer points than the entire region, the approach is very
efficient. The well-known Green’s formula is used to calculate moments:

”(6Q/(0x—6P/6y)dxdy = _[(de+Qdy) ,
R b

where b is the border of the region R.
It follows from the formula (3.2) that:

0Q/ax = X’ /%, aP/ay = 0,
hence

P(x,Y) = 0,Q(xy) = 1/(p+1) Byt .
Therefore, the moments from (3.2) can be calculated as follows:

Vog = [/ (p+ 1T ey (3.5)
b

If the border b consists of n points p, = (x.y;) , 0<i<n, py = p,, , it follows that:

n
b(t) = [bi(t) ,
i=1
where Db(t) , t0O[01] is defined as
bi(t) = tp+(1-t)p;_,
Thereforrg, (3.5) can be calculated in the following manner:
Vog = 3 [(p+ 1 iy (3.6)

i=lbj

After unnormalized moments have been transformed, (3.6) could be written as:

3-11

OpenCV Reference Manual Contour Processing 3

1

Vpa = o7
(p+q+2)(p+q+1)(iy

i=1

K+ k—
xZ(X, =% 1)2 z([)(p+q XXy
k=0i=

Central unrnlormalized and normalized moments up to order 3 look like

a= 1/22 Xi_1Yi=X%Yi_1 >
i=1
n
a0 = 1/(62) 3" (% _1Yi=%Yi_)(X_1+%)
i=1
n
agp = 1/(63)2 G_Yi=%Yi—)i ty)
i=1
n
2 2
8y = 1/(122) 3" (X _2¥i =X¥i) (X1 + X _ 1%+ X})
i=1
n
11 = 1/(248) 3 (% _qYi = XY _0)(2X g + X 1Y+ XY 21+ 2%Y;)
i=1
n
ag, = 1/(12a) Z (X _ 1Y _Xiyi—l)(yi2—1+yi—1yi +yi2) 5
i=1
n

2

3 2 2 3
ag = 1/(208) 3" (X _1Yi =XYi _) (G 1 XX+ X% _g + X))
i=1
2
ay = 1/(60a) Z (X _ 1Y = %Y —) (G 1(3Yi _g + i) + 2% 1 X(Y;_1 +Yi)
i=1

+X2(y, 1 +3y),

inte|® 3-12

OpenCV Reference Manual Contour Processing 3

Moo
Hi1
Ho2
Hso
Ho1

M2

Moz =

a;, = 1/(60a) z (Xi—lyi_Xiyi—l)(yi2—1(3xi—1+xi)+2yi—1yi(xi—1+xi) +
i=1

2
Yi (% _1+3X%)),
"

1/(208) 3" (% _ 1Y =%V)1+ Y2y Yoy YD)
DY = XY —)V H Y Y Yima T YD),
i=1
2

Oz~ 01>

011 — 0390075
2

o2 —lo1»

+2 3 3

Ogp 2019 — 35U 9005
3

051 + 200301 =20 190013 — O pp0l gy
3

O3y + 2000101 — 201 013 — O Q1

3
O3+ 200y — 301 Ugp -

Hierarchical Representation of Contours

Let T be the simple closed boundary of a shape with n points T:{p(1), p(2), ..., p(n)}
and n runs: {s(1), s(2), ..., s(n)} . Every run s(i) is formed by the two points

(p(i), p(i +1)) . For every pair of the neighboring runs s(i) and s(i +1) a triangle is
defined by the two runs and the line connecting the two far ends of the two runs

(Figure 3-8).

3-13

OpenCV Reference Manual Contour Processing 3

Figure 3-8 Triangles Numbering

We call triangles t(i—2),t(i—1), t(i+1),t(i+2) the neighboring triangles of t(i)
(Figure 3-9).

Figure 3-9 Location of Neighboring Triangles

inte|® 3-14

OpenCV Reference Manual Contour Processing 3

For every straight line that connects any two different vertices of a shape, the line
either cuts off a region from the original shape or fills in a region of the original shape,
or does both. The size of the region is called the interceptive area of that line

(Figure 3-10). This line is called the base line of the triangle.

A triangle made of two boundary runs is the locally minimum interceptive area
triangle (LMIAT) if the interceptive area of its base line is smaller than both its
neighboring triangles areas.

Figure 3-10 Interceptive Area

The shape-partitioning algorithm is multilevel. This procedure subsequently removes
some points from the contour; the removed points become children nodes of the tree.
On each iteration the procedure examines the triangles defined by all the pairs of the
neighboring edges along the shape boundary and finds all LMIATSs. After that all
LMIATs whose areas are less than a reference value, which is the algorithm parameter,
are removed. That actually means removing their middle points. If the user wants to
get a precise representation, zero reference value could be passed. Other LMIATS are
also removed, but the corresponding middle points are stored in the tree. After that
another iteration is run. This process ends when the shape has been simplified to a
quadrangle. The algorithm then determines a diagonal line that divides this quadrangle
into two triangles in the most unbalanced way.

3-15

OpenCV Reference Manual Contour Processing 3

Thus the binary tree representation is constructed from the bottom to top levels. Every
tree node is associated with one triangle. Except the root node, every node is connected
to its parent node, and every node may have none, or single, or two child nodes. Each
newly generated node becomes the parent of the nodes for which the two sides of the

new node form the base line. The triangle that uses the left side of the parent triangle is
the left child. The triangle that uses the right side of the parent triangle is the right child

(See Figure 3-11).

Figure 3-11 Classification of Child Triangles

The root node is associated with the diagonal line of the quadrangle. This diagonal line

divides the quadrangle into two triangles. The larger triangle is the left child and the

smaller triangle is its right child.

For any tree node we record the following attributes:

¢ Coordinates x and y of the vertex P that do not lie on the base line of LMIAT, that
is, coordinates of the middle (removed) point;

* Area of the triangle;

* Ratio of the height of the triangle h to the length of the base line a (Figure 3-12);

inte|® 3-16

OpenCV Reference Manual Contour Processing 3

Ratio of the projection of the left side of the triangle on the base line b to the length
of the base line a;

* Signs “+” or “- ”’; the sign “+” indicates that the triangle lies outside of the new

shape due to the ‘cut’ type merge; the sign “- ”” indicates that the triangle lies inside
the new shape.

Figure 3-12 Triangles Properties

Figure 3-13 shows an example of the shape partitioning.

Figure 3-13 Shape Partitioning

inte|® 3-17

OpenCV Reference Manual Contour Processing 3

It is necessary to note that only the first attribute is sufficient for source contour
reconstruction; all other attributes may be calculated from it. However, the other four
attributes are very helpful for efficient contour matching.

The shape matching process that compares two shapes to determine whether they are
similar or not can be effected by matching two corresponding tree representations, e.g.,
two trees can be compared from top to bottom, node by node, using the breadth-first
traversing procedure.

Let us define the corresponding node pair (CNP) of two binary tree representations TA
and TB. The corresponding node pair is called [A(i), B(i)] ,if A(i) and B(i) are at the
same level and same position in their respective trees.

The next step is defining the node weight. The weight of N(i) denoted as W[N(i)] is
defined as the ratio of the size of N(i) to the size of the entire shape.

Let N(i) and N(j) be two nodes with heights h(i) and h(j) and base lengths a(i)
and a(j) respectively. The projections of their left sides on their base lines are b(i)
and b(j) respectively. The node distance dn[N(i), N(j)] between N(i) and N(j) is

defined as:

dn[N(i), N(j)] = |h(i)/a(i) DVIN(i)] ¥ h(j)/a(j) DVN()] |
+[b(i)7a(i’) DMN()] b(j)/a(i) DVMNE)]|

In the above equation, the “+” signs are used when the signs of attributes in two nodes
are different and the “- ” signs are used when the two nodes have the same sign.

For two trees TA and TB representing two shapes SA and SB and with the corresponding
node pairs [A(1), B(1)],[A(2), B(2)],..., [A(n), B(n)] the tree distance dt (TA, TB) between
TAand TB is defined as:

dt(TA, TB) = 3 dn[A(i), B()] -

i=1

If the two trees are different in size, the smaller tree is enlarged with trivial nodes so
that the two trees can be fully compared. A trivial node is a node whose size attribute is
zero. Thus, the trivial node weight is also zero. The values of other node attributes are
trivial and not used in matching. The sum of the node distances of the first k CNPs of
TA and TB is called the cumulative tree distance dt (TA, TB, k) and is defined as:

3-18

OpenCV Reference Manual Contour Processing 3

dc(TA, TB, k) = 3" dn[A(i), B(i)] .

i=1

Cumulative tree distance shows the dissimilarity between the approximations of the
two shapes and exhibits the multiresolution nature of the tree representation in shape
matching.

The shape matching algorithm is quite straightforward. For two given tree
representations the two trees are traversed according to the breadth-first sequence to
find CNPs of the two trees. Next dn[A(i), B(i)] and dc(TA, TB, i) are calculated for
every i . If for some i dc(TA TB, i) is larger than the tolerance threshold value, the
matching procedure is terminated to indicate that the two shapes are dissimilar,
otherwise it continues. If dt (TA, TB) is still less than the tolerance threshold value,
then the procedure is terminated to indicate that there is a good match between TA and
TB.

Data Structures

The Computer Vision Library functions use special data structures to represent the
contours and contour binary tree in memory, namely the structures CvSeq and

CvCont our Tr ee. Below follows the definition of the structure CvCont our Tr ee in the C
language.

Example 3-1 CvContourTree Structure Definition

t ypedef struct CvContourTree
{ CV_SEQUENCE_FI ELDS()

CvPoi nt p1; /*the start point of the binary tree
root */
CvPoi nt p2; /*the end point of the binary tree
root */

} CvCont our Tree;

inte|® 3-19

OpenCV Reference Manual Contour Processing 3

Reference

cvFindContours

Finds contours in binary image.

i nt cvFi ndContours(lpllnmge* ing, CvMenttorage* storage, CvSeq**
firstContour, int headerSi ze=si zeof (CvCont our),
CvCont our Retri eval Mode npde=CV_RETR_LI ST, CvChai nAppr oxMet hod
nmet hod=CV_CHAI N_APPROX_SI MPLE) ;

i ng Single channel image of | PL_DEPTH_8U type. Non-zero
pixels are treated as 1-pixels. The function modifies the
content of the input parameter.

st or age Contour storage location.

firstContour Output parameter. Pointer to the first contour on the highest
level.

header Si ze Size of the sequence header; must be equal to or greater than

si zeof (CvChai n) when the method Cv_CHAI N_CODE is
used, and equal to or greater than si zeof (CvCont our)
otherwise.

node Retrieval mode.

®* CV_RETR_EXTERNAL retrieves only the extreme outer
contours (list);

®* CV_RETR_LI ST retrieves all the contours (list);

®* CV_RETR CCOWP retrieves the two-level hierarchy (list
of connected components);

®* CV_RETR TREE retrieves the complete hierarchy (tree).
met hod Approximation method.

®* CV_CHAI N_CODE outputs contours in the Freeman chain
code.

inte|® 3-20

OpenCV Reference Manual Contour Processing 3

®* CV_CHAI N_APPROX_NONE translates all the points from
the chain code into points;

®* CV_CHAI N_APPROX_SI MPLE compresses horizontal,
vertical, and diagonal segments, that is, it leaves only
their ending points;

* CV_CHAIN APPROX_TC89 L1,
CV_CHAI N_APPROX_TC89 KCOCS are two versions of the
Teh-Chin approximation algorithm.

Discussion

The function cvFi ndCont ours retrieves contours from the binary image and returns
the pointer to the first contour. Other contours may be accessed through the h_next
and v_next fields of the returned structure. The function returns total number of
retrieved contours.

cvStartFindContours

Initializes contour scanning process.

CvCont our Scanner cvStart Fi ndCont ours(| pl | mage* i ng, CvMentt or age* storage, int
header Si ze, CvContourRetri eval Mode node, CvChai nApproxMet hod net hod);

i ng Single channel image of | PL_DEPTH_8U type. Non-zero
pixels are treated as 1-pixels. The function damages the
image.

st or age Contour storage location.

header Si ze Must be equal to or greater than si zeof (CvChai n) when

the method Cv_CHAI N_CODE is used, and equal to or greater
than si zeof (CvCont our) otherwise.

node Retrieval mode.

®* CV_RETR _EXTERNAL retrieves only the extreme outer
contours (list);

inte|® 3-21

OpenCV Reference Manual

Contour Processing 3

CV_RETR LI ST retrieves all the contours (list);

CV_RETR_CCOMWP retrieves the two-level hierarchy (list
of connected components);

CV_RETR _TREE retrieves the complete hierarchy (tree).

met hod Approximation method.

Discussion

CV_CHAI N_CODE codes the output contours in the chain
code;

CV_CHAI N_APPROX_NONE translates all the points from
the chain code into points;

CV_CHAI N_APPROX_SI MPLE substitutes ending points for
horizontal, vertical, and diagonal segments;

CV_CHAI N_APPROX_TC89 L1,

CV_CHAI N_APPROX_TC89 KCOCS are two versions of the
Teh-Chin approximation algorithm.

The function cvSt art Fi ndCont our s initializes the contour scanner and returns the

pointer to it. The structure is internal and no description is provided.

cvFindNextContour

Finds next contour on raster.

CvSeq* cvFi ndNext Cont our (CvCont our Scanner scanner);

scanner Contour scanner initialized by the function cvSt ar t Fi ndCont our s.

Discussion

The function cvFi ndNext Cont our returns the next contour or 0, if the image contains

no other contours.

3-22

OpenCV Reference Manual Contour Processing 3

cvSubstituteContour

Replaces retrieved contour.

voi d cvSubstituteContour(CvContourScanner scanner, CvSeq* newContour);

scanner Contour scanner initialized by the function cvSt ar t Fi ndCont our s.
newCont our Substituting contour.
Discussion

The function cvSubstit ut eCont our replaces the retrieved contour, that was returned
from the preceding call of the function cvFi ndNext Cont our and stored inside the
contour scanner state, with the user-specified contour. The contour is inserted into the
resulting structure, list, two-level hierarchy, or tree, depending on the retrieval mode.
If the parameter newCont our is 0, the retrieved contour is not included into the
resulting structure, nor all of its children that might be added to this structure later.

cvEndFindContours

Finishes scanning process.

CvSeq* cvEndFi ndCont ours(CvCont our Scanner* scanner);

scanner Pointer to the contour scanner.

Discussion

The function cvEndFi ndCont our s finishes the scanning process and returns the
pointer to the first contour on the highest level.

3-23

OpenCV Reference Manual Contour Processing 3

cvApproxChains

Approximates Freeman chain(s) with polygonal
curve.

CvSeq* cvApproxChai ns(CvSeq* srcSeq, CvMentt or age* st orage,
CvChai nAppr oxMet hod net hod=CV_CHAI N_APPROX_SI MPLE,
float paraneter=0,int mninmalPerinmeter=0,
int recursive=0);

srcSeq Pointer to the chain that can refer to other chains.

st or age Storage location for the resulting polylines.

met hod Approximation method (see the description of the function
cvFi ndCont our s).

par anet er Method parameter (not used now).

m ni mal Peri met er Approximates only those contours whose perimeters are not

less than mi ni mal Peri et er. Other chains are removed
from the resulting structure.

recursive If not 0, the function approximates all chains
that can be accessed from srcSeq by h_next or v_next
links. If 0, the single chain is approximated.

Discussion

This is a stand-alone approximation routine. The function cvAppr oxChai ns works
exactly in the same way as the functions cvFi ndCont ours / cvFi ndNext Cont our
with the corresponding approximation flag. The function returns pointer to the first
resultant contour. Other contours, if any, can be accessed via v_next or h_next fields
of the returned structure.

inte|® 3-24

OpenCV Reference Manual Contour Processing 3

cvStartReadChainPoints

Initializes chain reader.

voi d cvSt art ReadChai nPoi nt s(CvChai n* chai n, CvChai nPt Reader* reader);

chai n Pointer to chain.
r eader Chain reader state.
Discussion

The function cvSt art ReadChai nPoi nt s initializes the special reader (see Dynamic
Data Structures for more information on sets and sequences).

cvReadChainPoint

Gets next chain point.

CvPoi nt cvReadChai nPoi nt (CvChai nPt Reader* reader);

r eader Chain reader state.

Discussion

The function cvReadChai nPoi nt returns the current chain point and moves to the next
point.

inte|® 3-25

OpenCV Reference Manual Contour Processing 3

cvApproxPoly

Approximates polygonal contour(s) with desired
precision.

CvSeq* cvApproxPol y(CvSeq* srcSeq, i nt header Si ze, CvMentst or age* st or age,
CvPol yAppr oxMet hod net hod, float paraneter,int recursive=0);

srcSeq Pointer to the contour that can refer to other chains.

header Si ze Size of the header for resulting sequences.

storage Resulting contour storage location.

met hod Approximation method; only CV_POLY_APPROX_DP is supported, that
corresponds to Douglas-Peucker method.

par anet er Method-specific parameter; a desired precision for
CV_POLY_APPROX_DP.

recursive If not 0, the function approximates all contours that can be accessed
from srcSeq by h_next or v_next links. If 0, the single contour is
approximated.

Discussion

The function cvAppr oxPol y approximates one or more contours and returns
pointer to the first resultant contour. Other contours, if any, can be accessed via v_next
or h_next fields of the returned structure.

cvDrawContours

Draws contours in image.

voi d cvDrawCont ours(| pllmge *inmg, CvSeq* contour, int external Color, int
hol eCol or, int maxLevel, int thickness=1);

In

tel.

3-26

OpenCV Reference Manual

Contour Processing 3

i g

cont our
ext er nal Col or
hol eCol or

maxLevel

t hi ckness

Discussion

Image where the contours will be drawn. Like in any other
drawing function, every output is clipped with the ROI.

Pointer to the first contour.
Color to draw external contours with.
Color to draw holes with.

Maximal level for drawn contours. If 0, only the contour is

drawn. If 1, the contour and all contours after it on the same
level are drawn. If 2, all contours after and all contours one
level below the contours are drawn, etc.

Thickness of lines the contours are drawn with.

The function cvDr awCont our s draws contour outlines in the image if the thickness

is positive or zero or fills area bounded by the contours if thickness is negative, e.g. if

t hi ckness==CV_FI LLED.

cvContoursMoments

Calculates contour moments up to ovder 3.

voi d cvCont our shoment s(CvSeq* contour, CvMonents* nonents);

cont our

nonent s

Discussion

Pointer to the input contour header.

Pointer to the output structure of contour moments; must be allocated
by the caller.

The function cvCont our sMonent s calculates unnormalized spatial and central

moments of the contour up to order 3.

3-27

OpenCV Reference Manual Contour Processing 3

cvContourArea

Calculates region area inside contour or contour
section.

doubl e cvCont our SecArea(CvSeq* contour, CvSlice slice=CV_WHOLE_SEQ(seq));

cont our Pointer to the input contour header.
slice Starting and ending points of the contour section of interest.
Discussion

The function cvCont our Ar ea calculates the region area within the contour consisting
of npoints p, = (x.y,) , 0<i<n, py, = p,, as a spatial moment:

n

Oop = V2% Xi_1¥i=X¥i_1
i=1

If a part of the contour is selected and the chord, connecting ending points,
intersects the contour in several places, then the sum of all subsection areas is
calculated. If the input contour has points of self-intersection, the region area within
the contour may be calculated incorrectly.

cvMatchContours

Matches two contours.

doubl e cvMat chContours (CvSeq *contourl, CvSeq* contour2,int method, |ong
paraneter=0);

contour 1 Pointer to the first input contour header.
cont our 2 Pointer to the second input contour header.
par anet er Method-specific parameter, currently ignored.

inte|® 3-28

OpenCV Reference Manual Contour Processing 3

met hod Method for the similarity measure calculation; must be any of
* CV_CONTOURS MATCH I 1;
* CV_CONTOURS MATCH_| 2;
* CV_CONTOURS MATCH I 3.

Discussion

The function cvMat chCont our s calculates one of the three similarity measures
between two contours.

Let two closed contours 4 and B have n and mpoints respectively:

A={(xy) 1<isn} B ={(y,v),1<ism} .Normalized central moments of a
contour may be denoted as n,q, 0<p+q<3. M. Hu has shown that a set of the next
seven features derived from the second and third moments of contours is an invariant
to translation, rotation, and scale change [Hu62].

hy = Nyp+Ne >

2 2
= (Ny—Ng2) +4n711 >

=
N
|

hs = (n30—3n12)2+(3n21—n03)2 5

h, = (’13o+’112)2+(”21+”03)2 5

hs = (N30=3N12) N30+ N12)[(N30 + N12)> = 3Ny + Nee)°]

+ (31~ Noa) (M1 + N [38(Na0 + N12)” = (N1 *+ Noa) .

hs = (N20=No2)[(N30 *+ N12) ~(M 21 + Noa)]+ 4N11(N30+ N12) (Nay + M) »
hy = (302 ~Ngg) (N gp * N12)[(Nag + N12)° ~3(N gy + M)]

(g0 =3112) (21 *) 3130 * N12)° ~ (N1 + 1)’

From these seven invariant features the three similarity measures| 4, I ,, and | ; may be
calculated: ,

b

(A, B) = 3 [-/m+ 1/mf

i=1

;
(A B) = 3 |-+ m?

i=1

inte|® 3-29

b

OpenCV Reference Manual Contour Processing 3

A By, A
I5(A, B) = mailx‘(mi -m7)/m;

b

where m* = sgn(hiA)I?g‘hiA‘ ,m o= Sgn(hiB)lgg‘hiB‘ ~

cvCreateContourTree

Creates binary tree representation for input
contour.

CvCont our Tree* cvCreat eCont our Tree(CvSeq *contour, CvMenftorage* storage,
doubl e threshol d);

cont our Pointer to the input contour header.
st or age Pointer to the storage block.

t hreshol d Value of the threshold.
Discussion

The function cvCreat eCont our Tr ee creates binary tree representation for the input
contour cont our and returns the pointer to its root. If the parameter t hr eshol d is less
than or equal to 0, the function creates full binary tree representation. If the threshold is
more than 0, the function creates representation with the precision t hr eshol d: if the
vertices with the interceptive area of its base line are less than t hr eshol d, the tree
should not be built any further. The function returns created tree.

cvContourFromContourTree

Restores contour from binary tree representation.

CvSeq* cvCont our FronmCont our Tree (CvContour Tree *tree, CvMenStorage* storage,
CvTernCriteria criteria);

i ntel ® 3-30

OpenCV Reference Manual Contour Processing 3

tree Pointer to the input tree.
st or age Pointer to the storage block.
criteria Criteria for the definition of the threshold value

for contour reconstruction (level of precision).

Discussion

The function cvCont our Fr onCont our Tr ee restores the contour from its binary tree
representation. The parameter cri t eri on defines the threshold, that is, level of
precision for the contour restoring. If criterion.type = CV_TERMCRI T_I TER, the
function restores criterion. maxlter tree levels. Ifcriterion.type =
CV_TERMCRI T_EPS, the function restores the contour as long astri _area >
criterion. epsilon *contour_area, where cont our _ar ea is the magnitude of the
contour area and t ri _ar ea is the magnitude of the current triangle area. If
criterion.type = CV_TERMCRI T_EPS + CV_TERMCRI T_I TER, the function restores
the contour as long as one of these conditions is true. The function returns
reconstructed contour.

cvMatchContourTrees

Compares two binary tree representations.

doubl e cvMat chCont our Trees (CvContour Tree *treel, CvContourTree *tree2,
CvTr eeMat chMet hod met hod, doubl e threshol d);

treel Pointer to the first input tree.

tree2 Pointer to the second input tree.

met hod Method for calculation of the similarity measure; now must be only
CV_CONTOUR_TREES MATCH | 1.

t hreshol d Value of the compared threshold.

3-31

OpenCV Reference Manual Contour Processing 3

Discussion

The function cvMat chCont our Tr ees calculates the value of the matching measure for
two contour trees. The similarity measure is calculated level by level from the binary
tree roots. If the total calculating value of the similarity for levels from 0 to the
specified one is more than the parameter t hr eshol d, the function stops calculations
and value of the total similarity measure is returned as r esul t . If the total calculating
value of the similarity for levels from 0 to the specified one is less than or equal to

t hr eshol d, the function continues calculation on the next tree level and returns the
value of the total similarity measure for the binary trees.

inte|® 3-32

Geometry

This chapter describes functions from computational geometry field.

Overview

Ellipse Fitting

Fitting of primitive models to the image data is a basic task in pattern recognition and
computer vision. A successful solution of this task results in reduction and
simplification of the data for the benefit of higher level processing stages. One of the
most commonly used models is the ellipse which, being a perspective projection of the
circle, is of great importance for many industrial applications.

The representation of general conic by the second order polynomial is
FA %) = &', k=ad+bxy+cy’ +dx+ey+f = OTwith the vectors denoted as
d=1[ab,cdefl and x = D4 xy,y2x v, 1] .

F(& x) is called the “algebraic distance between poh%t (Xo, Yo) and conic F(a, x) .

Minimizing the sum of squared algebraic distances > F()?;)2 may approach the fitting
of conic. i=1

In order to achieve ellipse-specific fitting polynomial coefficients must be constrained.
For ellipse they must satisfy b?—4ac<o0.

Moreover, the equality constraint 4ac—b” = 1can imposed in order to incorporate
coefficients scaling into constraint.

This constraint may be written as a matrix 4 Ca = 1.

Flnally, the problem could be formulated as mlnlmlzmg |pa|? with constraint
4'Ca = 1, where D is the nx6 matrix [x,, x,,.. ,x] .

41

OpenCV Reference Manual Geometry 4

Introducing the Lagrange multiplier results in the system

2D'D&-2AC4 = 0 , which can be re-written as

a'ca=1
S4 = 2)\Ca
d'ca=1

The system solution is described in [Fitzgibbon95].

After the system is solved, ellipse center and axis can be extracted.

Line Fitting

M-estimators are used for approximating a set of points with geometrical primitives
e.g., conic section, in cases when the classical least squares method fails. For example,
the image of a line from the camera contains noisy data with many outliers, that is, the
points that lie far from the main group, and the least squares method fails if applied.

The least squares method searches for a parameter set that minimizes the sum of
squared distances:

m = zdf,
i

where d; is the distance from the i point to the primitive. The distance type is
specified as the function input parameter. If even a few points have a large d;, then the
perturbation in the primitive parameter values may be prohibitively big. The solution is
to minimize

m= Y p(d),

wheré p(d;) grows slower than diz. This problem can be reduced to weighted least
squares [Fitzgibbon95], which is solved by iterative finding of the minimum of

my = Z:W(d!“1

where 'k is the 1terat10n number, d ! is the minimizer of the sum on the previous
iteration, and W(x) = 1do g d, is a linear function of parameters p—d = Y AR then
the minimization vector of the m, 1s the eigenvector of A ™A matrix that corresponds to
the smallest eigenvalue.

4-2

OpenCV Reference Manual Geometry 4

For more information see [Zhang96].

Convexity Defects

Let (p;, p, -..p,) be a closed simple polygon, or contour, and (hy, h,, ...h,,) a convex
hull. A sequence of contour points exists normally between two consecutive convex
hull vertices. This sequence forms the so-called convexity defect for which some
useful characteristics can be computed. Computer Vision Library computes only one
such characteristic, named “depth” (see Figure 4-1).

Figure 4-1 Convexity Defects

{ -
1 R —
II -~ ..
] H|
{ i
s
I| l 1‘-
|___,--_'.x... d. r
i h
1]
|
] b
[")
— e

The black lines belong to the input contour. The red lines update the contour to its
convex hull.

({952

The symbols “s” and “e” signify the start and the end points of the convexity defect.
The symbol “d” is a contour point located between “s” and “e” being the farthermost
from the line that includes the segment “se”. The symbol “A” stands for the convexity
defect depth, that is, the distance from “d” to the “se” line.

4-3

OpenCV Reference Manual Geometry 4

The structure CvConvexi t yDef ect represents the convexity defect.

Example 4-1 CvConvexityDefect structure definition

typedef struct

CvPoi nt* start; //start point of defect
CvPoi nt* end; /1 end point of defect
CvPoi nt* depth_point; //fathernost point

fl oat dept h; [/ depth of defect

} CvConvexityDefect;

Reference

cVvFitEllipse
Fits ellipse to set of 2D points.

void cvFitEllipse(CvPoint* points, int n, CvBox2D32f* box);

poi nts Pointer to the set of 2D points.

n Number of points; must be more than or equal to 6.

box Pointer to the structure for representation of the output ellipse.
Discussion

The function cvFitEl | i pse fills the output structure in the following way:
box- >cent er Point of the center of the ellipse;
box- >si ze Sizes of two ellipse axes;

box- >angl e Angle between the horizontal axis and the ellipse axis with the length
of box- >si ze. wi dt h.

The output ellipse has the property of box- >si ze. wi dt h > box- >si ze. hei ght .

OpenCV Reference Manual

Geometry 4

cvFitLine2D

Fits 2D line to set of points on the plane.

voi d cvFi tLi ne2D(CvPoi nt 2D32f * points, int count, CvDi sType di sType, voi d*
param float reps,

poi nts
count

di sType
par am

reps, aeps

l'ine

Discussion

float aeps float* |ine);

Array of 2D points.

Number of points.

Type of the distance used to fit the data to a line.

Pointer to a user-defined function that calculates the weights for the
type CV_DI ST_USER, or the pointer to a float user-defined metric
parameter ¢ for the Fair and Welsch distance types.

Used for iteration stop criteria. If zero, the default value of 0.01 is
used.

Pointer to the array of 4 floats. When the function exits, the first two
elements contain the direction vector of the line normalized to 1, the
other two contain coordinates of a point that belongs to the line.

The function cvFit Li ne2D fits 2D line to a set of points on the plane. Possible
distance type values are listed below.

CV_DIST_L2
CV DI ST L1
CV_DI ST _L12
CV_DI ST_FAIR
CV_DI ST_WELSCH
CV_DI ST_USER

Zhe line equation

Standard least squares p(x) = .

c =1.3998.

p(x) = ‘é[l—exp({ﬁ)zﬂ ¢ = 2.9846.

Uses a user-defined function to calculate the weight. The
parameter par amshould point to the function.

is [Vx(F-ro)] = 0, where V = (line[0], line[1], line[2]) , V = 1 and

ro = (line[3], line[4], line[5]) .

4-5

OpenCV Reference Manual Geometry 4

In this algorithm 70 is the mean of the input vectors with weights, that is,

W)Y,
?0 -

SW(A(r))

The parameters r eps and aeps are iteration thresholds. If the distance of the type
CV_DI ST_C between two values of 70 calculated from two iterations is less than the
value of the parameter r eps and the angle in radians between two vectors V is less
than the parameter aeps, then the iteration is stopped.

The specification for the user-defined weight function is
void userWeight (float* dist, int count, float* w);

di st Pointer to the array of distance values.

count Number of elements.

w Pointer to the output array of weights.

The function should fill the weights array with values of weights calculated from the

distance values w[i] = f(d[i]). The function f(x) =)—1(%5 has to be monotone decreasing.
cvFitLine3D

Fits 3D line to set of points in 3D space.

voi d cvFitLi ne3D (CvPoi nt3D32f* points, int count, CvDisType disType, void*
param float reps, float aeps float* |ine);

poi nts Array of 3D points.

count Number of points.

di sType Type of the distance used to fit the data to a line.

par am Pointer to a user-defined function that calculates the weights for the

type CV_DI ST_USER or the pointer to a float user-defined metric
parameter ¢ for the Fair and Welsch distance types.

4-6

OpenCV Reference Manual Geometry 4

reps, aeps Used for iteration stop criteria. If zero, the default value of 0.01 is
used.
l'ine Pointer to the array of 6 floats. When the function exits, the first

three elements contain the direction vector of the line normalized to
1, the other three contain coordinates of a point that belongs to the
line.

Discussion

The function cvFi t Li ne3D fits 2D line to set of points on the plane. Possible distance

type values are listed below.
2

CV. DIST L2 Standard least squares p(x) = x".

CV._DIST_L1

CV_DI ST_L12

CV_DI ST_FAIR c =1.3998.

CV_DI ST_WELSCH p(x) = %—Tl—exp(—(@zﬂ, ¢ = 2.9846.

CV_DI ST_USER Uses a user-defined function to calculate the weight. The

parameter par amshould point to the function.
The line equation is [Vx(F=rg)] = 0, where V = (line[0], line[1], line[2]) , V = 1 and
ro = (line[3], line[4], line[5]) .
In this algorithm 70 is the mean of the input vectors with weights, that is,
> >
Z:W(d(ri))ri
oo
ro =S -
> W(d(r}))
i
The paranleters reps and aeps are iteration thresholds. If the distance between two
values of r, calculated from two iterations is less than the value of the parameter r eps,
(the distance type CV_DI ST_C is used in this case) and the angle in radians between
two vectors V is less than the parameter aeps, then the iteration is stopped.
The specification for the user-defined weight function is
voi d userWeight (float* dist, int count, float* w);

di st Pointer to the array of distance values.

4-7

OpenCV Reference Manual Geometry 4

count Number of elements.

w Pointer to the output array of weights.

The function should fill the weights array with values of weights calculated from

distance values w[i] = f(d[i]). The function f(x) =)—1(%5 has to be monotone decreasing.

cvProject3D

Projects array of 3D points to coordinate axis.

voi d cvProj ect3D (CvPoi nt 3D32f* poi nts3D, int count, CvPoint2D32f* points2D,
int xindx, int yindx);

poi nts3D Source array of 3D points.

count Number of points.

poi nts2D Target array of 2D points.

Xi ndx Index of the 3D coordinate from 0 to 2 that is to be used as

x-coordinate.

yi ndx Index of the 3D coordinate from 0 to 2 that is to be used as
y-coordinate.

Discussion

The function cvProj ect 3D used with the function cvnPer specti veProj ect is
intended to provide a general way of projecting a set of 3D points to a 2D plane. The
function copies two of the three coordinates specified by the parameters xi ndx and
yi ndx of each 3D point to a 2D points array.

OpenCV Reference Manual Geometry 4

cvConvexHull

Finds convex hull of points set.

voi d cvConvexHul | (CvPoint* points, int numPoints, CvRect* boundRect, int

orientation, int* hull, int* hullsize);
points Pointer to the set of 2D points.
nunPoi nt s Number of points.
boundRect Pointer to the bounding rectangle of points set; not used.

orientation Output order of the convex hull vertices CV_CLOCKW SE or
CV_COUNTER CLOCKW SE.

hul | Indices of convex hull vertices in the input array.
hul | si ze Number of vertices in convex hull; output parameter.
Discussion

The function cvConvexHul | takes an array of points and puts out indices of points
that are convex hull vertices. The function uses Quicksort algorithm for points sorting.

The standard, that is, bottom-left XY coordinate system, is used to define the order in
which the vertices appear in the output array.

cvContourConvexHull

Finds convex hull of points set.

CvSeq* cvCont our ConvexHul | (CvSeq* contour, int orientation,
CvMentt or age* storage);

cont our Sequence of 2D points.

orientation Output order of the convex hull vertices CV_CLOCKW SE or
CV_COUNTER CLOCKW SE.

intel. s

OpenCV Reference Manual Geometry 4

st or age Memory storage where the convex hull must be allocated.

Discussion

The function cvCont our ConvexHul | takes an array of points and puts out indices of
points that are convex hull vertices. The function uses QUI CKSORT for points sorting.

The standard, that is, bottom-left XY coordinate system, defines the order in which the
vertices appear in the output array.

The function returns CvSeq that is filled with pointers to those points of the source
contour that belong to the convex hull.

cvConvexHullApprox

Finds approximate convex hull of points set.

voi d cvConvexHul | Approx(CvPoint* points, int nunPoints, CvRect* boundRect,

i nt

bandWdth,int orientation, int* hull, int* hullsize);

poi nts Pointer to the set of 2D points.

nunPoi nt s Number of points.

boundRect Pointer to the bounding rectangle of points set; not used.
bandW dt h Width of band used by the algorithm.

orientation Output order of the convex hull vertices CV_CLOCKW SE or
CV_COUNTER_CLOCKW SE.

hul | Indices of convex hull vertices in the input array.
hul | si ze Number of vertices in the convex hull; output parameter.
Discussion

The function cvConvexHul | Appr ox finds approximate convex hull of points set. The
following algorithm is used: starting from the extreme left point of the input set, the
plane is divided into vertical bands with the specified width. Within every band points

4-10

OpenCV Reference Manual Geometry 4

with maximal and minimal vertical coordinates are found and all other points are
excluded. The next step is finding the exact convex hull of all remaining points (see

Figure 4-2).

Figure 4-2 Finding Approximate Convex Hull

The algorithm can be used to find the exact convex hull; the value of the parameter
bandwi dt h must then be equal to 1.

cvContourConvexHullApprox

Finds approximate convex hull of points set.

CvSeq* cvCont our ConvexHul | Approx(CvSeq* contour, int bandw dth, int
orientation, CvMenfStorage* storage);

cont our Sequence of 2D points.
bandwi dt h Bandwidth used by the algorithm.

orientation Output order of the convex hull vertices CV_CLOCKW SE or
CV_CQOUNTER_CLOCKW SE.

st or age Memory storage where the convex hull must be allocated.

inte|® 4-11

OpenCV Reference Manual Geometry 4

Discussion

The function cvCont our ConvexHul | Appr ox finds approximate convex hull of points
set. The following algorithm is used: starting from the extreme left point of the input
set, the plane is divided into vertical bands with the specified width (bandwidth).
Within every band points with maximal and minimal vertical coordinates are found
and all other points are excluded. The next step is finding the exact convex hull of all
remaining points (see Figure 4-2).

In case of points with integer coordinates, the algorithm can be used to find the exact
convex hull; the value of the parameter bandwi dt h must then be equal to 1.

The function cvCont our ConvexHul | Appr ox returns CvSeq that is filled with pointers
to those points of the source contour that belong to the approximate convex hull.

cvCheckContourConvexity

Tests contour convex.

i nt cvCheckCont our Convexity(CvSeq* contour);

cont our Tested contour.

Discussion

The function cvCheckCont our Convexi ty tests whether the input is a contour convex
or not. The function returns 1 if the contour is convex, 0 otherwise.

cvConvexityDefects

Finds defects of convexity of contour.

CvSeq* cvConvexityDefects(CvSeq* contour, CvSeq* convexhul |, CvMenStorage*
storage);

cont our Input contour, represented by a sequence of CvPoi nt structures.

inte|® 4-12

OpenCV Reference Manual Geometry 4

convexhul | Exact convex hull of the input contour; must be computed by the
function cvCont our ConvexHul | .

st or age Memory storage where the sequence of convexity defects must be
allocated.

Discussion

The function cvConvexi t yDef ect s finds all convexity defects of the input contour
and returns a sequence of the CvConvexi t yDef ect structures.

cvMinAreaRect

Finds circumscribed rectangle of minimal area
for given convex contour.

voi d cvM nAreaRect (CvPoint* points, int n, int left, int bottom int right,
int top, CvPoint2D32f* anchor, CvPoi nt2D32f* vectl, CvPoint2D32f* vect2);

points Sequence of convex polygon points.

n Number of input points.

left Index of the extreme left point.

bot t om Index of the extreme bottom point.

right Index of the extreme right point.

top Index of the extreme top point.

anchor Pointer to one of the output rectangle corners.

vect 1 Pointer to the vector that represents one side of the output rectangle.

vect 2 Pointer to the vector that represents another side of the output
rectangle.

inte|® 4-13

OpenCV Reference Manual Geometry 4

Discussion

The function cvM nAr eaRect returns a circumscribed rectangle of the minimal area.
The output parameters of this function are the corner of the rectangle and two incident
edges of the rectangle (see Figure 4-3).

Figure 4-3 Minimal Area Bounding Rectangle

anckhi

cvCalcPGH

Calculates pair-wise geometrical histogram for

con

tour.

voi d cvCal cPGH(CvSeq* contour, CvH stogrant hist);

cont our Input contour.
hi st Calculated histogram; must be two-dimensional.
Discussion

The function cvCal cPGH calculates pair-wise geometrical histogram for contour. The
algorithm considers every pair of the contour edges. The angle between the edges and
the minimum/maximum distances are determined for every pair. To do this each of the
edges in turn is taken as the base, while the function loops through all the other edges.
When the base edge and any other edge are considered, the minimum and maximum
distances from the points on the non-base edge and line of the base edge are selected.

4-14

OpenCV Reference Manual Geometry 4

The angle between the edges defines the row of the histogram in which all the bins that
correspond to the distance between the calculated minimum and maximum distances
are incremented. The histogram can be used for contour matching.

cvMinEnclosingCircle

Finds minimal enclosing circle for 2D-point set.

voi d cvFi ndM nEncl osi ngG rcl e(CvSeq* seq, CvPoint2D32f* center, float* radius
)

seq Sequence that contains the input point set. Only points with integer
coordinates (CvPoi nt) are supported.

cent er Output parameter. Center of the enclosing circle.

radi us Output parameter. Radius of the enclosing circle.

Discussion

The function cvM nEncl osi ngGi r cl e finds the minimal enclosing circle for the
planar point set. Enclosing means that all the points from the set are either inside or on
the boundary of the circle. Minimal means that there is no enclosing circle with smaller
radius.

inte|® 4-15

Features

Fixed Filters

This section describes various fixed filters, primarily derivative operators.

Overview

Sobel Derivatives

Figure 5-1 shows first x derivative Sobel operator. The grayed bottom left number
indicates the origin in a “p- q” coordinate system. The operator can be expressed as a
polynomial and decomposed into convolution primitives.

Figure 5-1 First x Derivative Sobel Operator,

q 1 2 0 -2 1 1
— o % |1 1 % |1 -1
0 1 0 -1 1 1
0 pl 2 (I+q) (I+q) (I+p) (1-p)

For example, first x derivative Sobel operator may be expressed as a polynomial
1+2q+q°-p°~2p°q-p°q” = (1+)*(1-p?) = (1+0q)(1+q)(1+p)(1-p) and
decomposed into convolution primitives as shown in Figure 5-1.

intel. 51

Yangtze
插入号
 下面讲的sobel算子 我看不懂

Yangtze
高亮

OpenCV Reference Manual Features 5

This may be used to express a hierarchy of first x and y derivative Sobel operators as
follows:

2o (1+p)" " 1+)"(1-p) (5.1)
2o @+p)1+a) (1-a) (5.2)
for n>0.

Figure 5-2 shows the Sobel first derivative filters of equations (5.1) and (5.2) forn = 2,
4. The Sobel filter may be decomposed into simple “add-subtract” convolution
primitives.

Figure 5-2 First Derivative Sobel Operators for n=2 and n=4

Filter Differentiate Average
n=2 dx

1 0 - 1

= *11 -
2 0 - 1
1 0 -

1
%
dy <% : 1 1

0 0 0 -

=1 1 |*
1 2 1 1

I ntel ® 5-2

OpenCV Reference Manual Features 5

Filter Differentiate Average
n=4 dx
1 2 0 - -
4 180 |- |-
1
6 1 0 -12| - = * -
1
4 180 |- |-)
snoaale
1 1 1
% N I R *11 |1
dy Q 1 1 1
S N I 1 R 7
0 0 0 0 0 |=|1 1 |*
1
2 8 1 8 2
1 4 6 4 1

Second derivative Sobel operators can be expressed in polynomial decomposition

similar to equations (5.1) and (5.2). The second derivative equations are:
2

L@+ A1+)" (2-p)?, (5.3)
(1)

62 n-1 n-2 2

Lo @+p)" i) TP1-0)%, (5.4)
oy

02 1 n-1 n-1 55
Sxay = (P (Lra) T (1-p)(1-a) (5.5)
forn = 2,3,....

Figure 5-3 shows the filters that result for n = 2 and 4. Just as shown in Figure 5-2,
these filters can be decomposed into simple “add-subtract” separable convolution
operators as indicated by their polynomial form in the equations.

5-3

OpenCV Reference Manual Features 5

Figure 5-3 Sobel Operator Second Order Derivators forn=2and n=4

The polynomial decomposition is shown above each operator.

FIx? = (1+q)(1-p) ¥Idy? = (14p)(1-q) FIdxdy = (1+q)(1+p)(1-g)(1-p)
1 |2 |1 1|2 |1 1o |1
2 | 4|2 2|4 |2 0 |0 |0
1 |21 1 |2 |1 1 1o |-
FIoxZ = (14py(1+q)'(1-py Fldy? = (1+q)(1+p)'(1-q)

1 |0 [2]0 |1 1 |4 |6 |4 |1

4 o 4]0 |4 0 {0 [0 |O [0

6 |0 |-12]0 |6 2| -8 |-12]-8 |22

4 o |80 |4 0 {0 [0 |O [0

1 [0 [2]0 |1 1 |4 |6 [4 |1

-1 | 210 2 1

21410 4 2

Third derivative Sobel operators can also be expressed in the polynomial
decomposition form:
3
(36—3a(1+p)”‘3(1+q)”(1—p)3, (5.6)
X

OpenCV Reference Manual Features 5

3

5"’—5:(1+p)”(1+q)”‘3(1—q)3, (5.7)
y

63 2 n-2 n-1
R SN AN CL L U Gt I (5.8)
X “9y

3 n-1 n-2 2
s 5= (1-p)(1+p)" " (1+q)" (1-q) (5.9)
x 0y

for n =3, 4,.... The third derivative filter needs to be applied only for the cases n = 4
and general.

Optimal Filter Kernels with Floating Point Coefficients

First Derivatives

Table 5-1 gives coefficients for five increasingly accurate x derivative filters, the y
filter derivative coefficients are just column vector versions of the x derivative filters.

Table 5-1 Coefficients for Accurate First Derivative Filters
Anchor DX Mask Coefficients
0 0.74038 -0.12019
0 0.833812 -0.229945 0.0420264
0 0.88464 -0.298974 0.0949175 -0.0178608
0 0.914685 -0.346228 0.138704 -0.0453905 0.0086445
0 0.934465 -0.378736 0.173894 -0.0727275 0.0239629 -0.00459622
Five increasingly accurate separable x derivative filter coefficients. The table gives half
coefficients only. The full table can be obtained by mirroring across the central anchor
coefficient. The greater the number of coefficients used, the less distortion from the
ideal derivative filter.

|nte|® 55

OpenCV Reference Manual Features 5

Tab

le 5-2

Second Derivatives

Table 5-2 gives coefficients for five increasingly accurate x second derivative filters.
The y second derivative filter coefficients are just column vector versions of the x
second derivative filters.

Coefficients for Accurate Second Derivative Filters

Anchor DX Mask Coefficients
-2.20914 1.10457

-2.71081 1.48229 -0.126882

-2.92373 1.65895 -0.224751 0.0276655

-3.03578 1.75838 -0.291985 0.0597665 -0.00827

-3.10308 1.81996 -0.338852 0.088077 -0.0206659 0.00301915

The table gives half coefficients only. The full table can be obtained by mirroring
across the central anchor coefficient. The greater the number of coefficients
used, the less distortion from the ideal derivative filter.

Laplacian Approximation

The Laplacian operator is defined as the sum of the second derivatives x and y:
2 2
L = 6_2 + "_2. (5.10)
ox~ ady

Thus, any of the equations defined in the sections for second derivatives may be used
to calculate the Laplacian for an image.

5-6

OpenCV Reference Manual Features 5

Reference

cvLaplace

Calculates convolution of input image with
Laplacian operator.

voi d cvLapl ace(|pllImage* src, |pllmage* dst, int apertureSize=3);
src Input image.
dst Destination image.

apertureSi ze Size of the Laplacian kernel.

Discussion

The function cvLapl ace calculates the convolution of the input image sr ¢ with the
Laplacian kernel of a specified size apert ur eSi ze and stores the result in dst .

cvSobel

Calculates convolution of input image with Sobel
operator.

voi d cvSobel (Ipllmage* src, Ipllmage* dst, int dx, int dy, int
apertureSi ze=3);

src Input image.

dst Destination image.

dx Order of the derivative x.
dy Order of the derivative y.

intel. 57

OpenCV Reference Manual Features 5

apertureSi ze Size of the extended Sobel kernel. The special value CV_SCHARR,
equal to - 1, corresponds to the Scharr filter 1/ 16[- 3, - 10, - 3; 0,
0, 0; 3, 10, 3];may be transposed.

Discussion

The function cvSobel calculates the convolution of the input image sr ¢ with a
specified Sobel operator kernel and stores the result in dst .

Feature Detection Functions

Overview

Corner

A set of Sobel derivative filters may be used to find edges, ridges, and blobs, especially
in a scale-space, or image pyramid, situation. Below follows a description of methods
in which the filter set could be applied.

* Dy is the first derivative in the direction x just as D,
® Dy is the second derivative in the direction x just as D .
* D, is the partial derivative with respect to x and y.
® Dy I8 the third derivative in the direction x just as Dy .

® Dy and Dy, are the third partials in the directions x, y .

Detection

Method 1

Corners may be defined as areas where level curves multiplied by the gradient
magnitude raised to the power of 3 assume a local maximum

2 2
D, D,y +D{ D, —2D,D, Dy, . (5.11)
Method 2

Sobel first derivative operators are used to take the derivatives x and y of an image,
after which a small region of interest is defined to detect corners in. A 2x2 matrix of
the sums of the derivatives x and y is subsequently created as follows:

5-8

OpenCV Reference Manual Features 5

2
D D, D
c=| 2% X > (5.12)
2.Bby >0

The eigenvalues are found by solving det (C—Al') = 0, where A is a column vector of
the eigenvalues and | is the identity matrix. For the 2x2 matrix of the equation above,
the solutions may be written in a closed form:

Zoi+zoziJ(ZDi+ZD§>2—4<ZD§ZD§-<ZDxDv’2) (5.13)
A= . |
2

If A, A,>t , where t is some threshold, then a corner is found at that location. This can
be very useful for object or shape recognition.

Canny Edge Detector

Edges are the boundaries separating regions with different brightness or color. J.Canny
suggested in [Canny86] a very good method for detecting edges. It takes grayscale
image on input and returns bi-level image where non-zero pixels mark detected edges.
Below the 4-stage algorithm is described.

Stage 1. Image Smoothing

The image data is smoothed by a Gaussian function of width specified by the user
parameter.

Stage 2. Differentiation

The smoothed image, retrieved at Stage 1, is differentiated with respect to the
directions x and y.

From the computed gradient values x and y, the magnitude and the angle of the
gradient can be calculated using the hypotenuse and arctangen functionst.

In the OpenCV library smoothing and differentiation are joined in Sobel operator.

5-9

OpenCV Reference Manual Features 5

Stage 3. Non-Maximum Suppression

After the gradient has been calculated at each point of the image, the edges can be
located at the points of local maximum gradient magnitude. It is done via suppression
of non-maximums, that is points, whose gradient magnitudes are not local maximums.
However, in this case the non-maximums perpendicular to the edge direction, rather
than those in the edge direction, have to be suppressed, since the edge strength is
expected to continue along an extended contour.

The algorithm starts off by reducing the angle of gradient to one of the four sectors
shown in Figure 5-4. The algorithm passes the 3x3 neighborhood across the magnitude
array. At each point the center element of the neighborhood is compared with its two
neighbors along line of the gradient given by the sector value.

If the central value is non-maximum, that is, not greater than the neighbors, it is
suppressed.

Figure 5-4 Gradient Sectors

G/
VA

5-10

OpenCV Reference Manual Features 5

Stage 4. Edge Thresholding

The Canny operator uses the so-called “hysteresis” thresholding. Most thresholders
use a single threshold limit, which means that if the edge values fluctuate above and
below this value, the line appears broken. This phenomenon is commonly referred to
as “streaking”. Hysteresis counters streaking by setting an upper and lower edge value
limit. Considering a line segment, if a value lies above the upper threshold limit it is
immediately accepted. If the value lies below the low threshold it is immediately
rejected. Points which lie between the two limits are accepted if they are connected to
pixels which exhibit strong response. The likelihood of streaking is reduced drastically
since the line segment points must fluctuate above the upper limit and below the lower
limit for streaking to occur. J. Canny recommends in [Canny86] the ratio of high to
low limit to be in the range of two or three to one, based on predicted signal-to-noise
ratios.

Reference

cvCanny
Implements Canny algorithm for edge detection.

void cvCanny(|pllnage* ing, |pllnmage* edges, double | owThresh, double
hi ghThresh, int apertureSi ze=3);

i g Input image.

edges Image to store the edges found by the function.
apertureSi ze Size of the Sobel operator to be used in the algorithm.
| owThr esh Low threshold used for edge searching.

hi ghThr esh High threshold used for edge searching.

Discussion

The function cvCanny finds the edges in the input image i mg and puts them into the
output image edges using the Canny algorithm described above.

5-11

OpenCV Reference Manual Features 5

cvPreCornerDetect

Calculates two constraint images for corner
detection.

voi d cvPreCornerDetect(|pllnmage* ing, |pllmge* corners, Int apertureSize);
i ng Input image.
corners Image to store the results.

apertureSi ze Size of the Sobel operator to be used in the algorithm.

Discussion

The function cvPreCor ner Det ect finds the corners on the input image i ng and stores
them into the output image cor ner s in accordance with Method 1 for corner detection.

cvCornerEigenValsAndVecs

Calculates eigenvalues and eigenvectors of
image blocks for corner detection.

voi d cvCor ner Ei genVal sAndVecs(| pllmage* ing, |pllnage* eigenvv, int
bl ockSi ze, int apertureSize=3);

i g Input image.

ei genvv Image to store the results.

bl ockSi ze Linear size of the square block over which derivatives averaging is
done.

apertureSi ze Derivative operator aperture size in the case of byte source format. In
the case of floating-point input format this parameter is the number
of the fixed float filter used for differencing.

inte|® 5-12

OpenCV Reference Manual Features 5

Discussion

For every raster pixel the function cvCor ner Ei genVval sAndVecs takes a block of
bl ockSi ze xbl ockSi ze pixels with the top-left corner, or top-bottom corner for
bottom-origin images, at the pixel, computes first derivatives D, and B, within the
block and then computes eigenvalues and eigenvectors of the matrix:

2
_ z Dy z D, Dy .
C-= , | where summations are performed over the whole block.
>.bby 35
The format of the frame ei genvv is the following: for every pixel of the input image
the frame contains 6 float values (A1, A2, x1,y1,x2,y2).
A1, A2 are eigenvalues of the above matrix, not sorted by value.
x1,y1 are coordinates of the normalized eigenvector that corresponds to A1.
x2,y2 are coordinates of the normalized eigenvector that corresponds to A2.

In case of a singular matrix or if one of the eigenvalues is much less than another, all
six values are set to 0. The Sobel operator with aperture width aper ur eSi ze is used for
differentiation.

cvCornerMinEigenVal

Calculates minimal eigenvalues of image blocks
for corner detection.

voi d cvCornerM nEi genVal (I pllmage* ing, |pllmge* eigenv, int blockSize, int
apertureSi ze=3);

i g Input image.

ei genvv Image to store the results.

bl ockSi ze Linear size of the square block over which derivatives averaging is
done.

inte|® 5-13

OpenCV Reference Manual Features 5

apertureSi ze Derivative operator aperture size in the case of byte source format. In
the case of floating-point input format this parameter is the number
of the fixed float filter used for differencing.

Discussion

For every raster pixel the function cvCor ner M nEi genVal takes a block of

bl ockSi ze xbl ockSi ze pixels with the top-left corner, or top-bottom corner for
bottom-origin images, at the pixel, computes first derivatives B, and B, within the
block and then computes eigenvalues and eigenvectors of the matrix:

LALL .
C= e where summations are made over the block.
>Bb, 3D

In case of a singular matrix the minimal eigenvalue is set to 0. The Sobel operator
with aperture width aper ur eSi ze is used for differentiation.

cvFindCornerSubPix

Refines corner locations.

voi d cvFi ndCor ner SubPi x(| pl I rage* ing, CvPoint2D32f* corners, int count,
CvSize win, CvSize zeroZone, CvTernCriteria criteria);

i Ny Input raster image.

corners Initial coordinates of the input corners and refined coordinates on
output.

count Number of corners.

Wi n Half sizes of the search window. For example, ifwin = (5, 5), then

5P+ 1x52+1 = 11 x11 pixel window to be used.

zeroZone Half size of the dead region in the middle of the search zone to avoid
possible singularities of the autocorrelation matrix. The value of
(-1, -1) indicates that there is no such zone.

inte|® 5-14

OpenCV Reference Manual Features 5

criteria Criteria for termination of the iterative process of corner refinement.
Iterations may specify a stop when either required precision is
achieved or the maximal number of iterations done.

Discussion.

The function cvFi ndCor ner SubPi x iterates to find the accurate sub-pixel location of a
corner, or “radial saddle point”, as shown in Figure 5-5.

Figure 5-5 Sub-Pixel Accurate Corner

(red) gradient direction

The core idea of this algorithm is based on the observation that every vector from the
center g to a point p located within a neighborhood of q is orthogonal to the image
gradient at p subject to image and measurement noise. Thus:

g =0l gi Ha-pi),
where 01, is the image gradient at the one of the points p in a neighborhood of g. The

value of q is to be found such that g; 1s minimized. A system of equations may be set
up with g; ‘s set to zero:

[ZDI Pi il :J-'J ' q_LzDI Pi ol :)—i I:piJ= 0,
where the gradients are summed within a neighborhood (“search window”) of q.
Calling the first gradient term Gand the second gradient term b gives:

inte|® 5-15

OpenCV Reference Manual

Features 5

q= Glm.

The algorithm sets the center of the neighborhood window at this new center q and
then iterates until the center keeps within a set threshold.

cvGoodFeaturesToTrack

Determines strong corners on image.

voi d cvGoodFeat uresToTrack(|pllmage* inmage, |pllmage* eiglnage, |pllnmge*

t enpl mage,

CvPoi nt 2D32f * corners, int* cornerCount, double qualitylLevel,

doubl e m nDi stance);

i mage

ei gl mage

t enpl mage
corners
cor ner Count

qual i tyLevel

m nDi st ance

Discussion

Source image; should be byte, signed byte, or floating-point depth
single channel.

Temporary image for minimal eigenvalues for pixels; must be
floating-point, single channel.

Another temporary image; must be floating-point, single channel.
Output parameter. Detected corners.
Output parameter. Number of detected corners.

Multiplier for the maxmin eigenvalue; specifies minimal accepted
quality of image corners.

Limit, specifying minimum possible distance between returned
corners; Euclidian distance is used.

The function cvGoodFeat ur esToTr ack finds corners with big eigenvalues in the
image. The function first calculates the minimal eigenvalue for every pixel of the
source image and then performs non-maxima suppression (only local maxima in 3x3
neighborhood remain). The next step is rejecting the corners with the minimal
eigenvalue less than qual i ty_I evel *<max_of _ni n_ei gen_val s>. Finally, the

5-16

OpenCV Reference Manual Features 5

function ensures that all the corners found are distanced enough from one another by
getting two strongest features and checking that the distance between the points is
satisfactory. If not, the point is rejected.

Hough Transform

Overview

The Hough Transform (HT) is a popular method of extracting geometric primitives
from raster images. The simplest version of the algorithm just detects lines, but it is
easily generalized to find more complex features. There are several classes of HT that
differ by the image information available. If the image is arbitrary, the Standard Hough
Transform (SHT, [Trucco98]) should be used.

SHT, like all HT algorithms, considers a discrete set of single primitive parameters. If
lines should be detected, then the parameters are p and 8, such that the line equation is
p = xcos(B) +ysin(B).

Here p is the distance from the origin to the line, and 6 is the angle between the axis x
and the perpendicular to the line vector that points from the origin to the line. Every
pixel in the image may belong to many lines described by a set of parameters. In other
words, the “accumulator” is defined which is an integer array A(p, 6) containing only
zeroes initially. For each non-zero pixel in the image all accumulator elements
corresponding to lines that contain the pixel are incremented by 1. Then a threshold is
applied to distinguish lines and noise features, that is select all pairs (p, 8) for which
A(p,) is greater than the threshold value. All such pairs characterize detected lines.

Multidimensional Hough Transform (MHT) is a modification of SHT. It performs
precalculation of SHT on rough resolution in parameter space and detects the regions
of parameter values that possibly have strong support, that is, correspond to lines in the
source image. MHT should be applied to images with few lines and without noise.

[Matas98] presents advanced algorithm for detecting multiple primitives, Progressive
Probabilistic Hough Transform (PPHT). The idea is to consider random pixels one by
one. Every time the accumulator is changed, the highest peak is tested for threshold
exceeding. If the test succeeds, points that belong to the corridor specified by the peak
are removed. If the number of points exceeds the predefined value, that is, minimum

5-17

OpenCV Reference Manual Features 5

line length, then the feature is considered a line, otherwise it is considered a noise.
Then the process repeats from the very beginning until no pixel remains in the image.
The algorithm improves the result every step, so it can be stopped any time. [Matas98]
claims that PPHT is easily generalized in almost all cases where SHT could be
generalized. The disadvantage of this method is that, unlike SHT, it does not process
some features, for instance, crossed lines, correctly.

For more information see [Matas98] and [Trucco98].

Reference

cvHoughLines
Finds lines in binary image, SHT algorithm.

voi d cvHoughLines (Ipllmage* src, double rho, double theta, int threshold,
float* lines, int |inesNunber);

src Source image.

rho Radius resolution.

t heta Angle resolution.

t hreshol d Threshold parameter.

lines Pointer to the array of output lines parameters. The array should have

2*| i nesNunber elements.

| i nesNunber Maximum number of lines.

Discussion

The function cvHoughLi nes implements Standard Hough Transform (SHT) and
demonstrates average performance on arbitrary images. The function returns number
of detected lines. Every line is characterized by pair (p,8), where p is distance from
line to point (0, 0) and 8 is the angle between the line and horizontal axis.

inte|® 5-18

OpenCV Reference Manual Features 5

cvHoughLinesSDiv
Finds lines in binary image, MHT algorithm.

int cvHoughLi nesSDiv (|pllmage* src, double rho, int srn, double theta, int
stn, int threshold, float* lines, int |inesNunber);
src Source image.
rho Rough radius resolution.
srn Radius accuracy coefficient, r ho/ sr n is accurate r ho resolution.
t heta Rough angle resolution.
stn Angle accuracy coefficient, t het a/ st n is accurate angle resolution.
t hreshol d Threshold parameter.
lines Pointer to array of the detected lines parameters. The array should

have 2*| i nesNunber elements.

| i nesNunber Maximum number of lines.

Discussion

The function cvHoughLi nesSDi v implements coarse-to-fine variant of SHT and is
significantly faster than the latter on images without noise and with a small number of
lines. The output of the function has the same format as the output of the function

cvHoughLi nes.

cvHoughLinesP

Finds line segments in binary image, PPHT
algorithm.

i nt cvHoughLi nesP(| pllmage* src, double rho, double theta, int threshold,
int lineLength, int lineGap, int* lines, int |inesNunber);

src Source image.

inte|® 5-19

OpenCV Reference Manual Features 5

rho Rough radius resolution.

theta Rough angle resolution.

t hreshol d Threshold parameter.

I i neLengt h Minimum accepted line length.

lineGap Maximum length of accepted line gap.

l'ines Pointer to array of the detected line segments' ending coordinates.

The array should have | i nesNunber *4 elements.

I i nesNumber Maximum number of line segments.

Discussion

The function cvHoughLi nesP implements Progressive Probabilistic Standard Hough
Transform. It retrieves no more than | i nesNunber line segments; each of those must
be not shorter than | i neLengt h pixels. The method is significantly faster than SHT on
noisy images, containing several long lines. The function returns number of detected
segments. Every line segment is characterized by the coordinates of its

ends(xy, Y1, X2, Y2) .

inte|® 5-20

Image Statistics

This chapter describes a set of functions that compute different information about
images, considering their pixels as independent observations of a stochastic variable.

Overview

The computed values have statistical character and most of them depend on values of
the pixels rather than on their relative positions. These statistical characteristics
represent integral information about a whole image or its regions.

The first part of the chapter describes the characteristics that are typical for any
stochastic variable or deterministic set of numbers, such as mean value, standard
deviation, min and max values.

The second part describes the function for calculating the most widely used norms for
a single image or a pair of images. The latter is often used to compare images.

The third part describes moments functions for calculating integral geometric
characteristics of a 2D object, represented by grayscale or bi-level raster image, such
as mass center, orientation, size, and rough shape description. As opposite to simple
moments, that are used for characterization of any stochastic variable or other data, Hu
invariants, described in the last function discussion, are unique for image processing
because they are specifically designed for 2D shape characterization. They are
invariant to several common geometric transformations.

OpenCV Reference Manual Image Statistics 6

Reference

cvCountNonZero

Counts non-zero pixels in image.

i nt cvCount NonZero (Ipllnage* inmage);
i mage Pointer to the source image.
Discussion

The function cvCount NonZer o returns number of non-zero pixels in the whole image
or selected image RO .

cvSumpPixels

Summarizes pixel values in image.

doubl e cvSunPi xel s(1 pl I nmage* imge);
i mage Pointer to the source image.
Discussion

The function cvSunPi xel s returns sum of pixel values in the whole image or selected
image RO .

OpenCV Reference Manual Image Statistics 6

cvMean

Calculates mean value in image region.

doubl e cvMean(I pl 1l mage* inage, |pllmge* mask=0);

i mage Pointer to the source image.
mask Mask image.
Discussion

The function cvMean calculates the mean of pixel values in the whole image, selected
RO or, if mask is not NULL, in an image region of arbitrary shape.

cvMean_StdDev

Calculates mean and standard deviation in image
region.

voi d cvMean_StdDev(| pl | mage* i mage, doubl e* nmean, doubl e* st ddev,
I pl I mage* mask=0);

i mage Pointer to the source image.

mean Pointer to returned mean.

st ddev Pointer to returned standard deviation.
mask Pointer to the single-channel mask image.
Discussion

The function cvMean_St dDev calculates mean and standard deviation of pixel values
in the whole image, selected RO or, if mask is not NULL, in an image region of arbitrary
shape. If the image has more than one channel, the CO must be selected.

OpenCV Reference Manual Image Statistics 6

cvMinMaxLoc

Finds global minimum and maximum in image
region.

voi d cvM nMaxLoc(| pl | mage* i nage, doubl e* m nVval, doubl e* maxVal ,
CvPoi nt* m nLoc, CvPoint* nmaxLoc, |pllmge* mask=0);

i mage Pointer to the source image.

mi nval Pointer to returned minimum value.

max Val Pointer to returned maximum value.

m nLoc Pointer to returned minimum location.
maxLoc Pointer to returned maximum location.
mask Pointer to the single-channel mask image.
Discussion

The function cvM nMaxLoc finds minimum and maximum pixel values and their
positions. The extremums are searched over the whole image, selected RO or, if mask
is not NULL, oner an image region of arbitrary shape. If the image has more than one
channel, the CO must be selected.

cvNorm

Calculates image norm, difference norm or
relative difference norm.

doubl e cvNorn(IplInage* imgA, |pllnage* imB, int normliype, |pllmage* mask=0
)

i mgA Pointer to the first source image.
i ngA Pointer to the second source image if any, NULL otherwise.
nor nType Type of norm.

intel. 6t

OpenCV Reference Manual

mask Pointer to the single-channel mask image.

Discussion

The function cvNor mcalculates images norms defined below. If i mgB = NULL, the
following three norm types of image A are calculated:

Nor mType = CV_C: [|Alc = max(|A i D>

Nor niType = CV_L1: HAHLl =

M
' M
>

Nor niType = CV_L2: HAHL2

If i mgB# NULL, the difference or relative difference norms are calculated:

Nor nifype = CV_C: [A-B|c = max(|A —B;|),
NN,
Normype = CV_L1: [A-B|_ = Y Y |A; B,
i=1j =1
N, Ny
NornType = CV_L2: [A-Bl_ = [} 3 (A _Bij)z’
=1 =1
Nor niType = CV_RELATIVEC: [|A—B|/|Bl¢ = %_—B'Jﬁ
max (|B; ;|)
N, Ny
2 > A Bl
Nor mType = CV_RELATI VELL : [A-B|_/[Bl_ = =1iN=1Ny >
2 2 [Bijl
i=1j =1

Image Statistics 6

OpenCV Reference Manual Image Statistics 6

N,

X

Ny
)ADINCTEL: TN

i=1j =1

Nor miType = CV_RELATI VEL2: HA—BHLZ/HBHL2

The function cvNor m returns calculated norm.

cvMoments

Calculates all moments up to third order of image
plane and fills moment state structure.

voi d cvMorents(| pl I mage* i mage, CvMonents* nonents, int isBinary=0);

i mage Pointer to the image or to top-left corner of its RO .
nonent s Pointer to returned moment state structure.
i sBi nary If the flag is non-zero, all the zero pixel values are treated as zeroes,

all the others are treated as ones.

Discussion

The function cvMonent s calculates moments up to the third order and writes the
result to the moment state structure. This structure is used then to retrieve a certain
spatial, central, or normalized moment or to calculate Hu moments.

OpenCV Reference Manual Image Statistics 6

cvGetSpatialMoment

Retrieves spatial moment from moment state
structure.

doubl e cvGet Spati al Monment (CvMorent s* nonents, int x_order, int y_order);

nmonent s Pointer to the moment state structure.
x_or der Order x of required moment.
y_order Order y of required moment

(O<=x_order,y_order;x_order +y_order <= 3).

Discussion
The function cvGet Spati al Monent retrieves the spatial moment, which is defined as:

— x_order 'y_order
M(_order,y_order = Zl (X, y)x y , where
X,y

I (x,y) is the intensity of the pixel (x, y).

cvGetCentralMoment

Retrieves central moment from moment state
structure.

doubl e cvGet Central Monent (CvMonent s* nonents, int x_order, int y_order);

monent s Pointer to the moment state structure.
x_or der Order x of required moment.
y_order Order y of required moment

(0O<=x_order,y_order;x_order +y_order <= 3).

OpenCV Reference Manual Image Statistics 6

Discussion

The function cvGet Cent r al Monent retrieves the central moment, which is defined as:

d d
Hx order,y order = ZI (X,Y)(X—X)X_or er(y_y)y_or er , where
X,y

I (x,y) is the intensity of pixel (x, y), x is the coordinate x of the mass center, y is the
coordinate y of the mass center:

M, o M1

X ===,y =

,0 Mo

cvGetNormalizedCentralMoment

Retrieves normalized central moment from
moment state structure.

doubl e cvGet Nor mal i zedCent r al Morrent (CvMorrent s* nonents, int x_order, int

y_or

der);

moment s Pointer to the moment state structure.

x_or der Order x of required moment.

y_order Order y of required moment
(0O<=x_order,y_order;x_order +y_order <= 3).

Discussion

The function cvGet Nor mal i zedCent r al Morent retrieves the normalized central
moment, which is defined as:

n — ux order,y order
x_order,y_order IVg(xforder +y_order)/2+1)°
,0

OpenCV Reference Manual

cvGetHuMoments

Calculates seven moment invariants from
moment state structure.

voi d cvGet HUMoment s(CvMonent s* nonents, CvHuMonents* HuMonents);

nonent s Pointer to the moment state structure.
HuMoment s Pointer to Hu moments structure.
Discussion

The function cvGet HuMbnent s calculates seven Hu invariants using the following
formulas:

hy =MNy+Ngs
B 2 2
hy = (Ngp—Ng)" +4N71,
2 2
hy = (N3—3N12)" + (3N —Ne3) ">
2 2
hy = Mg+ Np) +(Ny+ne)

hg = ("]30_3”12)(”30"'nlz)[(n30+r]12)2_3(r]21+r]o3)2] 5
+(3n21_n03)(n21+nog)[s(ngo"'nlz)z_(n21+r]o3)2]

hg = (Np—Ng) (N3 + 012)2—(n21+n03)2] +4n1,(N3p+ N12) (N ¥ Ng3) »

hy = (3021 ~Nog) (a1 *+ Noa)[3(N30+ N12)” = (Mg + M)]
—(N39—3N15)(Nyy + Nza)[3(N3p + rllz)z_(nzl + I'103)2]

These values are proved to be invariants to the image scale, rotation, and reflection
except the first one, whose sign is changed by reflection.

Image Statistics 6

OpenCV Reference Manual Image Statistics 6

inte|® 6-10

Pyramids

This chapter describes functions that support generation and reconstruction of
Gaussian and Laplacian Pyramids.

Overview

Figure 7-1 shows the basics of creating Gaussian or Laplacian pyramids. The original
image G, is convolved with a Gaussian, then down-sampled to get the reduced image
G,. This process can be continued as far as desired or until the image size is one pixel.

The Laplacian pyramid can be built from a Gaussian pyramid as follows: Laplacian
level “k” can be built by up-sampling the lower level image G.,;. Convolving the
image with a Gaussian kernel “g” interpolates the pixels “missing” after up-sampling.
The resulting image is subtracted from the image G,. To rebuild the original image, the
process is reversed as Figure 7-1 shows.

7-1

OpenCV Reference Manual Pyramids 7

Figure 7-1 A Three-Level Gaussian and Laplacian Pyramid.

P &

The Gaussian image pyramid on the left is used to create the Laplacian pyramid in the
center, which is used to reconstruct the Gaussian pyramid and the original image on
the right. In the figure, | is the original image, Gis the Gaussian image, L is the
Laplacian image. Subscripts denote level of the pyramid. A Gaussian kernel g is used
to convolve the image before down-sampling or after up-sampling.

OpenCV Reference Manual Pyramids 7

Image Segmentation by Pyramid

Computer vision uses pyramid based image processing techniques on a wide scale
now. The pyramid provides a hierarchical smoothing, segmentation, and hierarchical
computing structure that supports fast analysis and search algorithms.

P. J. Burt suggested a pyramid-linking algorithm as an effective implementation of a
combined segmentation and feature computation algorithm [Burt81]. This algorithm,
described also in [Jahne97], finds connected components without preliminary
threshold, that is, it works on grayscale image. It is an iterative algorithm.

Burt’s algorithm includes the following steps:
1. Computation of the Gaussian pyramid.
2. Segmentation by pyramid-linking.
3. Averaging of linked pixels.

Steps 2 and 3 are repeated iteratively until a stable segmentation result is reached.

After computation of the Gaussian pyramid a son-father relationship is defined
between nodes (pixels) in adjacent levels. The following attributes may be defined for
every node (i ,j) on the level I of the pyramid:

cli,j,l]1[t] isthe value of the local image property, e.g., intensity;
ali,j,l][t] isthe area over which the property has been computed;
p[[i,j,l][t] ispointer to the node’s father, which is at level | +1;

s[i,j,lI1[t] isthe segment property, the average value for the entire segment
containing the node.

The letter t stands for the iteration number (t 20). Fort = 0, c[i,j,l][0] = d g

For every node (i,j) atlevell there are 16 candidate son nodes at level | - 1
(i’,j"), where

i'0{2i -1,2i,2 +1,2i +2 ,j'0{2j -1,2j,2j +1,2j +2 . (7.1)

For every node (i, j) atlevell there are 4 candidate father nodes at level | +1
(i’7,j’"), (see Figure 7-2), where

i"O0{@G -1)/2,i +1)/2 ,j"0{(-1)/2,j +1)/2 . (7.2)

In

tel.

7-3

OpenCV Reference Manual Pyramids 7

Son-father links are established for all nodes below the top of pyramid for every
iteration t . Let d[n] [t] be the absolute difference between the ¢ value of the node
(i,j)atlevell and its n? candidate father, then

pli . 1][t] = agmi n d[n][t] (7.3)

Figure 7-2 Connections between Adjacent Pyramid Levels

VL R TN
/I /

After the son-father relationship is defined, the t, ¢, and a values are computed from
bottom to the top for the 0<! <n as

afi ,j,0[t] =1, cfi,j,0t] =cli,j,0f0], ,j,]t] =>afi"j"l -1}

where sum is calculated over all (i, j) node sons, as indicated by the links p in (7.3).
If a[i,j,1][t]>0 then ,I][t] = Z([i VL=l el —1[t/ali,j,, butif
ali,j,0][t] = 0, the node has no sons, c[i,j,0][t] is set to the value of one of its
candidate sons selected at random. No segment values are calculated in the top down

order. The value of the initial level L is an input parameter of the algorithm. At the
level L the segment value of each node is set equal to its local property value:

sfi,j,LI[t] =c[i,j,LIt].

OpenCV Reference Manual Pyramids 7

For lower levels | <L each node value is just that of its father
s[i,j,I1[t] =cli™j" 1 +1][t].

Herenode (i’',j’ ") isthe father of (i,j), as established in Equation (7.3).

After this the current iteration t finishes and the next iteration t +1 begins. Any
changes in pointers in the next iteration result in changes in the values of local image
properties.

The iterative process is continued until no changes occur between two successive
iterations.

The choice of L only determines the maximum possible number of segments. If the
number of segments less than the numbers of nodes at the level L, the values of
c[i,j,L][t] are clustered into a number of groups equal to the desired number of
segments. The group average value is computed from the ¢ values of its members,
weighted by their areas a, and replaces the value ¢ for each node in the group.

Data Structures

The pyramid functions use the data structure | pl | mage for image representation and
the data structure CvSeq for the sequence of the connected components representation.
Every element of this sequence is the data structure CvConnect edConp for the single
connected component representation in memory.

The C language definition for the CvConnect edConp structure is given below.

Example 7-1 CvConnectedComp Structure Definition

typedef struct CvConnectedConp

doubl e areas; /* area of the segnented
conponent */
fl oat val ue; /* gray scale value of the
segment ed conmponent */
CvRect rect; /7 RO of the segmented conponent
*

} CvConnect edConp;

OpenCV Reference Manual Pyramids 7

Reference

cvPyrDown

Downsamples image.

voi d cvPyrDown(I pl | nage* src, I|pllnage* dst, IplFilter
filter=lPL_GAUSSI AN 5x5);

src Pointer to the source image.
dst Pointer to the destination image.
filter Type of the filter used for convolution; only | PL_GAUSSI AN_5x5 is

currently supported.

Discussion

The function cvPyr Down performs downsampling step of Gaussian pyramid
decomposition. First it convolves source image with the specified filter and then
downsamples the image by rejecting even rows and columns. So the destination image
is four times smaller than the source image.

cvPyrUp

Upsamples image.

void cvPyrUp(lpllmage* src, Ipllmage* dst, IplFilter filter=lPL_GAUSSI AN 5x5);

src Pointer to the source image.
dst Pointer to the destination image.
filter Type of the filter used for convolution; only | PL_GAUSSI AN_5x5 is

currently supported.

intel. 76

OpenCV Reference Manual Pyramids 7

Discussion

The function cvPyr Up performs upsampling step of Gaussian pyramid
decomposition. First it upsamples the source image by injecting even zero rows and
columns and then convolves result with the specified filter multiplied by 4 for
interpolation. So the destination image is four times larger than the source image.

cvPyrSegmentation

Implements image segmentation by pyramids.

voi d cvPyr Segnent ati on(I pl I mage* srclmage, |pllnage* dstlnmage, CvMenttorage*
storage, CvSeq** conp, int |evel, double threshol dl, double threshol d2);

srcl mage Pointer to the input image data.

dst | mage Pointer to the output segmented data.

st or age Storage; stores the resulting sequence of connected components.
conp Pointer to the output sequence of the segmented components.

| evel Maximum level of the pyramid for the segmentation.

t hreshol d1 Error threshold for establishing the links.

t hreshol d2 Error threshold for the segments clustering.

Discussion

The function cvPyr Segnent ati on implements image segmentation by pyramids. The
pyramid builds up to the level | evel . The links between any pixel a on level i and its
candidate father pixel b on the adjacent level are established if

p(c(a),c(b))<t hreshol d1. After the connected components are defined, they are
joined into several clusters. Any two segments A and B belong to the same cluster, if
p(c(A),c(B)) <t hreshol d2. The input image has only one channel, then

p(ctc? = lcl-c?. If the input image has three channels (red, green and blue), then
p(ct,c? =03 [(c,1 —c,z) +0,59 [(c; —cS) +0,11 E(cé —cﬁ) . There may be more than one
connected component per a cluster.

7-7

OpenCV Reference Manual Pyramids 7

Input sr cl mage and output dst | mage should have the identical | PL_DEPTH_8U depth
and identical number of channels (1 or 3).

Morphology

This chapter describes an expanded set of morphological operators that can be used for
noise filtering, merging or splitting image regions, as well as for region boundary
detection.

Overview

Mathematical Morphology is a set-theory method of image analysis first developed by
Matheron and Serra at the Ecole des Mines, Paris [Serra82]. The two basic
morphological operations are erosion, or thinning, and dilation, or thickening. All
operations involve an image A, called the object of interest, and a kernel element B,
called the structuring element. The image and structuring element could be in any
number of dimensions, but the most common use is with a 2D binary image, or with a
3D gray scale image. The element B is most often a square or a circle, but could be any
shape. Just like in convolution, B is a kernel or template with an anchor point.

Figure 8-1 shows dilation and erosion of object A by B. The element B is rectangular
with an anchor point at upper left shown as a dark square.

8-1

OpenCV Reference Manual Morphology 8

Figure 8-1 Dilation and Erosion of A by B.

Dilation by B

Erosion by B

N

If B, is the translation of B around the image, then dilation of object A by structuring
element B is

ADB = {t:B nAZ0}.

It means every pixel is in the set, if the intersection is not null. That is, a pixel under
the anchor point of B is marked “on”, if at least one pixel of B is inside of A.

A0 nB indicates the dilation is done n times.

Erosion of object A by structuring element B is

AGB = {t:B, OA .

That is, a pixel under the anchor of B is marked “on”, if B is entirely within A.

AonB indicates the erosion is done n times and can be useful in finding oA, the
boundary of A:

0A = A—(AONB).
Opening of Aby B is
A°B = (AGnB) O nB. (8.1)

Closing of Aby Bis

8-2

OpenCV Reference Manual Morphology 8

A« B = (AONnB)ONB, (8.2)

where n > 0.

Flat Structuring Elements for Gray Scale

Erosion and dilation can be done in 3D, that is, with gray levels. 3D structuring
elements can be used, but the simplest and the best way is to use a flat structuring
element B as shown in Figure 8-2. In the figure, B has an anchor slightly to the right of
the center as shown by the dark mark on B. Figure 8-2 shows 1D cross-section of both
dilation and erosion of a gray level image A by a flat structuring element B.

OpenCV Reference Manual

Morphology 8

Figure 8-2 Dilation and Erosion of Gray Scale Image.

Dilation of A by B

Erosion of A by B

In Figure 8-2, dilation is mathematically
R
and erosion is

inf A
y OB

OpenCV Reference Manual Morphology 8

Open and Close Gray Level with Flat Structuring Element

The typical position of the anchor of the structuring element B for opening and closing
is in the center. Subsequent opening and closing could be done in the same manner as
in the Opening (8.1) and Closing (8.2) equations above to smooth off jagged objects as
opening tends to cut off peaks and closing tends to fill in valleys.

Morphological Gradient Function

A morphological gradient may be taken with the flat gray scale structuring elements as
follows:
(ADB| ar) ~(AOBy 41)

5 .

Top Hat and Black Hat

grad(A) =

Top Hat (TH) is a function that isolates bumps and ridges from gray scale objects. In
other words, it can detect areas that are lighter than the surrounding neighborhood of A
and smaller compared to the structuring element. The function subtracts the opened
version of A from the gray scale object A:

THg(A) = A—(A°nB;, 5;) -

Black Hat (THY) is the dual function of Top Hat in that it isolates valleys and “cracks
off” ridges of a gray scale object A, that is, the function detects dark and thin areas by
subtracting A from the closed image A:

d
THg(A) = (A nB; 54)—A.

Thresholding often follows both Top Hat and Black Hat operations.

8-5

OpenCV Reference Manual

Morphology 8

Reference

cvCreateStructuringElementEx

Creates structuring element.

| pl ConvKernel * cvCreateStructuringEl ement Ex(int nCols, int nRows, int anchorX,

i nt anchor,

nCol s
nRows
anchor X
anchorY

shape

val ues

Discussion

CvEl enent Shape shape, int* values);

Number of columns in the structuring element.

Number of rows in the structuring element.

Relative horizontal offset of the anchor point.

Relative vertical offset of the anchor point.

Shape of the structuring element; may have the following values:
®* CV_SHAPE_RECT, a rectangular element;

®* CV_SHAPE_CRGCSS, a cross-shaped element;

®* CV_SHAPE_ELLI PSE, an elliptic element;

®* CV_SHAPE CUSTOM a user-defined element. In this case the
parameter val ues specifies the mask, that is, which neighbors of
the pixel must be considered.

Pointer to the structuring element data, a plane array, representing
row-by-row scanning of the element matrix. Non-zero values
indicate points that belong to the element. If the pointer is NULL, then
all values are considered non-zero, that is, the element is of a
rectangular shape. This parameter is considered only if the shape is
CV_SHAPE_CUSTOM

The function cvCreat eStructuringEl enent Ex allocates and fills the structure
I pl ConvKer nel , which can be used as a structuring element in the morphological

operations.

OpenCV Reference Manual Morphology 8

cvReleaseStructuringElement

Deletes structuring element.

voi d cvRel easeStructuri ngEl enent (I pl ConvKer nel ** ppEl enent) ;

ppEl ement Pointer to the deleted structuring element.

Discussion

The function cvRel easeSt ruct uri ngEl enent releases the structure | pl ConvKer nel
that is no longer needed. If * ppEl enent is NULL, the function has no effect. The
function returns created structuring element.

cvErode

Ervodes image by using arbitrary structuring
element.

voi d cvErode(|Ipllmage* src, |pllmage* dst, |plConvKernel* B, int iterations);

src Source image.

dst Destination image.

B Structuring element used for erosion. If NULL, a 3x3 rectangular
structuring element is used.

iterations Number of times erosion is applied.

Discussion

The function cvErode erodes the source image. The function takes the pointer to the
structuring element, consisting of “zeros” and “minus ones”; the minus ones determine
neighbors of each pixel from which the minimum is taken and put to the corresponding
destination pixel. The function supports the in-place mode when the source and

OpenCV Reference Manual Morphology 8

destination pointers are the same. Erosion can be applied several times (i t er ati ons
parameter). Erosion on a color image means independent transformation of all
channels.

cvDilate

Dilates image by using arbitrary structuring
element.

void cvDilate(Ipllnmage* pSrc, Ipllmge* pDst, |plConvKernel* B, int

iterations);
pSrc Source image.
pDst Destination image.
B Structuring element used for dilation. If NULL, a 3x3 rectangular
structuring element is used.
iterations Number of times dilation is applied.
Discussion

The function cvDil at e performs dilation of the source image. It takes pointer to the
structuring element that consists of “zeros” and “minus ones”; the minus ones
determine neighbors of each pixel from which the maximum is taken and put to the
corresponding destination pixel. Function supports in-place mode. Dilation can be
applied several times (i t er at i ons parameter). Dilation of color image means
independent transformation of all channels.

OpenCV Reference Manual

Morphology 8

cvMorphologyEx

Performs advanced morphological

transformations.

voi d cvMor phol ogyEx(| pl I nage* src, |pllnmage* dst, |pllnmge* tenp,
| pl ConvKernel * B, CvMorphQp op, int iterations);

src Source image.

dst Destination image.

tenp Temporary image, required in some cases.
B Structuring element.

op Type of morphological operation:

CV_MOP_OPEN, opening;

CV_MOP_CLOSE, closing;

CV_MOP_GRADI ENT, morphological gradient;
CV_MOP_TOPHAT, top hat;
CV_MOP_BLACKHAT, black hat.

(See Overview for description of these operations).

iterations Number of times erosion and dilation are applied during the complex
operation.

Discussion

The function cvMor phol ogyEx performs advanced morphological transformations.

The function uses cvEr ode and cvDi | at e to perform more complex operations. The
parameter t enp must be non-NULL and point to the image of the same size and same

format as sr ¢ and dst when op is CV_MOP_GRADI ENT, or when op is CV_MOP_TOPHAT or
op is CV_MOP_BLACKHAT and sr ¢ is equal to dst (in-place operation).

OpenCV Reference Manual Morphology 8

inte|® 8-10

Background Subtraction

The chapter describes basic functions that enable building statistical model of
background for its further subtraction.

Overview

In this chapter the term "background" stands for a set of motionless image pixels, that
is, pixels that do not belong to any object, moving in front of the camera. This
definition can vary if considered in other techniques of object extraction. For example,
if a depth map of the scene is obtained, background can be determined as parts of scene
that are located far enough from the camera.

The simplest background model assumes that every background pixel brightness
varies independently, according to normal distribution. The background characteristics
can be calculated by accumulating several dozens of frames, as well as their squares.
That means finding a sum of pixel values in the location S yy and a sum of squares of
the values Sq(,) for every pixel location.

Then mean is calculated as m,) = ﬁxﬁﬁ , where Nis the number of the frames
collected, and

standard deviation as o,) = sqrt(sﬂ’\j_-x) _(%xﬁﬁ)z) .

After that the pixel in certain pixel location in certain frame is regarded as belonging to
a moving object if condition abs(m, ,y —P(x y)) >C0(y) 18 met, where Cis a certain
constant. If Cis equal to 3, it is the well-known "three sigmas" rule. To obtain that
background model, one should put any objects away from camera for a few seconds,
so that a whole image from camera represents subsequent background observation.

9-1

OpenCV Reference Manual

Background Subtraction 9

There can be improvement of the simplest technique that was just described. First, it is
reasonable to provide adaptation of background differencing model to changes of
lighting conditions and background scenes, e.g., when camera moves or some object is
passing behind the front object. The simple accumulation in order to calculate mean
brightness can be replaced with running average. Also, several techniques can be used
to identify moving parts of the scene and exclude them in the course of background
information accumulation. The techniques include change detection, e.g., via
cvAbsDi ff with cvThr eshol d, optical flow and, probably, others.

The functions from the chapter are simply the basic functions for background
information accumulation and they can not make up the complete background
differencing module alone.

Reference

cv

Acc

Adds frame to accumulator.

voi d cvAcc(Ipllmage* inmg, |pllmge* sum |pllmge* mask=0);

i ng Input image.

sum Accumulating image.
mask Mask image.
Discussion

The function cvAcc adds a new image i ng to the accumulating sum sum If mask is
not NULL, it specifies what accumulator pixels are affected.

9-2

OpenCV Reference Manual Background Subtraction 9

cvSquareAcc

Calculates square of source image and adds it to
destination image.

voi d cvSquar eAcc(| pl I mage* ing, |pllmge* sqSum |pllmage* mask=0);

i ng Input image.

sqSum Accumulating image.
mask Mask image.
Discussion

The function cvSquar eAcc adds the square of the new image i ng to the accumulating
sum sqSumof image squares. If mask is not NULL, it specifies what accumulator pixels
are affected.

cvMultiplyAcc

Calculates product of two input images and adds
it to destination image.

void cvMul tiplyAcc(Ipllnmage* ingA, |pllnmage* ingB, |pllmge* acc, |pllnmage*
mask=0) ;

i ngA First input image.

i ngB Second input image.
acc Accumulating image.
mask Mask image.

OpenCV Reference Manual Background Subtraction 9

Discussion

The function cvMul ti pl yAcc multiplies inputi ngAby i ngB and adds the result to the
accumulating sum acc of the image products. If nask is not NULL, it specifies what
accumulator pixels are affected.

cvRunningAvg

Calculates weighted sum of two images.

voi d cvRunni ngAvg(| pl I mage* i nmgY, |pllmage* i ngyU, doubl e al pha,
I pl I mage* mask=0)

i mgY Input image.

i ngU Destination image.

al pha Weight of input image.
mask Mask image.
Discussion

The function cvRunni ngAvg calculates weighted sum of two images. Once a
statistical model is available, there is often a need to update the value slowly to account
for slowly changing lighting, etc. This can be done by using a simple adaptive filter:

B = ay+(1-a)p_q,

where p (i ngU) is the updated value, 0<a <1 is an averaging constant, typically set to
a small value such as 0.05, and y (i ngY) is a new observation at time t . When the
function is applied to a frame sequence, the result is called “the running average of the
sequence”.

If mask is not NULL, it specifies what accumulator pixels are affected.

9-4

Distance Transform

This chapter describes the distance transform functions group.

Overview

Distance transform is used for calculating the distance to an object. The input is an
image with feature and non-feature pixels. The function labels every non-feature pixel
in the output image with a distance to the closest feature pixel. Feature pixels are
marked with zero. Distance transform is used for a wide variety of subjects including
skeleton finding and shape analysis. The [Borgefors86] two-pass algorithm is
implemented.

Reference

cvDistTransform

Calculates distance to closest zero pixel for all
non-zero pixels of source image.

void cvDi st Transform (|pllmage* src, |pllmge* dst, CvDi sType disType,
CvDi sMaskType maskType, float* mask);

src Source image.
dst Output image with calculated distances.
di sType Type of distance; can be Cv_DI ST_L1, CV_DI ST_L2, CV_DI ST_Cor

CV_DI ST_USER.

inte|® 10-1

OpenCV Reference Manual

Distance Transform 1 O

maskType Size of distance transform mask; can be CV_DI ST_MASK_3x3 or
CV_DI ST_MASK_5x5.

mask Pointer to the user-defined mask used with the distance type
CV_DI ST_USER.

Discussion

The function cvDi st Tr ansf or m approximates the actual distance from the closest

zero pixel with a sum of fixed distance values: two for 3x3 mask and three for 5x5
mask. Figure 10-1 shows the result of the distance transform of a 7x7 image with a

zero central pixel.

Figure 10-1 3x3 Mask

45 | 4 35335 |4 4.5
4 3 25121253 4
35(25|15|1|15|25 |35
3 2 1 0|1 2 3
35(25|15|1|15|25 |35
4 3 25121253 4
45 | 4 35335 |4 4.5

This example corresponds to a 3x3 mask; in case of user-defined distance type the user
sets the distance between two pixels, that share the edge, and the distance between the
pixels, that share the corner only. For this case the values are 1 and 1.5
correspondingly. Figure 10-2 shows the distance transform for the same image, but for
a 5x5 mask. For the 5x5 mask the user sets the additional distance that is the distance

10-2

OpenCV Reference Manual Distance Transform 1 O

between pixels corresponding to the chess knight move. In this example the additional
distance is equal to 2. For Cv_DI ST_L1, CV_DI ST_L2, and CV_DI ST_C the optimal
precalculated distance values are used.

Figure 10-2 5x5 Mask

451353 |3|3 |35|4
35/3 |2 |22 |3 |35
3 |2 |15]1/15]|2 |3
3 |2 |1 |01 |2 |3
3 |2 |15]1/15]|2 |3
35(3 (2 (2|2 |3 |35
4 |35|3 |33 |35|4

i ntel ® 10-3

OpenCV Reference Manual Distance Transform 1 O

i ntel ® 10-4

Threshold Functions

This chapter describes threshold functions group.

Overview

Thresholding functions are used mainly for two purposes:

— masking out some pixels that do not belong to a certain range, for example, to
extract blobs of certain brightness or color from the image;

— converting grayscale image to bi-level or black-and-white image.
Usually, the resultant image is used as a mask or as a source for extracting higher-level

topological information, e.g., contours (see Active Contours), skeletons (see Distance
Transform), lines (see Hough Transform functions), etc.

Generally, threshold is a determined function t (x, y) on the image:

txy) = { A(P(x,¥)).f(x,y,P(x,y)) = true

’ B(P(x,)), f(x,y,p(x,y)) = fal se
The predicate function f (x, y, p(x, y)) is typically represented as g(x,y) < p(x,y)
< h(x,y),where g and h are some functions of pixel value and in most cases they are
simply constants.

There are two basic types of thresholding operations. The first type uses a predicate
function, independent from location, that is, g(x, y) and h(x, y) are constants over the
image. However, for concrete image some optimal, in a sense, values for the constants
can be calculated using image histograms (see Histogram) or other statistical criteria

11-1

OpenCV Reference Manual

Threshold Functions 1 1

(see Image Statistics). The second type of the functions chooses g(x, y) and
h(x, y) depending on the pixel neigborhood in order to extract regions of varying
brightness and contrast.

The functions, described in this chapter, implement both these approaches. They
support single-channel images with depth | PL_DEPTH_8U, | PL_DEPTH_8S or
| PL_DEPTH_32F and can work in-place.

Reference

cvAdaptiveThreshold

Provides adaptive thresholding binary image.

voi d cvAdaptiveThreshol d(Ipllnage* src, Ipllnmage* dst, double max,
CvAdapti veThr eshiet hod net hod, CvThreshType type, doubl e* paraneters);

src
dst

max

net hod

type

par aneters

Source image.
Destination image.

Max parameter, used with the types CV_THRESH_BI NARY and
CV_THRESH_BI NARY_I NV only.

Method for the adaptive threshold definition; now
CV_STDDEF_ADAPTI VE_THRESH only.

Thresholding type; must be one of

® CV_THRESH_ BI NARY, val = (val >Thresh?MAX:0);

¢ CV_THRESH BI NARY_I NV, val = (val >Thresh?0:MAX);
¢ CV_THRESH TOZERG, val = (val >Thresh?val :0);

¢ CV_THRESH TOZERO_I NV, val = (val >Thresh?0:val).

Pointer to the list of method-specific input parameters. For the
method CV_STDDEF_ADAPTI VE_THRESH the value par anet er s[0] is
the size of the neighborhood: 1- (3x3), 2- (5x5), or 3- (7x7), and
par anet er s[1] 1S the value of the minimum variance.

11-2

OpenCV Reference Manual Threshold Functions 1 1

Discussion

The function cvAdapti veThreshol d calculates the adaptive threshold for every input
image pixel and segments image. The algorithm is as follows.

Let {f;;},1<i <I,1<j <J be the input image. For every pixel i ,j the mean m; and

variance v, ; are calculated as follows:

p p p P
My =1200% 3 fiagjees Vi) V2005 Y [fiagj—myl,
s =-—pt =—p S =—pt =-p
where p xp is the neighborhood.
Local threshold for pixel i ,j is.t.ij =mj vy forv;; >v,,and t;; =t;; ; for
Vij SV, where v, is the minimum variance value. If j = 1,thent;; =t; ,,,
ty =ty ,»wherev; ; >vyand vy <vy;, for (i <ig)O((i =1i0)0G <io))-

Output segmented image is calculated as in the function cvThreshol d.

cvThreshold
Thresholds binary image.

void cvThreshol d(IplInage* src, |Ipllmage* dst, float thresh, float maxval ue,
CvThreshType type);

src Source image.

dst Destination image; can be the same as the parameter src.
t hresh Threshold parameter.

maxval ue Maximum value; parameter, used with threshold types

CV_THRESH_BI NARY, CV_THRESH_BI NARY_I NV, and
CV_THRESH_TRUNC.

type Thresholding type; must be one of
® CV_THRESH BI NARY, val = (val >t hresh maxval ue:0);

inte|® 11-3

OpenCV Reference Manual Threshold Functions 1 1

® CV_THRESH BI NARY_I NV, val = (val >thresh 0: maxval ue);
®* CV_THRESH TRUNC, val = (val >t hresh?t hresh: maxval ue);
® CV_THRESH TOZERO, val = (val >t hresh val :0);

® CV_THRESH TOZERO I NV, val = (val >thresh O:val).

Discussion

The function cvThreshol d applies fixed-level thresholding to grayscale image. The
result is either a grayscale image or a bi-level image. The former variant is typically
used to remove noise from the image, while the latter one is used to represent a
grayscale image as composition of connected components and after that build contours
on the components via the function cvFi ndCont our s. Figure 11-1 illustrates meanings
of different threshold types:

11-4

OpenCV Reference Manual Threshold Functions 1 1

Figure 11-1 Meanings of Threshold Types

% ;:;;;--“m“m“m"“"“ Value and Threshold Level
! ~ :
Threshold Binary
I Threshold Binary, Inverted
I \\\ Truncate
i \ '

\ Threshald to Zero, Inverted

Threshald to Zera

inte|® 11-5

OpenCV Reference Manual Threshold Functions 1 1

inte|® 11-6

Flood Fill

This chapter describes the function performing flood filling of a connected domain.

Overview

Flood filling means that a group of connected pixels with close values is filled with, or
is set to, a certain value. The flood filling process starts with some point, called “seed”,
that is specified by function caller and then it propagates until it reaches the image RO
boundary or cannot find any new pixels to fill due to a large difference in pixel values.
For every pixel that is just filled the function analyses:

* 4 neighbors, that is, excluding the diagonal neighbors; this kind of connectivity is
called 4-connectivity, or

* 8 neighbors, that is, including the diagonal neighbors; this kind of connectivity is
called 8-connectivity.

The parameter connect i vi ty of the function specifies the type of connectivity.
The function can be used for:

* segmenting a grayscale image into a set of uni-color areas,

* marking each connected component with individual color for bi-level images.

The function supports single-channel images with the depth | PL_DEPTH_8U or
| PL_DEPTH_32F.

12-1

OpenCV Reference Manual

Flood Fill 1 2

Reference

cvFloodFill
Makes flood filling of image connected domain.

voi d cvFl oodFil | (
| oDi ff,

i ng
seedPoi nt
newval

| oDi ff

upDi f f

conp

connectivity

Discussion

I pl Il mage* ing, CvPoint seedPoint, double newal, double
doubl e upDi ff, CvConnectedConp* conp, int connectivity=4);

Input image; repainted by the function.
Coordinates of the seed point inside the image ROI.
New value of repainted domain pixels.

Maximal lower difference between the values of pixel belonging to
the repainted domain and one of the neighboring pixels to identify
the latter as belonging to the same domain.

Maximal upper difference between the values of pixel belonging to
the repainted domain and one of the neighboring pixels to identify
the latter as belonging to the same domain.

Pointer to structure the function fills with the information about the
repainted domain.

Type of connectivity used within the function. If it is 4, which is
default value, the function tries out four neighbors of the current
pixel, otherwise the function tries out all the 8 neighbors.

The function cvFl oodFi I | fills the seed pixel neighbrhoods inside which all pixel
values are close to each other. The pixel is considered to belong to the repainted
domain if its value v meets the following conditions:

vo—dlwsvsv0+dup,

12-2

OpenCV Reference Manual Flood Fill 1 2

where v, is the value of at least one of the current pixel neighbors, which already
belongs to the repainted domain. The function checks 4-connected neighbrhoods of
each pixel, that is, its side neighbors.

inte|® 12-3

OpenCV Reference Manual Flood Fill 1 2

inte|® 12-4

Camera Calibration

This chapter describes camera calibration and undistortion functions.

Overview

Camera Parameters

Camera calibration functions are used for calculating intrinsic and extrinsic camera
parameters.

Camera parameters are the numbers describing a particular camera configuration. The
intrinsic camera parameters are those that specify the camera characteristics proper;
these parameters include the focal length, that is, the distance between the camera lens
and the image plane, the location of the image center in pixel coordinates, the effective
pixel size, and the radial distortion coefficient of the lens. The extrinsic camera
parameters describe the spatial relationship between the camera and the world; they
are the rotation matrix and translation vector specifying the transformation between
the camera and world reference frames.

A camera is modeled by the usual pinhole: the relationship between a 3D point M and
its image projection m is given by the formula
m = A[Rt M,

where A is the camera intrinsic matrix:

f,0c
A=10 f
0

X

b

y Cy
01

where (c,, c,) are coordinates of the principal point;

13-1

OpenCV Reference Manual Camera Calibration 1 3

(fy fy) are the focal lengths by the axes x and y;

(R t) are extrinsic parameters, the rotation matrix R and translate vector t that relates
the world coordinate system to the camera coordinate system:

STRETEET ty
R=ryrppragst = |ty
FaiMaplaz ts

Camera usually exhibits significant lens distortion, especially radial distortion. The
distortion has 4 coefficients: k, ko, k3, Kg4.

Use the function cvUnDi stortl nit to correct the camera lens distortion (see
Figure 13-2).

The following algorithm was used for camera calibration:

1. Find homography for all points on series of images.
2. Initialize intrinsic parameters; distortion is set to 0.

3. Find extrinsic parameters for each image of pattern.
4

Make main optimization by minimizing error of projection points with all
parameters.

Homography
hll h12 h13

H = |hy h,, h,, is the matrix of homography.
ha Mg gy

Without any loss of generality, the model plane may be assumed to be on z = 0 of the
world coordinate system. If r, denotes the i # column of the rotation matrix R, then:

X
u v X
Sly| = Alrqrorgt] = O:A[rlrzt]y.
I 1
1

inte|® 13-2

OpenCV Reference Manual Camera Calibration 1 3

By abuse of notation, M is still used to denote a point on the model plane, but
M= [X VY], since Z is always equal to 0. In its turn, M = [X, Y, 1]". Therefore, a model
point Mand its image mare related by the homography H:

sm=HM with H=Alr r, t].

As is clear, the 3x3 matrix H is defined without specifying a scalar factor.

Pattern

Calibration may be made using pattern (see Figure 13-1). Pattern has black and white
squares on white background. The geometry of pattern must be known. The pattern
may be printed using a high-quality printer and put on a glass substrate.

Figure 13-1 Pattern

Lens Distortion

Any camera usually exhibits significant lens distortion, especially radial distortion.
The distortion is described by 4 coefficients: two radial distortion coefficients k4, ko,
and two tangential ones p4, p».

Let (u,v) be true pixel image coordinates, that is, coordinates with ideal projection,
and (4,v) be corresponding real observed (distorted) image coordinates. Similarly,
(x,y) are ideal (distortion-free) and (x,y) are real (distorted) image physical
coordinates. Taking into account two expansion terms gives the following:

13-3

OpenCV Reference Manual

Camera Calibration 1 3

= x +x[kyr 4 Kor 4] +[2p Xy +py(r 24 2x2)]

X

2 2
=y+y[kyr +k2r4]+[2p2xy+p2(r2+2y),

<

where r2 = x2 + y2, Second addends in the above relations describe radial distortion
and the third ones - tangential. The center of the radial distortion is the same as the
principal point. If U = uy+oax and v = v, +By, where c,, cy, f , and f |, are components

of the camera intrinsic matrix, then:

2
u=u+(u —cx)[klr Zak,rt+2py + pz(r; + 2X):|

2
- 2 4 r
= v+(v—cy)[k1r +Kor 7+ 2p,X +p1(7+2y)}

<1

The latter relations are the basic ones for the group of undistortion functions.

This group consists of three functions: cvUnDi st ort Once, cvUnDi stortlnit,and
cvunDi st ort . If only a single image is required to be corrected, cvUnDi st ort Once
function may be used. When dealing with a number of images possessing similar
parameters, e.g., a sequence of video frames, it is better to use the other two functions.
In this case the following sequence of actions must take place. First allocate dat a array
in the main function; length of this array must be N or 3N elements, where N = N, [N,
— full number of pixels (see Discussion after cvUnDi stort | nit description). Then
call the function cvUnDi st ort I ni t that fills the dat a array. After that call the

cvunDi stort | nit function for each frame inside the cycle.

tel ® 13-4

OpenCV Reference Manual Camera Calibration 1 3

Figure 13-2 Correcting Lens Distortion

Image with Lens Distortion Image with Corrected Lens Distortion

Rotation Matrix and Rotation Vector

Rodrigues conversion function cvRodri gues is a method to convert rotation vector to
rotation matrix or vice versa.

Reference

cvCalibrateCamera

Calibrates camera with single precision.

voi d cvCalibrateCanmera(int num mages, int* nunPoints, CvSize inmgeSi ze,
CvPoi nt 2D32f * i nagePoi nt s32f, CvPoi nt 3D32f * obj ect Poi nt s32f, CvVect 32f
di stortion32f, CvMatr32f caneraMatrix32f, CvVect32f transVect s32f,
Cviatr32f rotMatrs32f, int uselntrinsicGuess);

num mages Number of images.
nunPoi nt s Array of the number of points in each image.
i mageSi ze Size of image.

inte|® 13-5

OpenCV Reference Manual

Camera Calibration 1 3

i magePoi nt s32f
obj ect Poi nt s32f
di stortion32f
caner aMat r i x32f

t ransVect s32f

r ot Mat r s32f

usel ntrinsi cGQuess

Discussion

Pointer to the images.
Pointer to the pattern.
Array of four distortion coefficients found.
Camera matrix found.

Array of translate vectors for each pattern position in the
image.

Array of the rotation matrix for each pattern position in the
image.

Intrinsic guess. If equal to 1, intrinsic guess is needed.

The function cvCal i br at eCamer a calculates the camera parameters using

information points on the pattern object and pattern object images.

cvCalibrateCamera_64d

Calibrates camera with double precision.

void cvCalibrateCanera_64d(int num mages, int* nunPoints, CvSize inmageSize,
CvPoi nt 2D64d* i magePoi nts, CvPoi nt 3D64d* obj ect Poi nts, CvVect 64d

di stortion,
rot Matrs,

nun mages
nunPoi nt s

i mageSi ze

i magePoi nt s
obj ect Poi nts
di stortion

caneraMatri x

Cvivat r 64d caneraMatri x, CvVect64d transVects, CvMatr64d
i nt uselntrinsicGuess);

Number of images.

Array of the number of points in each image.
Size of the image.

Pointer to the images.

Pointer to the pattern.

Distortion coefficients found.

Camera matrix found.

13-6

OpenCV Reference Manual

Camera Calibration 1 3

transVects

rotMatrs

usel ntrinsi cGuess

Discussion

Array of translate vectors for each pattern position on the
image.

Array of the rotation matrix for each pattern position on the
image.

Intrinsic guess. If equal to 1, intrinsic guess is needed.

The function cvCali br at eCaner a_64d is basically the same as the function

cvCal i br at eCaner a, but uses double precision.

cvFindExtrinsicCameraParams

Finds extrinsic camera parameters for pattern.

voi d cvFi ndExt rinsi cCaneraParans(int numPoints, CvSize imgeSi ze,
CvPoi nt 2D32f * i magePoi nt s32f, CvPoi nt 3D32f * obj ect Poi nt s32f, CvVect 32f
focal Lengt h32f, CvPoi nt 2D32f pri nci pal Poi nt 32f, CvVect 32f di storti on32f,

CvVect 32f rot Vect 32f,
NurPoi nt s
I mageSi ze
i magePoi nt s32f
obj ect Poi nt s32f
f ocal Lengt h32f
pri nci pal Poi nt 32f
di stortion32f
r ot Vect 32f
t ransVect 32f

CvVect 32f transVect 32f);
Number of points.
Size of image.
Pointer to the image.
Pointer to the pattern.
Focal length.
Principal point.
Distortion.
Rotation vector.

Translate vector.

13-7

OpenCV Reference Manual Camera Calibration 1 3

Discussion

The function cvFi ndExtri nsi cCaner aPar ans finds the extrinsic parameters for
pattern.

cvFindExtrinsicCameraParams_64d

Finds extrinsic camera parameters for pattern
with double precision.

voi d cvFi ndExt rinsi cCanmer aParans_64d(int numPoi nts, CvSize imgeSi ze,
CvPoi nt 2D64d* i magePoi nts, CvPoi nt 3D64d* obj ect Poi nts, CvVect 64d
focal Lengt h, CvPoi nt 2D64d pri nci pal Poi nt, CvVect64d distortion, CvVect64d
rot Vect, CvVect64d transVect);

NunPoi nt s Number of points.

I rageSi ze Size of image.

i magePoi nt s Pointer to the image.
obj ect Poi nt s Pointer to the pattern.
focal Lengt h Focal length.

pri nci pal Poi nt Principal point.
distortion Distortion.

r ot Vect Rotation vector.
transVect Translate vector.
Discussion

The function cvFi ndExt ri nsi cCaner aPar ans_64d finds the extrinsic parameters for
pattern with double precision.

i ntel ® 13-8

OpenCV Reference Manual Camera Calibration 1 3

cvRodrigues

Converts rotation matrix to rotation vector and
vice versa with single precision.

voi d cvRodri gues(CvMatr32f rotMatr32f, CvVect32f rotVect32f, CviMatr32f
Jacobi an32f, CvRodriguesType convType);

r ot Mat r 32f Rotation matrix.
r ot Vect 32f Rotation vector.
Jacobi an32f Jacobian matrix 3 X 9.

ConvType Type of conversion; must be CV_RODRI GUES_MV for converting the
matrix to the vector or CV_RODRI GUES_V2Mfor converting the vector
to the matrix.

Discussion

The function cvRodri gues converts the rotation matrix to the rotation vector or vice
versa.

cvRodrigues_64d

Converts rotation matrix to rotation vector and
vice versa with double precision.

void cvRodri gues_64d(CvMatr64d rotMatr, CvVect64d rotVect, CvMatr64d
Jacobi an, CvRodri guesType convType);

rot Mat r Rotation matrix.
r ot Vect Rotation vector.
Jacobi an Jacobian matrix 3 X 9.

inte|® 13-9

OpenCV Reference Manual Camera Calibration 1 3

ConvType Type of conversion must be CV_RODRI GUES_MV for converting the
matrix to the vector or CV_RODRI GUES_V2Mfor converting the vector
to the matrix.

Discussion

The function cvRodri gues 64d converts the rotation matrix to the rotation vector or
vice versa with double precision.

cvUnDistortOnce

Corrects camera lens distortion.

void cvUnDi stortOnce (|pllmage* srclmage, |pllnmage* dstlnmage, float*
intrMatrix, float* distCoeffs, int interpolate=1);

srcl mage Source (distorted) image.
dst | mage Destination (corrected) image.
intrMatrix Matrix of the camera intrinsic parameters.

di st Coeffs Vector of the 4 distortion coefficients k;, k,, p;andp,.

interpolate Interpolation toggle (optional).

Discussion

The function cvUnDi st ort Once corrects camera lens distortion using known matrix
of the camera intrinsic parameters and distortion coefficients. It is used if a single
image is to be corrected.

Preliminarily, the function cvCal i br at eCanera calculates matrix of the camera
intrinsic parameters and distortion coefficients k4, k,, p; andp, .

Ifi nt er pol at e = 0, inter-pixel interpolation is disabled; otherwise default bilinear
interpolation is used.

13-10

OpenCV Reference Manual Camera Calibration 1 3

cvUnDistortlnit

Calculates arrays of distorted points indices and
interpolation coefficients.

void cvUnDistortlinit (Ipllmage* srclnage, float* IntrMatrix, float*
di st Coeffs, int* data, int interpolate=1);

srcl mage Source (distorted) image.

intrMatrix Matrix of the camera intrinsic parameters.

di st Coeffs Vector of the 4 distortion coefficients k;, k,, p;andp,.
data Distortion data array.

interpolate Interpolation toggle (optional).

Discussion

The function cvUnDi stortlnit calculates arrays of distorted points indices and
interpolation coefficients using known matrix of the camera intrinsic parameters and
distortion coefficients. It must be used before calling the function cvUnDi stort.

Preliminarily, the function cvCal i br at eCaner a calculates matrix of the camera
intrinsic parameters and distortion coefficients k4, k,, p; andp, .

The dat a array must be allocated in the main function before use of the function
cvUnDi stortlnit.Ifinterpol ate =0, its length must be si ze. wi dt h*si ze. hei ght
elements; otherwise 3*si ze. wi dt h*si ze. hei ght elements.

Ifi nt er pol at e = 0, inter-pixel interpolation is disabled; otherwise default bilinear
interpolation is used.

intGIqa 13-11

OpenCV Reference Manual Camera Calibration 1 3

cvUnDistort

Corrects camera lens distortion.

void cvUnDi stort (Ipllnmage* srclnmage, |pllnage* dstlmge, int* data, int
i nterpolate=1);

srcl mage Source (distorted) image.
dst | mage Destination (corrected) image.
data Distortion data array.

interpolate Interpolation toggle (optional).

Discussion

The function cvUnDi st ort corrects camera lens distortion using previously
calculated arrays of distorted points indices and undistortion coefficients. It is used if a
sequence of frames must be corrected.

Preliminarily, the function cvUnDi stortlnit calculates the array dat a .

Ifinterpol ate = 0, then inter-pixel interpolation is disabled; otherwise bilinear
interpolation is used. In the latter case the function acts slower, but quality of the
corrected image increases.

cvFindChessBoardCornerGuesses

Finds approximate positions of internal corners
of the chessboard.

i nt cvFi ndChessBoar dCor ner Guesses(| pl I mage* i ng, |pllmage* thresh, CvSi ze
et al onSi ze, CvPoi nt 2D32f* corners, int *cornerCount);

i ny Source chessboard view; must have depth of | PL_DEPTH_8U.

t hresh Temporary image of the same size and format as the source image.

intel® 13-12

OpenCV Reference Manual

Camera Calibration 1 3

et al onSi ze

corners

cor ner Count

Discussion

Number of inner corners per chessboard row and column. Width
(number of columns) must be less or equal to height (number of
rows). For chessboard see Figure 13-1.

Pointer to the corner array found.

Signed value whose absolute value is a number of corners found. A
positive number means that a whole chessboard has been found and a
negative number means that not all the corners have been found.

The function cvFi ndChessBoar dCor ner Guesses attempts to determine whether the
input image is a chessboard pattern and locate internal chessboard corners. The
function returns non-zero value if all the corners have been found and they have been
placed in a certain order (row by row, left to right in every row), otherwise, if the
function fails to find all corners or reorder them, the function returns 0. For example, a
simple chessboard has 8x8 squares and 7x7 internal corners, that is, points, where the
squares are tangent. The word “approximate” in the above description means that the
corner coordinates found may differ from the actual coordinates by a couple of pixels.
To get more precise coordinates, the user may use the function cvFi ndCor ner SubPi x.

13-13

OpenCV Reference Manual Camera Calibration 1 3

intel® 13-14

View Morphing

This chapter describes functions for morphing views from two cameras.

Overview

The View Morphing technique is used to get image from a virtual camera that can be
placed between two real cameras. The input for View Morphing algorithms are two
images from real cameras and information about correspondence between regions in
the two images. The output of the algorithms is a synthesized image - "view from
virtual camera".

This section addresses the problem of synthesizing images of real scenes under
three-dimensional transformation in viewpoint and appearance. Solving this problem
enables interactive viewing of remote scenes on a computer, in which a user can move
the virtual camera through the environment. The point to make here is that a
three-dimensional scene transformation can be rendered on a video display device by
applying simple transformation to a set of basis images of the scene. The virtue of
these transformations is that they operate directly on the image and recover only the
scene information that is required to accomplish the desired effect. Consequently, the
transformations are applicable in a situation when accurate three-dimensional models
are difficult or impossible to obtain.

A central topic is the problem of view synthesis, that is, rendering images of a real
scene from different camera viewpoints by processing a set of basis images.

Algorithm
1. Find fundamental matrix, for example, using correspondence points in images.
2. Find scanlines for each image.

3. Warp images across scanlines.

In

tel.

14-1

OpenCV Reference Manual View Morphing

14

Find correspondence of warped images.
Morph warped images across position of virtual camera.

Unwarp image.

NS » s

Delete moire from resulting image.

Figure 14-1 Original Images

Original Image from Left Camera Original Image from Right Camera

Figure 14-2 Correspondence Points

1Ly
. FOAL

Correspondence Points on Left Image Correspondence Points on Right Image

inte|® 14-2

OpenCV Reference Manual View Morphing 1 4

Figure 14-3 Scan Lines

Some Scanlines on Left limage Some Scanlines on Right Image

Figure 14-4 Moire in Morphed Image

i ntel @ 14-3

OpenCV Reference Manual View Morphing 1 4

Figure 14-5 Resulting Morphed Image

Morphed Image from Virtual Camera with Deleted Moire.

Using Functions for View Morphing Algorithm

1.

Find the fundamental matrix using the correspondence points in the two
images of cameras by calling the function cvFi ndFundanent al Matri x.

Find the number of scanlines in the images for the given fundamental matrix
by calling the function cvFi ndFundanent al Mat ri x with null pointers to the
scanlines.

Allocate enough memory for:

scanlines in the first image, scanlines in the second image, scanlines in the
virtual image (for each nunscan*2* 4*si zeof (i nt));

lengths of scanlines in the first image, lengths of scanlines in the second
image, lengths of scanlines in the virtual image (for each
nunscan* 2*4*si zeof (int));

buffer for the prewarp first image, the second image, the virtual image (for
each wi dt h*hei ght *2*si zeof (i nt));

data runs for the first image and the second image (for each

wi dt h* hei ght *4*si zeof (i nt));

correspondence data for the first image and the second image (for each

wi dt h* hei ght *2*si zeof (i nt));

14-4

OpenCV Reference Manual View Morphing 1 4

— numbers of lines for the first and second images (for each
wi dt h* hei ght *4*si zeof (i nt)).

4. Find scanlines coordinates by calling the function
cvFi ndFundanent al Matri x.

5. Prewarp the first and second images using scanlines data by calling the
function cvPreWar pl nage.

6. Find runs on the first and second images scanlines by calling the function
cvFi ndRuns.

7. Find correspondence information by calling the function
cvDynam cCorrespondMul tii .

8. Find coordinates of scanlines in the virtual image for the virtual camera
position al pha by calling the function cvMakeAl phaScanl i nes.

9. Morph the prewarp virtual image from the first and second images using
correspondence information by calling the function cvMor phEpi | i nesMul ti .

10. Postwarp the virtual image by calling the function cvPost War pl nage.

11. Delete moire from the resulting virtual image by calling the function
cvDel et eMbi re.

Reference

cvFindFundamentalMatrix

Finds fundamental matrix from correspondence
pair points in two images.

voi d cvFi ndFundanental Matrix(int* pointsl, int* points2, int nunpoints, int
met hod, CvMatri x3* matrix);

poi nts1 Pointer to the array of correspondence points in the first image.
poi nts2 Pointer to the array of correspondence points in the second image.
nunpoi nt s Number of point pairs.

inte|® 14-5

OpenCV Reference Manual View Morphing 1 4

met hod Method for finding the fundamental matrix; currently not used, must
be zero.

mat ri x Resulting fundamental matrix.

Discussion

The function cvFi ndFundanent al Mat ri x finds the fundamental matrix from
correspondence pair points in two images. If the number of points is too small or the
point positions are not good, that is, they lie very close or on the same planar surface,
the matrix is not found correctly.

cvMakeScanlines

Calculates scanlines coordinates for two cameras
by fundamental matrix.

voi d cvMakeScanl i nes(CvMatrix3* matrix, CvSize ingSize, int* scanlines_1,
int* scanlines_2, int* lens_1, int* lens_2, int* numines);

matri x Fundamental matrix.
i mgSi ze Size of the image.
scanlines_1 Pointer to the array of calculated scanlines of the first image.

scanlines_2 Pointer to the array of calculated scanlines of the second image.

lens_1 Pointer to the array of calculated lengths (in pixels) of the first image
scanlines.

lens_2 Pointer to the array of calculated lengths (in pixels) of the second
image scanlines.

num i nes Pointer to the variable that stores the number of scanlines.

Discussion

The function cvMakeScanl i nes finds coordinates of scanlines for two images.

inte|® 14-6

OpenCV Reference Manual View Morphing 1 4

This function returns the number of scanlines. The function does nothing except
calculating the number of scanlines if the pointers scanl i nes_1 or scanl i nes_2 are
equal to zero.

Memory for all arrays must be allocated before calling this function. Let nunscan be
the number of scanlines. Memory must be allocated for:

1. Scanlines in the first image, scanlines in the second image, and scanlines in the
virtual image (for each numscan*2* 4*si zeof (i nt)).

2. Lengths of scanlines in the first image, lengths of scanlines in the second
image, and lengths of scanlines in the virtual image (for each
nunscan*2*4*si zeof (i nt)).

3. Buffer for the prewarp of first image, second image, and virtual image (for
each wi dt h*hei ght * 2*si zeof (i nt)).

4. Data runs for the first and second images (for each
Wi dt h*hei ght *4*si zeof (i nt)).

5. Correspondence data for the first image and the second image (for each
Wi dt h*hei ght *2*si zeof (i nt)).

cvPreWarplmage

Finds prewarp of given image.

voi d cvPreWarpl mage(int nunlines, |pllnage* ing, uchar* dst, int* dstNuns,
int* scanlines);

nunii nes Number of scanlines for the image.

i ng Image to prewarp.

dst Data to store for the prewarp image.

dst Nuns Pointer to the array of lengths of scanlines.

scanl i nes Pointer to the array of coordinates of scanlines.
intel.

OpenCV Reference Manual View Morphing 1 4

Discussion

The function cvPreWar pl mage finds prewarp of the given image across scanlines.
Memory must be allocated before calling this function. Memory size is
max(w dt h, hei ght) *nunmscanl i nes*si ze(char) * 3.

cvFindRuns

Finds runs in two prewarp images.

voi d cvFi ndRuns(int nuniines, uchar* prewarp_1, uchar* prewarp_2, int*
lineLens_1, int* lineLens_2, int* runs_1, int* runs_2, int* numRuns_1,
int* numRuns_2);

nunli nes Number of scanlines.

prewarp_1 Prewarp data of the first image.

prewarp_2 Prewarp data of the second image.

lineLens_1 Array of lengths of scanlines in the first image.

li neLens_2 Array of lengths of scanlines in the second image.

runs_1 Array of runs in each scanline in the first image.

runs_2 Array of runs in each scanline in the second image.

nunRuns_1 Array of numbers of runs in each scanline in the first image.
nunRuns_2 Array of numbers of runs in each scanline in the second image.
Discussion

The function cvFi ndRuns finds runs in the two prewarp images. Memory must be
allocated before calling this function. Memory size for one array of runs is
max(wi dt h, hei ght) *nunscanl i nes*3*si zeof (i nt).

14-8

OpenCV Reference Manual View Morphing 1 4

cvDynamicCorrespondMulti

Finds correspondence between two sets of runs of
two warped images.

void cvDynami cCorrespondMul ti(int lines, int* first, int* firstRuns, int*
second, int* secondRuns, int* firstCorr, int* secondCorr);

lines Number of scanlines.
first Array of runs of the first image.
firstRuns Array of numbers of runs in each scanline of the first image.
second Array of runs of the second image.
secondRuns Array of numbers of runs in each scanline of the second image.
firstCorr Array of find correspondence information for the first image.
secondCor r Array of find correspondence information for the second image.
Discussion

The function cvDynani cCorrespondMl ti finds correspondence between two sets of
runs of two images. The function finds runs in the two prewarp images. Memory must
be allocated before calling this function. Memory size for one array of correspondence
information is max(wi dt h, hei ght) *numscanl i nes*3*si zeof (int).

cvMakeAlphaScanlines

Finds coordinates of scanlines for image for
virtual camera position.

voi d cvivakeAl phaScanlines(int* scanlines_1, int* scanlines_2, int*
scanlinesA, int* lens, int nurl i nes, float al pha);

scanlines_1 Pointer to the array of the first scanlines.

scanlines_2 Pointer to the array of the second scanlines.

inte|® 14-9

OpenCV Reference Manual

View Morphing 1 4

scanl i nesA

| ens

num i nes

al pha

Discussion

Pointer to the array of the scanlines found in the virtual image.

Pointer to the array of lengths of the scanlines found in the virtual
image.

Number of scanlines.

Position of virtual camera (0.0 - 1.0).

The function cvMakeAl phaScanl i nes finds coordinates of scanlines for the virtual
camera with the given camera position.

Memory must be allocated before calling this function. Memory size for the array of
correspondence runs is nunscanl i nes*2*4*si zeof (i nt)). Memory size for the array
of the scanline lengths is nunscanl i nes* 2*4*si zeof (i nt).

cvMorphEpilinesMulti

Morphs two prewarp images using

corresponding information.

voi d cvMor phEpilinesMulti(int
int* secondNum uchar* dst Pi x,
int* firstRuns,

secondPi x,
first,

secondCorr);

i nes
firstPix

firstNum

secondPi x

secondNum

dst Pi x
dst Num

int* firstNum uchar*
int*
int*

uchar* firstPix,
int* dstNum float al pha,
int* secondRuns, int* firstCorr,

l'i nes,

int* second,

Number of scanlines in the prewarp image.
Pointer to the first prewarp image.

Pointer to the array of numbers of points in each scanline in the first
image.

Pointer to the second prewarp image.

Pointer to the array of numbers of points in each scanline in the
second image.

Pointer to the resulting morphed warped image.

Pointer to the array of numbers of points in each line.

14-10

OpenCV Reference Manual View Morphing 1 4

al pha Virtual camera position (0.0 - 1.0).

first First sequence of runs.

firstRuns Pointer to the number of runs in each scanline in the first image.

second Second sequence of runs.

secondRuns Pointer to the number of runs in each scanline in the second image.

firstCorr Pointer to the array of correspondence information found for the first
runs.

secondCor r Pointer to the array of correspondence information found for the

second runs

Discussion

The function cvMor phEpi | i nesMul ti morphs two prewarp images using
corresponding information.

cvPostWarplmage
Finds postwarp for given image data.

voi d cvPost War pl mage(i nt nuniines, uchar* src, int* srcNums, |pllnmage* ing,
int* scanlines);

nunLi nes Number of scanlines.

src Pointer to the prewarp image virtual image.
srcNuns Number of scanlines in the image.

i ng Resulting unwarp image.

scanl i nes Pointer to the array of scanlines data.
Discussion

The function cvPost War pl mage finds postwarp for the given image data.

intel® 14-11

OpenCV Reference Manual View Morphing 1 4

cvDeleteMoire

Deletes moire in given image.

void cvDel eteMdire(|pllmage* ing);
i my Image.

Discussion

The function cvDel et eMvi re deletes moire from the given image. The
post-morphing post-warped image has black points: the postwarped image is created
by lines, which means that every point may not be filled. The function deletes moire
(black points) from the given image by the color of neighbor points. If all scanlines are
horizontal, this function may be omitted.

i ntel ® 14-12

Motion Templates

This chapter describes Motion Templates functions.

Overview

Motion

The functions described in this section are designed to generate motion template
images that can be used to rapidly determine where a motion occurred, how it
occurred, and in which direction it occurred. The algorithms are based on papers by
Davis and Bobick [Davis97] and Bradski and Davis [Bradsky00]. These functions
operate on images that are the output of frame or background differencing, or other
image segmentation operations; thus the input and output image types are all
grayscale, that is, one color channel.

Representation and Normal Optical Flow Method

Motion Representation

Figure 15-1 (left) shows capturing a foreground silhouette of the moving object or
person. Obtaining a clear silhouette is achieved through application of some of
background subtraction techniques briefly described in Overview of the chapter on
Background Subtraction. As the person or object moves, copying the most recent
foreground silhouette as the highest values in the motion history image creates a
“layered history” of the resulting motion; typically this “highest value” is just a
floating point timestamp of time elapsing since the code was run in milliseconds.
Figure 15-1 (right) shows the result that may be called the Motion History Image
(MHI). A pixel level or a time delta threshold, as appropriate, is set such that pixel
values in the MHI image that fall below that threshold are set to zero.

15-1

OpenCV Reference Manual Motion Templates 1 5

Figure 15-1 Motion History Image from Moving Silhouette

N D

The most recent motion has the highest value, earlier motions have decreasing values
subject to a threshold below which the value is set to zero. Different stages of creating
and processing motion templates are described below.

A) Updating MHI Images

Generally, we work with floating point images since we read system time differences
in milliseconds from application launch time, convert the time differences into a
floating point number and use that number as the value of our most recent silhouette.
We write this current silhouette over the past silhouettes and threshold away pixels that
are too old (beyond a maximum mhi Dur at i on) to create the Motion History Image
(MHI).

B) Making Motion Gradient Image
1. Start with the MHI image as shown in Figure 15-1(left).
2. Apply 3x3 Sobel operators X and Y to the image.

15-2

OpenCV Reference Manual Motion Templates 1 5

3. Ifthe resulting response at a pixel location (X,Y) is S(x,y) to the Sobel operator
Xand §(x y) to the operator Y, then the orientation of the gradient is calculated
as:

A(xy) = arctan§((x,¥)/S(x.Y)) ,
and the magnitude of the gradient is:
M(XY) = JSHXY) +Se(%).

4. The equations are applied to the image yielding direction or angle of flow

image superimposed (just for reference) over the MHI image as shown in

Figure 15-2.

Figure 15-2 Direction of Flow Image

inte|® 15-3

OpenCV Reference Manual Motion Templates 1 5

5. The boundary pixels of the MH region may give incorrect motion angles and
magnitudes, as Figure 15-2 shows. Thresholding away magnitudes that are
either too large or too small can be a remedy in this case. Figure 15-3 shows
the ultimate results.

Figure 15-3 Resulting Normal Motion Directions.

C) Finding Regional Orientation or Normal Optical Flow

Figure 15-4 shows the output of the motion gradient function described in the section
above together with the marked direction of motion flow.

i ntel ® 15-4

OpenCV Reference Manual Motion Templates 1 5

Figure 15-4 MHI Image of Kneeling Person

The current silhouette is in bright blue with past motions in dimmer and dimmer blue.
Red lines show where valid normal flow gradients were found. The white line shows
computed direction of global motion weighted towards the most recent direction of
motion.
To determine the most recent, salient global motion:
1. Calculate a histogram of the motions resulting from processing (see
Figure 15-3).
2. Find the average orientation of a circular function: angle in degrees.
a. Find the maximal peak in the orientation histogram.

b. Find the average of minimum differences from this base angle. The more
recent movements are taken with lager weights.

inte|® 15-5

OpenCV Reference Manual Motion Templates 1 5

Motion Segmentation

Usually, it is not necessary to calculate the motion orientation for the whole image. So
certain motion regions, produced by the movement of parts or the whole of the object
of interest, may be grouped. Using then a downward stepping floodfill to label motion
regions connected to the current silhouette helps identify areas of motion directly
attached to parts of the object of interest.

Once MHI image is constructed, the most recent silhouette acquires the maximal
values, e.g., most recent timestamp, in that image. The image is scanned until this
value is found, and then walking along the silhouette’s contour helps find attached
areas of motion.The algorithm for creating masks to segment motion region is as
follows:

1. Scan the MHI until finding a pixel of the current timestamp (most recent
silhouette), mark that region by a floodfill (see Figure 15-5 (a));

2. Walk around the boundary of the current silhouette region looking outside for
recent (within a threshold) unmarked motion history “steps”. When a suitable
step is found, mark it with a downward floodfill. If the size of the fill is not big
enough, zero out the area (see Figure 15-5 (b)).

3. [Optional]:

— Record locations of minimums (or record locations of predetermined values)
within each downfill (see Figure 15-5 (c));

— Perform separate floodfills up from each detected location (see Figure 15-5
(d));

— Combine separately (by logical AND) each upfill with downfill it belonged to.

Store the detected segmented motion regions into the mask.

Continue the boundary “walk” until the silhouette has been circumnavigated.

AN A

[Optional] Go to 1 until all current silhouette regions are found.

15-6

OpenCV Reference Manual Motion Templates 1 5

Figure 15-5 Creating Masks to Segment Motion Region

(@l (bl
> ¥
-] o
= =
= =
o [
= -1
g s
= = E
R ., |
Motion
Biundary gaqq
’a Walk
el {dl
- Segmented
F 4 g maotion region
o mask
=
T
=3
B
oE
Fill Up
froum first
minimum
pixelis)

The functions that do all of the above are described below.

inte|® 15-7

OpenCV Reference Manual Motion Templates 1 5

Reference

cvUpdateMotionHistory

Updates motion history image.

voi d cvUpdat eMbti onH story (Ipllmage* sil houette, Ipllnmage* mhi, double
ti mestanp, doubl e mhi Duration);

sil houette Silhouette image that has non-zero pixels where the motion occurs.
mhi Motion history image, both an input and output parameter.
ti mestanp Floating point current time in milliseconds.

mhi Dur ati on Maximal duration of motion track in milliseconds.

Discussion

The function cvUpdat eMot i onHi st ory updates the motion history image with
silhouette of floating point current system time, assigning the current t i mest anp value
to those mhi pixels that have corresponding non-zero silhouette pixels. The function
also clears mhi pixels older than ti mest anp — mhi Dur at i on if the corresponding
silhouette values are 0.

cvCalcMotionGradient

Calculates gradient orientation of motion history
image.

voi d cvCal cMbtionG adient(|pllmage* mhi, Ipllmge* mask, |pllnmage*
orientation, double maxTDelta, double minTDelta, int apertureSize=3);

mhi Motion history image.

mask Mask image; marks pixels where motion gradient data is correct.
Output parameter.

i ntel ® 15-8

OpenCV Reference Manual Motion Templates 1 5

orientation Motion gradient orientation image; contains angles from 0 to ~360

degrees.

apertureSi ze Size of aperture used to calculate derivatives. Value should be odd,
e.g., 3,5, etc.

maxTDel t a Upper threshold. The function considers the gradient orientation

valid if the difference between the maximum and minimum mhi
values within a pixel neighborhood is lower than this threshold.

m nTDel t a Lower threshold. The function considers the gradient orientation
valid if the difference between the maximum and minimum mhi
values within a pixel neighborhood is greater than this threshold.

Discussion

The function cvCal cMoti onG adi ent calculates the derivatives Dx and Dy for the
image nhi and then calculates orientation of the gradient using the formula

0, x=0y=o0
¢={ Y

arctan(y/x)else

Finally, the function masks off pixels with a very small (less than ni nTDel t a) or very
large (greater than naxTDel t a) difference between the minimum and maximum mhi
values in their neighborhood. The neighborhood for determining the minimum and
maximum has the same size as aperture for derivative kernels - apert ur eSi ze x
aper tureSi ze pixels.

cvCalcGlobalOrientation

Calculates global motion orientation of some
selected region.

voi d cvCal cd obal Orientation(Ipllmage* orientation, Ipllnage* mask, |pllmage*
mhi, double curr_mhi _tinmestanp, double mhiDuration);

inte|® 15-9

OpenCV Reference Manual Motion Templates 1 5

orientation Motion gradient orientation image; calculated by the
function cvCal cMbti onG adi ent .

mask Mask image. It is a conjunction of valid gradient mask,
calculated by the function cvCal cMoti onG adi ent and
mask of the region, whose direction needs to be calculated.

mhi Motion history image.

curr_mhi Ti mest anp Current time in milliseconds.

mhi Dur at i on Maximal duration of motion track in milliseconds.
Discussion

The function cvCal cd obal Ori ent ati on calculates the general motion direction in
the selected region.

At first the function builds the orientation histogram and finds the basic orientation as
a coordinate of the histogram maximum. After that the function calculates the shift
relative to the basic orientation as a weighted sum of all orientation vectors (the more
recent is the motion, the greater is the weight). The resultant angle is <basi ¢
orientation> + <shift>.

cvSegmentMotion

Segments whole motion into separate moving
parts.

voi d cvSegment Motion(| pllmage* nmhi, Ipllmge* segMask, CvMenfstorage* storage,
CvSeq** conponents, double tinestanp, double segThresh);

mhi Motion history image.

segMask Image where the mask found should be stored.

St or age Pointer to the memory storage, where the sequence of components
should be saved.

conponent s Sequence of components found by the function.

ti mest anp Floating point current time in milliseconds.

intel. 1510

OpenCV Reference Manual Motion Templates 1 5

segThresh Segmentation threshold; recommended to be equal to the interval
between motion history “steps” or greater.

Discussion

The function cvSegnent Moti on finds all the motion segments, starting from
connected components in the image mhi that have value of the current timestamp. Each
of the resulting segments is marked with an individual value (1,2 ...).

The function stores information about each resulting motion segment in the structure
CvConnect edConp. The function returns a sequence of such structures.

15-11

OpenCV Reference Manual Motion Templates 1 5

intel® 15-12

CamShift

This chapter describes CamShift algorithm realization functions.

Overview

CamShift stands for the “Continuously Adaptive Mean-SHIFT” algorithm.

Figure 16-1 summarizes the CamShift algorithm. For each video frame, the raw image
is converted to a color probability distribution image via a color histogram model of
the color being tracked (flesh for face tracking). The center and size of the color object
are found via the CamShift algorithm operating on the color probability image. The
current size and location of the tracked object are reported and used to set the size and
location of the search window in the next video image. The process is then repeated for
continuous tracking. The algorithm is a generalization of the Mean Shift algorithm,
highlighted in gray in Figure 16-1.

16-1

OpenCV Reference Manual CamShift 1 6

Figure 16-1 Block Diagram of CamShift Algorithm

.........
. ey

‘¢"' TR
" Choose initial “*«_
: search window @
™. size and location,.”
Yea . ot

.
.......... .

- Color histogram look-
Set calculation N up in calculation

region at search region
window center
but larger in *

size than the
search window

f image
T

Use (X,Y) to set *

p search window > Find center of mass 4_

12 e
center, 2*area within the search
to set size. window

v

Center search window
at the center of mass
and find area under it

CamShift operates on a 2D color probability distribution image produced from
histogram back-projection (see Histogram, this document). The core part of the
CamShift algorithm is the Mean Shift algorithm.

Color probability distribution

Report X,
Y, Z, and
Roll

The Mean Shift part of the algorithm (gray area in Figure 16-1) is as follows:
1. Choose the search window size.
2. Choose the initial location of the search window.
3. Compute the mean location in the search window.
4

Center the search window at the mean location computed in Step 3.

inte|® 16-2

OpenCV Reference Manual CamShift 1 6

5. Repeat Steps 3 and 4 until the search window center converges, i.e., until it has
moved for a distance less than the preset threshold.

Mass Center Calculation for 2D Probability Distribution

For discrete 2D image probability distributions, the mean location (the centroid) within
the search window (Steps 3 and 4 above) is found as follows:

Find the zeroth moment

Mo = DD 1 (Xy).
Xy

Find the first moment for x and y

Mg = 3> xE(x,y); My = 33yl (xy).
y y

X X

Mean search window location (the centroid) then is found as

M. Mo
Xe == Ye = 75>
Mo Tt Mo . . . o
where | (x, y) is the pixel (probability) value in the position (x, y) in the image, and x
and y range over the search window.

Unlike the Mean Shift algorithm, which is designed for static distributions, CamShift
is designed for dynamically changing distributions. These occur when objects in video
sequences are being tracked and the object moves so that the size and location of the
probability distribution changes in time. The CamShift algorithm adjusts the search
window size in the course of its operation. Initial window size can be set at any
reasonable value. For discrete distributions (digital data), the minimum window length
or width is three. Instead of a set, or externally adapted window size, CamShift relies
on the zeroth moment information, extracted as part of the internal workings of the
algorithm, to continuously adapt its window size within or over each video frame.

CamShift Algorithm
1. Set the calculation region of the probability distribution to the whole image.

2. Choose the initial location of the 2D mean shift search window.

16-3

OpenCV Reference Manual CamShift 1 6

3. Calculate the color probability distribution in the 2D region centered at the
search window location in an ROI slightly larger than the mean shift window
size.

4. Run mean shift algorithm to find the search window center. Store the zeroth
moment (area or size) and center location.

5. For the next video frame, center the search window at the mean location stored
in Step 4 and set the window size to a function of the zeroth moment found
there. Go to Step 3.

Figure 16-2 shows CamShift finding the face center on a 1D slice through a face and
hand flesh hue distribution. Figure 16-3 shows the next frame when the face and hand
flesh hue distribution has moved, and convergence is reached in two iterations.

i ntel ® 16-4

OpenCV Reference Manual

CamShift 1 6

Figure 16-2 Cross Section of Flesh Hue Distribution

Step 1

Step 4

Rectangular CamShift window is shown behind the hue distribution, while triangle in
front marks the window center. CamShift is shown iterating to convergence down the

left then right columns.

16-5

OpenCV Reference Manual CamShift 1 6

Figure 16-3 Flesh Hue Distribution (Next Frame)

Step 1 Step 2

Starting from the converged search location in Figure 16-2 bottom right, CamShift
converges on new center of distribution in two iterations.

Calculation of 2D Orientation

The 2D orientation of the probability distribution is also easy to obtain by using the
second moments in the course of CamShift operation, where (x, y) range over the
search window, and | (x, y) is the pixel (probability) value at (x, y) .

Second moments are

Mo = 33X (0¥, M = TYX ().

Xy Xy

Then the object orientation (major axis) is

Z(%—xcyc)

(- (D)

ar ctan

Mo Mo

6= 5

The first two eigenvalues (major length and width) of the probability distribution
“blob” found by CamShift may be calculated in closed form as follows. Let

_M _ (M M
a= -I\—/B—z—xg, b = Z(Wi—xcyc),and c = “—/Bi—yﬁ.
Intel® 16-6

OpenCV Reference Manual CamShift 1 6

Then length | and width w from the distribution centroid are

| = J(a+c)+A/b2+(a—c)2

2 9

w =

J(a+c)—A/b2+(a—c)2
2 .

When used in face tracking, the above equations give head roll, length, and width as
marked in the source video image in Figure 16-4.

Figure 16-4 Orientation of Flesh Probability Distribution

Reference

cvCamShift

Finds object center, size, and orientation.

i nt cvCanshi ft (| pllmage* i ngProb, CvRect wi ndowl n, CvTernCriteriacriteria,
CvConnect edConp* out, CvBox2D* box=0);

i mgProb 2D object probability distribution.

wi ndow n Initial search window.

criteria Criteria applied to determine when the window search should be
finished.

inte|® 16-7

OpenCV Reference Manual CamShift 1 6

out Resultant structure that contains converged search window
coordinates (r ect field) and sum of all pixels inside the window
(ar ea field).

box Circumscribed box for the object. If not NULL, contains object size

and orientation.

Discussion

The function cvCanshi ft finds an object center using the Mean Shift algorithm and,
after that, calculates the object size and orientation. The function returns number of
iterations made within the Mean Shift algorithm.

cvMeanShift

Iterates to find object center.

i nt cvMeansShift (I pllmage*ingProb, CvRect wi ndow n, CvTernCriteriacriteria,
CvConnect edConp* out);

i mgPr ob 2D object probability distribution.

wi ndowl n Initial search window.

criteria Criteria applied to determine when the window search should be
finished.

out Resultant structure that contains converged search window
coordinates (r ect field) and sum of all pixels inside the window
(ar ea field).

Discussion

The function cvMeanshi ft iterates to find the object center given its 2D color
probability distribution image. The iterations are made until the search window center
moves by less than the given value and/or until the function has done the maximum
number of iterations. The function returns the number of iterations made.

inte|® 16-8

Active Contours

This chapter describes a function for working with active contours (snakes).

Overview

The snake was presented in [Kass88] as an energy-minimizing parametric closed curve

guided by external forces. Energy function associated with the snake E = E;, + E,,,

where E;, is the internal energy formed by the snake configuration, E,, is the external
energy formed by external forces affecting the snake. The aim of the snake is to find a
location that can minimize the energy.

Let p,, ..., p, be a discrete representation of a snake, that is, a sequence of points on an
image plane.

In OpenCV the internal energy function is the sum of the contour continuity energy
and the contour curvature energy, as follows:

Eint = Econt + Ecurv > where

Econt is the contour continuity energy. This energy is E.,,, = |[d—|p;—p;_4|| »
where d is the average distance between all pairs (p;—p,_,) .
Minimizing E_,,, over all the snake points p,, ..., p,,, causes the snake
points become more equidistant.

Ecurv is the contour curvature energy. The smoother the contour is, the less

is the curvature energy.E ., = [p;_1—2p; +P;+ 1H2 .

In [Kass88] external energy was represented as Eqyq = Ejpg + Econ» Where

con?

Eimg— iImage energy and E,,- energy of additional constraints.

Two variants of image energy are proposed:

17-1

OpenCV Reference Manual Active Contours 1 7

1. E., =,

img
where | is the image intensity. In this case the snake is attracted to the bright lines of
image.

1

2. Ejng = —lgrad(l)l . The snake is attracted to image edges.

A variant of external constraint is described in [Kass88]. Imagine the snake points
connected by springs with certain points on the image. Spring force k (x - x) will
produce the energy —)2(— .

This force pulls snake points to fixed positions, which can be useful when snake points
need to be fixed.

OpenCV does not support this opportunity now.
Summary energy at every point can be written as

E = aE '+BiEcurv,i+yiEimg,iﬂ (171)

1 i—cont,i

where o, B,y are the weights of every kind of energy. The full snake energy is the sum
of E; over all the points.

The meanings of a,B,y are as follows:

a is responsible for contour continuity, that is, a big a makes snake points more
evenly spaced.

B is responsible for snake corners, that is, a big B for a certain point makes the angle
between snake edges more obtuse.

y is responsible for making the snake point more sensitive to the image energy, rather
than to continuity or curvature.

Only relative values of a,B,y in the snake point are relevant.
The following way of working with snakes is proposed:

* create a snake with initial configuration;

¢ define weights a, B,y at every point;

¢ allow the snake to minimize its energy;

¢ evaluate the snake position. If required, adjust o, ,y, and possibly image data, and
repeat the previous step.

17-2

OpenCV Reference Manual Active Contours 1 7

There are three well-known algorithms for minimizing snake energy. In [Kass88] the
minimization is based on variational calculus. In [Yuille89] dynamic programming is
used. The greedy algorithm is proposed in [Williams92].

The latter algorithm is the most efficient and yields quite good results. The scheme of
this algorithm for each snake point is as follows:

* Use Equation (17.1) to compute E for every location from point neighborhood.
Before computing E, each energy term E,, Ecyrys Eimg mMust be normalized using
fO@ula Enormalized = (Eimg—min)/ (max—min), where nax and nmi n are maximal and
minimal energy in scanned neighborhood.

* Choose location with minimum energy.
* Move snakes point to this location.

* Repeat all the steps until convergence is reached.

Criteria of convergence are as follows:

* maximum number of iterations is achieved;

* number of points, moved at last iteration, is less than given threshold.

In [Wiiliams92] the authors proposed a way, called high-level feedback, to adjust b

coefficient for corner estimation during minimization process. Although this feature is
not available in the implementation, the user may build it, if needed.

Reference

cvSnakelmage

Changes contour position to minimize its energy.

voi d cvSnakel mage(|pllImage* i mage, CvPoint* points, int |ength,
float* al pha, float* beta, float* gamma, int coeffUsage, CvSize w n,
CvTernCriteria criteria, int calcGadient=1);

i mage Pointer to the source image.
poi nts Points of the contour.
I ntGI ® 17-3

OpenCV Reference Manual

Active Contours 1 7

| ength
al pha
bet a
gamma

coef f Usage

criteria

cal cG adi ent

Discussion

Number of points in the contour.

Weight of continuity energy.

Weight of curvature energy.

Weight of image energy.

Variant of usage of the previous three parameters:

®* CV_VALUE indicates that each of al pha, bet a, gamma is pointer to
a single value to be used for all points;

®* CV_ARRAY indicates that each of al pha, bet a, ganma is pointer to
an array of coefficients different for all the points of the snake.
All the arrays must have the size equal to the snake size.

Size of neighborhood of every point used to search the minimum;
must be odd.

Termination criteria.

Gradient flag. If not 0, the function counts source image gradient
magnitude as external energy, otherwise the image intensity is
considered.

The function cvSnakel nage uses image intensity as image energy.

The parameter cri teri a. epsi | on is used to define the minimal number of points that
must be moved during any iteration to keep the iteration process running.

If the number of moved points is less than cri teri a. epsi | on or the function
performed criteria. maxl ter iterations, the function terminates.

17-4

Optical Flow

This chapter describes functions used for culculation of optical flow implementing
Lucas & Kanade, Horn & Schunck, and Block Matching techniques.

Overview

Most papers devoted to motion estimation use the term “optical flow”. Optical flow is
defined as an apparent motion of image brightness. If I (x, y, t) is the image
brightness that changes in time to provide an image sequence, then two main
assumptions can be made:

1. Brightness | (x,y,t) depends on coordinates x, y in greater part of the image.
2. Brightness of every point of a moving or static object does not change in time.

Let some object in the image, or some point of an object, move and after time dt the
object displacement is (dx, dy). Using Taylor series for brightness I (x, y,t) gives
the following:

al

- al al ol
| (x +dx,y +dy,t +dt) =1 (x,y,t)+axdx +aydy * 5 dt +..., (18.1)
where “...” are higher order terms.
Next, according to Assumption 2:
| (x +dx,y +dy,t +dt) = 1(x,y,t), (18.2)
and
ol al al -
39X +aydy+atdt +..=0. (18.3)
Dividing (18.3) by dt and defining
dx —y, dY =y (18.4)

dt > dt
gives an equation

18-1

OpenCV Reference Manual Optical Flow 1 8

oi _al , al
- = axY +6yv’ (18.5)
usually called optical flow constraint equation, where u and v are components of

optical flow field in x and y coordinates respectively. Since Equation (18.5) has more

than one solution, more constraints are required.

Some variants of further steps may be chosen. Below follows a brief overview of the
options available.

Lucas & Kanade Technique

Using the optical flow equation for group of adjacent pixels and assuming that all of
them have the same velocity, we can make a system of linear equations.

In a non-singular system for two pixels we can compute a velocity vector to solve the
system. However, combining equations for more than two pixels is more effective. We
might get a system that has no solution; yet we can solve it roughly, using the least
square method. We will use weighted combination of equations. This method involves
the solution of 2x2 linear system.

SV g+ WYY = =S WYl
X,y X,y X,y
PILLCEOLMTES S CHD IR T CHO M
X,y Xy X,y

where W x, y) is the Gaussian window. The Gaussian window may be represented as a
composition of two separable kernels with binomial coefficients. Iterating through the
system can yield even better results. That is, retrieved offset is used to determine a new
window in the second image from which the window in the first image is subtracted
while 1 ; is calculated.

Horn & Schunck Technique

Horn and Schunck propose a technique that assumes the smoothness of the estimated
optical flow field. This constraint can be formulated as

S :ALL((%Y*@—E)Z*(%)ﬁ(g—;)z}(dx)dy : (18.6)

18-2

OpenCV Reference Manual Optical Flow 1 8

This optical flow solution can deviate from the optical flow constraint. To express this
deviation the following integral can be used:

_ al al . a1)?
C—.”(ax u+ayv+ﬁ) dxdy . (18.7)

image
The value S+AC, where A is a parameter, called Lagrangian multiplier, is to be

minimized. Typically, a smaller A must be taken for a noisy image and a larger one for
a quite accurate image.

To minimize S+AC, a system of two second-order differential equations for the whole
image must be solved:

2 2
%u, d’u _ (9L, ot alal
672+(;2_)\(6xu+6yv+0t)6x’
(18.8)
2 2
6_v+6_v:A(6_lu+0_lv+6_lj0_ll
ax2 6y2 ox 0y ot/ox

Iterative method could be applied for the purpose when a number of iterations are
made for each pixel. This technique for two consecutive images seems to be
computationally expensive because of iterations, but for a long sequence of images
only an iteration for two images must be done, if the result of the previous iteration is
chosen as initial approximation.

Block Matching

This technique does not use an optical flow equation directly. If, for example, an image
tiled with small, possibly overlapping blocks is considered, then for every block in the
first image the algorithm tries to find a block of the same size in the second image that
is most similar to the block in the first image. The function searches in the
neighborhood of some given point in the second image. So we assume that all the
points in the block move by the same offset and find that offset, just like in Lucas &
Kanade method. Different metrics can be used to measure similarity or difference
between blocks - cross correlation, squared difference, etc.

18-3

OpenCV Reference Manual Optical Flow 1 8

Reference

cvCalcOpticalFlowHS

Calculates optical flow for two images.

voi d cvCal cOpti cal Fl owHS(| pl I mage* srcA, |pllnmage* srcB, int usePrevious,
I pl | mage* vel x, |pllnmage* vely, double |anbda, CvTernCriteria criteria);

i NgA First image.

i ngB Second image.

usePrevious Uses previous (input) velocity field.

vel x Horizontal component of the optical flow.
vely Vertical component of the optical flow.

| anbda Lagrangian multiplier.

criteria Criteria of termination of velocity computing.
Discussion

The function cvCal cOpti cal Fl owHS computes flow for every pixel, thus output
images must have the same size as input. Horn & Schunck technique is implemented.

cvCalcOpticalFlowLK

Calculates optical flow for two images.

voi d cvCal cOpti cal Fl owLK(I pl 1l mage* srcA, |pllmage* srcB, CvSize wi nSize,
I pl I mage* vel x, |pllmage* vely);

i NgA First image.
i ngB Second image.
wi nSi ze Size of the averaging window used for grouping pixels.

i ntel ® 18-4

OpenCV Reference Manual Optical Flow 1 8

vel x Horizontal component of the optical flow.
vely Vertical component of the optical flow.
Discussion

The function cvCal cOpti cal Fl owLK computes flow for every pixel, thus output
images must have the same size as input. Lucas & Kanade technique is implemented.

cvCalcOpticalFlowBM

Calculates optical flow for two images by block
matching method.

void cvCal cOpti cal Fl owBM | pl I nage* srcA, |pllmage* srcB, CvSize bl ockSi ze,
CvSi ze shiftSize, CvSize maxRange, int usePrevious, Ipllnmage* velx,
I pl mage* vely);

i NA First image.

i ngB Second image.

bl ockSi ze Size of basic blocks that are compared.

shiftSize Block coordinate increments.

maxRange Size of the scanned neighborhood in pixels around block.

usePrevious Uses previous (input) velocity field.

vel x Horizontal component of the optical flow.
vely Vertical component of the optical flow.
Discussion

The function cvCal cOpt i cal FI owBM calculates optical flow for two images using the
Block Matching algorithm. Velocity is computed for every block (not every pixel), so
velocity image pixels correspond to input image blocks and the velocity image must
have the following size:

inte|® 18-5

OpenCV Reference Manual

Optical Flow 1 8

vel ocityFrameSi ze.wi dth = [

vel oci tyFranmeSi ze.hei ght = [

I mageSi ze.w dt h
bl ockSi ze.wi dt h}’

i mgeSi ze.hei ght]
bl ockSi ze.hei ght |’

cvCalcOpticalFlowPyrLK

Calculates optical flow for two images using
iterative Lucas-Kanade method in pyramids.

voi d cvCal cOpti cal Fl owPyr LK(| pl | mage* i ngA, |pllmage* ingB, |pllmge* pyrA,
I pl mage* pyrB, CvPoint2D32f* featuresA, CvPoint2D32f* featuresB, int
count, CvSize winSize, int level, char* status, float* error,
CvTernCriteria criteria, int flags);

i NnYA
i ngB
pyrA

pyrB
f eat ur esA

f eat ur esB
count

W nSi ze

| evel

st at us

error

First frame (time t).
Second frame (time t +dt).

Buffer for the pyramid for the first frame. If the pointer is not NULL,
the buffer must have a sufficient size to store the pyramid from

| evel 1tolevel #<level>;the total size of

(i ngSi ze. wi dt h+8) *i ngSi ze. hei ght / 3 bytes is sufficient.

Similar to pyr A applies to the second frame.
Array of points for which the flow needs to be found.

Array of 2D points containing calculated new positions of input
features in the second image.

Number of feature points.
Size of the search window of each pyramid level.

Maximal pyramid level number. If 0, pyramids are not used (single
level), if 1, two levels are used, etc.

Array. Every element of the array is set to 1 if the flow for the
corresponding feature has been found, 0 otherwise.

Array of double numbers containing difference between patches
around the original and moved points. Optional parameter; can be
NULL.

18-6

OpenCV Reference Manual Optical Flow 1 8

criteria Specifies when the iteration process of finding the flow for each
point on each pyramid level should be stopped.

flags Miscellaneous flags:

®* CV_LKFLOW PYR_A_READY, pyramid for the first frame is
precalculated before the call;

®* CV_LKFLOW PYR B_READY, pyramid for the second frame is
precalculated before the call;

®* CV_LKFLOW.I NI Tl AL_GUESSES, features B array holds initial
guesses about new feature locations before the function call.
Discussion

The function cvCal cOpti cal Fl owPyr LK calculates the optical flow between two
images for the given set of points. The function finds the flow with sup-pixel accuracy.

Both parameters pyr A and pyr B comply with the following rules: if the image pointer
is 0, the function allocates the buffer internally, calculates the pyramid, and releases
the buffer after processing. Otherwise, if the image is large enough, the function
calculates the pyramid and stores it in the buffer unless the flag

CV_LKFLOW PYR_A[B] _READY is set. After the function call both pyramids are
calculated and the ready flag for the corresponding image can be set in the next call.

inte|® 18-7

OpenCV Reference Manual Optical Flow 1 8

inte|® 18-8

Estimators

This chapter describes group of functions for estimating stochastic models state.

Overview

Definitions and Motivation

State estimation programs implement a model and an estimator. A model is analogous
to a data structure representing relevant information about the visual scene. An
estimator is analogous to the software engine that manipulates this data structure to
compute beliefs about the world. The OpenCV routines provide two estimators:
standard Kalman and condensation.

Models

Many computer vision applications involve repeated estimating, that is, tracking, of
the system quantities that change over time. These dynamic quantities are called the
system state. The system in question can be anything that happens to be of interest to a
particular vision task.

To estimate the state of a system, reasonably accurate knowledge of the system model
and parameters may be assumed. Parameters are the quantities that describe the model
configuration but change at a rate much slower than the state. Parameters are often
assumed known and static.

In OpenCYV a state is represented with a vector. In addition to this output of the state
estimate routines, there is another vector representing measurements that are input to
the routines from the sensor data.

19-1

OpenCV Reference Manual Estimators 1 9

For the model, two main parts need to be represented. The first describes the dynamics
of how the state is expected to change from one time step to the next. The other thing
that needs to be represented is the model of how a measurement vector z, is obtained
from the state.

Estimators

Most estimators have the same general form with repeated propagation and update
phases that modify the state's uncertainty as illustrated in Figure 19-1.

Figure 19-1 Ongoing Discrete Kalman Filter Cycle

-.-..... ..\..\\ ",
Time Update Measurement Update
{"Pradict’) ['I"nn'.prr']

The time update projects the current state estimate ahead in time. The measurement
update adjusts the projected estimate using an actual measurement at that time.

A common, desirable property of an estimator is being unbiased when the probability
density of estimate errors has an expected value of 0. There exists an optimal
propagation and update formulation that is the best, linear, unbiased estimator (BLUE)
for any given model of the form. This formulation is known as the discrete Kalman
estimator, whose standard form is implemented in OpenCV.

Kalman Filtering

The Kalman filter addresses the general problem of trying to estimate the state x of a
discrete-time process that is governed by the linear stochastic difference equation

Xpe1 = AXp Wy (19.1)

19-2

OpenCV Reference Manual Estimators 1 9

with a measurement z, that is
z, = Hx, +v, (19.2)

The random variables w, and v, respectively represent the process and measurement
noise. They are assumed to be independent of each other, white, and with normal
probability distributions

p(W) = N(0,Q), (19.3)
p(W) = N(O,R). (19.4)

The N x Nmatrix A in the difference equation (19.1) relates the state at time step k
to the state at step k+1, in the absence of process noise. The M x N matrix H in the
measurement equation (19.2) relates the state to the measurement z,.

If the "super minus" X; is defined as a priori state estimate at step k provided the
process prior to step k is known, and X, is a posteriori state estimate at step k provided
measurement z, is known, then a priori and a posteriori estimate errors can be defined
as ER ~ ik ik . The a priori estimate error covariance is then P, = E[eRe;T] and the a
postekriori lzastirlilate error covariance is P, = E[e,e,] .

The Kalman filter estimates the process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of noisy
measurements. As such, the equations for the Kalman filter fall into two groups: time
update equations and measurement update equations. The time update equations are
responsible for projecting forward in time the current state and error covariance
estimates to obtain the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback, that is, for incorporating a new
measurement into the a priori estimate to obtain an improved a posteriori estimate. The
time update equations can also be viewed as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed, the
final estimation algorithm resembles that of a predictor-corrector algorithm for solving
numerical problems as shown in Figure 19-1. The specific equations for the time and
measurement updates are presented below.

Time Update Equations

Xeo1 = A,

19-3

OpenCV Reference Manual Estimators 1 9

_ T
Per1 = APACTQ -

Measurement Update Equations:

K, = P.H (HPH +R)
k = PeH(BPeHc+Re)

X
<
|

X + Kz —HXg)

P = (I =K H)Pg,

where K is the so-called Kalman gain matrix and | is the identity operator.

Example 19-1 CvKalman Structure Definition

typedef struct CvKal man
{
int M /1 D mensi on of neasurenent vector
int DP; /1 Di nension of state vector
float* PosterState; /'l Vector of State of the Systemin k-th step
float* PriorState; /'l Vector of State of the Systemin (k-1)-th step
float* Dynanmivatr; /1 Matrix of the |linear Dynanics system
float* MeasurenentMatr; /] Matrix of |inear measurenent
fl oat MN\Covari ance; /1 Matrix of neasurenent noice covariance
floa PNCovari ance; /1 Matrix of process noice covariance
floa Kal m@i nMatr; /1 Kalman Gain Matrix
floa PriorErrorCovariance; //Prior Error Covariance matrix
floa Post er Error Covari ance;// Poster Error Covariance matrix
floa Tenpl; /'l Tenporary Matrixes
float* Tenp2;
} CvKal man;

Reference

cvCreateKalman

Allocates Kalman

filter structure.

CvKal man* cvCreat eKal man(int DynanParams, int MeasureParans);

DynanPar ans Dimension of the state vector.

Measur ePar anms Dimension of the measurement vector.

intel.

19-4

OpenCV Reference Manual Estimators 1 9

Discussion

The function cvCreat eKal man creates CvKal man structure and returns pointer to the
structure.

cvReleaseKalman

Deallocates Kalman filter structure.

voi d cvRel easeKal man(CvKal man** Kal man) ;
Kal man Double pointer to the structure to be released.

Discussion

The function cvRel easeKal man releases the structure CvKal man (see Example) and
frees the memory previously allocated for the structure.

cvKalmanUpdateByTime

Estimates subsequent model state.

voi d cvKal manUpdat eByTi me (CvKal man* Kal man);
Kal man Pointer to the structure to be updated.

Discussion

The function cvKal manUpdat eByTi ne estimates the subsequent stochastic model
state by its current state.

inte|® 19-5

OpenCV Reference Manual Estimators 1 9

cvKalmanUpdateByMeasurement
Adjusts model state.

voi d cvKal manUpdat eByMeasur enent (CvKal man* Kal man, CvMat * Measurenent);
Kal man Pointer to the structure to be updated.

Measur ement Pointer to the structure CvMat containing the measurement vector.

Discussion

The function cvKal manUpdat eByMeasur enent adjusts stochastic model state on basis
of the true measurements of the model state.

ConDensation Algorithm

This section describes the ConDensation (conditional density propagation) algorithm,
based on factored sampling. The main idea of the algorithm is using the set of
randomly generated samples for probability density approximation. For simplicity,
general principles of ConDensation algorithm are described below for linear stochastic
dynamical system:

X a1 = AX W (19.5)
with a measurement Z.

For the algorithm to start a set of samples X1 must be generated. The samples are
randomly generated vectors of states. The function cvl ni t Sanpl eSet does it in
OpenCV implementation.

During the first phase of the condensation algorithm every sample in the set is updated
according to Equation (19.5).

Further, when the vector of measurement Z is obtained, the algorithm estimates
conditional probability densities of every sample P(X"|z). The OpenCV
implementation of the condensation algorithm enables the user to define various
probability density functions. There is no such special function in the library. After the
probabilities are calculated, the user may evaluate, for example, moments of tracked
process at the current time step.

inte|® 19-6

OpenCV Reference Manual Estimators 1 9

Implementation of Nonlinear Models

If dynamics or measurement of the stochastic system is non-linear, the user may
update the dynamics (A) or measurement (H) matrices, using their Taylor series at each
time step.

Example 19-2 CvConDensation Structure Definition

Eypedef struct

int M /1 Di mensi on of neasurenent vector

int DP; /1 Dimension of state vector

float* Dynamatr; /1 Matrix of the linear Dynam cs system
float* State; [/ Vector of State

i nt Sanpl esNum /1 Number of the Sanples

float** fl Sanpl es; /1l array of the Sanple Vectors

float** fl NewSanpl es; /'l temporary array of the Sanple Vectors
float* fl Confidence; /1l Confidence for each Sanple

float* fl Cunul ative; /1 Cumul ative confidence

float* Tenp; /'l Tenporary vector

fl oat* RandonBanpl e; /'l RandonVector to update sanple set

CvRandState* RandS; // Array of structures to generate random vectors
} CvConDensati on;

Reference

cvCreateConDensation

Allocates ConDensation filter structure.

CvConDensati on* cvCreateConDensation(int DP, int MP, int SanplesNunj;

DynanmParanms Dimension of the state vector.
Measur ePar ans Dimension of the state vector.

Sanpl esNum Number of samples.

Discussion

The function cvCreat eConDensati on creates cvConDensat i on structure and returns
pointer to the structure.

19-7

OpenCV Reference Manual Estimators 1 9

cvReleaseConDensation

Deallocates ConDensation filter structure.

voi d cvRel easeConDensat i on(CvConDensati on** ConDens) ;
ConDens Pointer to the pointer to the structure to be released.

Discussion

The function cvRel easeConDensati on releases the structure CvConDensat i on (see
Example) and frees all memory previously allocated for the structure.

cvConDenslInitSampleSet

Initializes sample set for condensation algorithm.

voi d cvConDensl ni t Sanpl eSet (CvConDensati on* ConDens, CvMat* | ower Bound CvMat*
upper Bound) ;

ConDens Pointer to a structure to be initialized.

| ower Bound Vector of the lower boundary for each dimension.
upper Bound Vector of the upper boundary for each dimension.
Discussion

The function cvConDensl ni t Sanpl eSet fills the samples arrays in the structure
CvConDensat i on (see Example) with values within specified ranges.

i ntel ® 19-8

OpenCV Reference Manual Estimators 1 9

cvConDensUpdatebyTime

Estimates subsequent model state.

voi d cvConDensUpdat eByTi me(CvConDensati on* ConDens);
ConDens Pointer to the structure to be updated.
Discussion

The function cvConDensUpdat ebyTi me estimates the subsequent stochastic model
state from its current state.

inte|® 19-9

OpenCV Reference Manual Estimators 1 9

intel® 19-10

POSIT

This chapter describes functions that together perform POSIT algorithm.

Overview

The POSIT algorithm determines the six degree-of-freedom pose of a known tracked
3D rigid object. Given the projected image coordinates of uniquely identified points on
the object, the algorithm refines an initial pose estimate by iterating with a weak
perspective camera model to construct new image points; the algorithm terminates
when it reaches a converged image, the pose of which is the solution.

Background

Camera parameters

Camera parameters are the numbers describing a particular camera configuration. The
intrinsic camera parameters are those that specify the camera itself; they include the
focal length, that is, the distance between the camera lens and the image plane, the
location of the image center in pixel coordinates, the effective pixel size, and the radial
distortion coefficient of the lens. To simplify pose recovery, the focal length is the only
intrinsic parameter considered as it is the only one contributing to the geometric image
formation model. The extrinsic camera parameters describe the spatial relationship
between the camera and the world; they are the rotation matrix and translation vector
specifying the transformation between the camera and world reference frames. In the
case of pose recovery of a rigid object, the six degree-of-freedom extrinsic parameters
are exactly the pose being sought.

20-1

OpenCV Reference Manual POSIT 2 O

Geometric Image Formation

The link between world points and their corresponding image points is the projection
from world space to image space. Figure 20-1 depicts the perspective (or pinhole)
model, which is the most common projection model because of its generality and
usefulness.

The points in the world are projected onto the image plane according to their distance
from the center of projection. Using similar triangles, the relationship between the
coordinates of an image point p; = (x;,y;)and its world point P, = (X;,Y;,Z;) can be
determined as

X; =X,y =4V (20.1)
Zi

Figure 20-1 Perspective Geometry Projection

Center of
Projection

(xi’yi>f) Piz(Xi3Yi9Zi)

Optical Axis

Image Plane

The weak-perspective projection model simplifies the projection equation by replacing
all z; with a representative Z so that s = f /Z is a constant scale for all points. The
projection equations are then

X; =sX ,Yy; =sY;. (20.2)

20-2

OpenCV Reference Manual POSIT 2 O

Because this situation can be modeled as an orthographic projection (x; = X ,

y; =Y,) followed by isotropic scaling, weak-perspective projection is sometimes
called scaled orthographic projection. Weak-perspective is a valid assumption only
when the distances between any z; are much smaller than the distance between the z,
and the center of projection; in other words, the world points are clustered and far
enough from the camera. Possible Z include any z; or the average over all z; .

More detailed explanations of this material can be found in [Trucco98].

Pose Approximation Method

Using weak-perspective projection, a method for determining approximate pose,
termed Pose from Orthography and Scaling (POS) in [DeMenthon92], can be derived.
First, a reference point P, in the world is chosen from which all other world points can
be described as vectors: P = P; —P,(see Figure 20-2).

Figure 20-2 Scaling of Vectors in Weak-Perspective Projection

P
Pi
Py P,
Center of .
Projection Image Object

Similarly, the projection of this point, namely p,, is a reference point for the image
points: p; = p; —p,. Proceeding from the weak-perspective assumption, the x
component of p; is a scaled-down form of the x component of P; :

X; =X = S(X —Xo) = s(Pol). (20.3)

OpenCV Reference Manual POSIT 2 O

This is also true for their y components. If | and J are defined as scaled-up versions
of the unit vectors i andj (I =si and J = sj), then
X; —Xo =P, 0 andy; -y, =P O (20.4)

as two equations for each point for which I and J are unknown. These equations,
collected over all the points, can be put into matrix form as

x=M andy = MJ, (20.5)

where x is a vector of p; x components, y is a vector of p; y components, and Mis a
matrix whose rows are the P; vectors. These two sets of equations can be further
joined to construct a single set of linear equations:

[x yl =Ml J]=p,C=MI J], (20.6)

where p, is a matrix whose rows are p; . Now that we have an overconstrained system
of linear equations, we can solve for | and J in a least-squares sense as

[1 3] = Mp, , (20.7)
where M’ is the pseudo-inverse of M.

Now that we have | and J, we construct the pose estimate as follows. First, i and j
are estimated as | and J normalized, that is, scaled to unit length. By construction,
these are the first two rows of the rotation matrix, and their cross-product is the third
row:

R=| -1 |. (20.8)

(i xi)"
The average of the magnitudes of | and J is an estimate of the weak-perspective scale
s . From the weak-perspective equations, the world point P, in camera coordinates is
the image point p, in camera coordinates scaled by s:

Py = Po/s = [Xg Yo f1/s, (209)

which is precisely the translation vector being sought.

20-4

OpenCV Reference Manual POSIT 2 O

Algorithm

The POSIT algorithm was first presented in the paper by DeMenthon and Davis
[DeMenthon92]. In this paper, the authors first describe their POS (Pose from
Orthography and Scaling) algorithm. By approximating perspective projection with
weak-perspective projection POS produces a pose estimate from a given image. POS
can be repeatedly used by constructing a new weak perspective image from each pose
estimate and feeding it into the next iteration. The calculated images are estimates of
the initial perspective image with successively smaller amounts of “perspective
distortion” so that the final image contains no such distortion. The authors term this
iterative use of POS as POSIT (POS with ITerations).

POSIT requires three pieces of known information. First, the object model consists of
N points, each with unique 3D coordinates. N must be greater than 3, and the points
must be non-degenerate (non-coplanar) to avoid algorithmic difficulties. Better results
are achieved by using more points and by choosing points as far from coplanarity as
possible. The object model is an N x 3 matrix. Second, the object image is the set of 2D
points resulting from a camera projection of the model points onto an image plane; it is
a function of the object current pose. The object image is an N x 2 matrix. Finally, the
focal length of the camera must be known.

Given the object model and the object image, the algorithm proceeds as follows. First,
the object image is assumed to be a weak perspective image of the object, from which
a least-squares pose approximation is calculated via the object model pseudoinverse.
From this approximate pose the object model is projected onto the image plane to
construct a new weak perspective image. From this image a new approximate pose is
found using least-squares, which in turn determines another weak perspective image,
and so on. For well-behaved inputs, this procedure converges to an unchanging weak
perspective image, whose corresponding pose is the final calculated object pose.

Example 20-1 POSIT Algorithm in Pseudo-Code

POSI T (i magePoi nts, objectPoints, focal Length) {
count = converged = 0;
nodel Vect ors = nodel Poi nts — nodel Poi nt s(0);

ol dWeakl magePoi nts = i magePoi nts;
whil e (!converged) {
if (count == 0)
i mageVectors = i magePoi nts — i magePoi nts(0);
el se {
weakl magePoi nts = i nagePoi nts .*
|nte|® 20-5

OpenCV Reference Manual POSIT 2 O

Example 20-1 POSIT Algorithm in Pseudo-Code (continued)

((1 + nodel Vectors*row3/translation(3)) * [1

11);
i mgeDi fference = sun(sum(abs(round(weakl magePoi nts) —
round(ol dWeakl magePoi nts))));
ol dWeakl magePoi nt s = weakl magePoi nt s;
i mgeVect ors = weakl magePoi nts — weakl magePoi nt s(0) ;
[1 J] = pseudoi nverse(nodel Vectors) * imageVectors,;
rowl =1 / norm(l);
row2 =J / norm(J);
rowd = crossproduct(rowl, row2);
rotation = [rowl; row2; row3];
scale = (norm(l) + norm(J)) / 2;
translati on = [imagePoi nts(1,1); imgePoints(1,2); focal Length] /
scal e;
converged = (count > 0) && (diff < 1);
count = count + 1;
return {rotation, translation};
}

As the first step assumes, the object image is a weak perspective image of the object. It
is a valid assumption only for an object that is far enough from the camera so that
“perspective distortions” are insignificant. For such objects the correct pose is
recovered immediately and convergence occurs at the second iteration. For less ideal
situations, the pose is quickly recovered after several iterations. However, convergence
is not guaranteed when perspective distortions are significant, for example, when an
object is close to the camera with pronounced foreshortening. DeMenthon and Davis
state that “convergence seems to be guaranteed if the image features are at a distance
from the image center shorter than the focal length.”[DeMenthon92] Fortunately, this
occurs for most realistic camera and object configurations.

20-6

OpenCV Reference Manual POSIT 2 O

Reference

cvCreatePOSITODbject

Initializes structure containing object
information.

CvPOSI TObj ect* cvCreat ePCSI TObj ect (CvPoi nt 3D32f * points, int nunPoints);

poi nt's Pointer to the points of the 3D object model.
nunPoi nt s Number of object points.
Discussion

The function cvCreat ePCSI TObj ect allocates memory for the object structure and
computes the object inverse matrix.

This data is stored in the structure CvPOSI TChj ect , internal for OpenCV, which means
that the user cannot directly access the structure data. The user may only create this
structure and pass its pointer to the function.

Object is defined as a set of points given in a coordinate system. The function
cvPOSI T computes a vector that begins at a camera-related coordinate system center
and ends at the poi nt s[0] of the object.

Once the work with a given object is finished, the function cvRel easePCSI TObj ect
must be called to free memory.

cvPOSIT
Implements POSIT algorithm.

voi d cvPGCsSI T(CvPoi nt 2D32f * i magePoi nts, CvPOSI TCbj ect* pQhj ect, double
focal Length, CvTernCriteria criteria, CvMatrix3* rotation, CvPoint3D32f*
transl ation);

inte|® 20-7

OpenCV Reference Manual POSIT 2 O

i magePoi nts Pointer to the object points projections on the 2D image plane.
pQhj ect Pointer to the object structure.

focal Length Focal length of the camera used.

criteria Termination criteria of the iterative POSIT algorithm.
rotation Matrix of rotations.

transl ation Translation vector.

Discussion

The function cvPOSI T implements POSIT algorithm. Image coordinates are given in a
camera-related coordinate system. Camera calibration functions must define the focal
length of the camera. At every iteration of the algorithm new perspective projection of
estimated pose is computed.

Difference norm between two projections is the maximal distance between
correspondent points. The parameter cri t eri a. epsi | on serves to stop the algorithm
if the difference is small.

cvReleasePOSITODbject

Deallocates 3D object structure.

voi d cvRel easePOSI TObj ect (CvPOSI TObj ect ** ppOhj ect);

ppQbj ect Address of the pointer to the object structure.

Discussion

The function cvRel easePOSI TObj ect is used to release memory previously allocated
by the function cvCreat ePOSI TObj ect .

20-8

Histogram

This chapter describes functions that operate on multi-dimensional histograms.

Overview

Histogram is a discrete approximation of stochastic variable probability distribution.
The variable can be both a scalar value and a vector. Histograms are widely used in
image processing and computer vision. For example, one-dimensional histograms can
be used for:

* grayscale image enhancement,

* determining optimal threshold levels (see Threshold Functions),

* selecting color objects via hue histograms back projection (see CamShift), and
other operations.

Two-dimensional histograms can be used, for example, for:

* analyzing and segmenting color images, normalized to brightness (e.g. red-green
or hue-saturation images),

* analyzing and segmenting motion fields (x-y or magnitude-angle histograms),

* analyzing shapes (see cvCal cPGHin Geometry chapter) or textures.

Multi dimensional histograms can be used for:
* content based retrieval (see the function cvCal cEMD),

* bayesian-based object recognition (see [Schiele2000]).

21-1

OpenCV Reference Manual

Histogram 2 1

To store all the types of histograms (1D, 2D, nD), OpenCV introduces special
structure CvHi st ogr amdescribed in Example 21-1.

Example 21-1 CvHistogram Structure Definition

t ypedef struct CvHi stogram

i nt header _size; [/* header's size */
CvHi st Type type; /* type of histogram */
i nt fl ags; /* histogram s flags */
i nt c_di ms; /* histogram s di mension */
i nt di ms[CV_HI ST_MAX_DI M ;

/* every dinmension size */
i nt ndi ms[CV_HI ST_MAX DI M ;

/* coefficients for fast
access to el enent */

/* &a,b,c] = m+ a*nmdins[0] +
b*ndi ns[1] + c*ndi ns[2] */

float* thresh[CV_H ST_MAX DI M;

/* bin boundaries arrays for every

di nensi on */

float* array; /* all the histogramdata, expanded into

the single row */

struct CvNode* root; /* tree — histogramdata */

CvSet * set; /* pointer to nenory storage

(for tree data)
int* chdinms[CV_H ST_MAX DI M ;

/* cache data for fast calculating */

} CvHi st ogram

It is possible to store any histogram either in a dense form (as a multi-dimensional
array) or in a sparse form (now a balanced tree is used), however, it is reasonable to
store 4D (or even 3D) histograms and higher dimensional histograms in a sparse form

and 1D or 2D histograms in a dense form.

The type of histogram representation is passed into histogram creation function and
then it is stored in t ype field of CvHi st ogr am It is possible to use histogram
processing functions from this chapter on histograms created by the user. Use the

function cvMakeHi st Header For Array .

Histograms and Signatures

Histograms represent a simple statistical description of an object, e.g., an image. The
object characteristics are measured during iterating through that object: for example,
color histograms for an image are built from pixel values in one of the color spaces.

inte|® 21-2

OpenCV Reference Manual Histogram 2 1

We quantize all the possible values of that multi-dimensional characteristic on each
coordinate. If the quantized characteristic can take different k, values on the first
coordinate, k, Vanlues on second, and k,, on the last one, the resulting histogram has

the size si ze = [ki -

i=1

The histogram can be viewed as a multi-dimensional array. Each dimension
corresponds to a certain object feature. An array element with coordinates [i 1,i 5 ...
i], otherwise called a histogram bin, contains a number of measurements done for the
object with quantized value equal to i ; on first coordinate, i , on the second
coordinate, and so on. We can compare objects using their histograms:

DL, (HK) =>|h; =k |, or
[

D(H, K) = J(A—K) AR —K).

But these methods suffer from several disadvantages. D sometimes gives too small
difference when there is no exact correspondence between histogram bins, that is, if
the bins of one histogram are slightly shifted. On the other hand, D,_ gives too large

difference due to cumulative property.

Another drawback of pure histograms is large space required, especially for
higher-dimensional characteristics. The solution is to store not all histogram bins, but
only the ones that are non-zero, or just the ones with the highest score. Generalization
of histograms is termed signature and defined in the following way:

1. Characteristic values with rather fine quantization are gathered.

2. Only non-zero bins are dynamically stored.

This can be implemented using hash-tables, balanced trees, or other “sparse”
structures. After processing, a set of “clusters” is obtained. Each of them is
characterized by the coordinates and weight, that is, a number of measurements in the
neighborhood. Removing clusters with small weight can further reduce the signature
size. Although these structures cannot be compared using formulas written above,
there exists a robust comparison method described in [RubnerJan98] called Earth
Mover Distance.

21-3

OpenCV Reference Manual Histogram 2 1

Earth Mover Distance (EMD)

Physically, two signatures can be viewed as two systems - earth masses, spread into
several localized pieces. Each piece, or cluster, has some coordinates in space and
weight, that is, the earth mass it contains. The distance between two systems can be
measured then as a minimal work needed to get the second configuration from the first
or vice versa. To get metric, invariant to scale, the result is to be divided by the total
mass of the system.

Mathematically, it can be formulated as follows.

Consider msuppliers and n consumers. Let the capacity of i th supplier be x; and the
capacity of j ! consumer be y; . Also, let the ground distance between i th supplier and
j th consumer be c; ;. The following restrictions must be met:

X; 20,yj 20,0”- >0,

PRIEDRIE
ds i < nJ1 0<j <n.
Then the task is to find the flow matrix |f;;||, where f; is the amount of earth,

transferred from i th supplier to j th consumer. This flow must satisfy the restrictions
below:

f,;20,

zfi,j <X,
[

2hig =y
and minimize the overall cost:
m nZZci y ,fi‘j .

If |f ii j HJ is the optimal flow, then Earth Mover Distance is defined as

22Cf

EMD(x,y) = -4

ESh

tel.

21-4

OpenCV Reference Manual Histogram 2 1

The task of finding the optimal flow is a well known transportation problem, which
can be solved, for example, using the simplex method.

Example Ground Distances

As shown in the section above, physically intuitive distance between two systems can
be found if the distance between their elements can be measured. The latter distance is
called ground distance and, if it is a true metric, then the resultant distance between
systems is a metric too. The choice of the ground distance depends on the concrete task
as well as the choice of the coordinate system for the measured characteristic. In
[RubnerSept98], [RubnerOct98] three different distances are considered.

The first is used for human-like color discrimination between pictures. CIE Lab
model represents colors in a way when a simple Euclidean distance gives true
human-like discrimination between colors. So, converting image pixels into CIE
Lab format, that is, representing colors as 3D-vectors (L,a,b), and quantizing them
(in 25 segments on each coordinate in [RubnerSept98]), produces a color-based
signature of the image. Although in experiment, made in [RubnerSept98], the
maximal number of non-zero bins could be 25x25x25 = 15625, the average
number of clusters was ~8.8, that is, resulting signatures were very compact.

The second example is more complex. Not only the color values are considered,
but also the coordinates of the corresponding pixels, which makes it possible to
differentiate between pictures of similar color palette but representing different
color regions placements: e.g., green grass at the bottom and blue sky on top vs.
green forest on top and blue lake at the bottom. 5D space is used and metric is:
[(AL)? + (Ba)® + (Ab)% + A ((Ax) % + (Ay))] ve , where A regulates importance of the
spatial correspondence. When A = 0, the first metric is obtained.

The third example is related to texture metrics. In the example Gabor transform is
used to get the 2D-vector texture descriptor (I,), which is a log-polar
characteristic of the texture. Then, no-invariance ground distance is defined as:
d((1 M), (I M) = A [+alam, Al = min(l =1, L[l ;=1), Am = |m —m,
where o is the scale parameter of Gabor transform, L is the number of different
angles used (angle resolution), and Mis the number of scales used (scale
resolution). To get invariance to scale and rotation, the user may calculate minimal
EMD for several scales and rotations:

(hmy). (1o)

21-5

OpenCV Reference Manual Histogram 2 1

EMD(t ,t,) =mn END(t l,t2,l 0 M)
—M< rrb < M
where d is measured as in the previous case, but Al and Am look slightly different:

Al =min(l =1 ,+1 o(modL)|,L—[l ;=1 ,+1 o(modL)[), Am = |m, —m, +m .

Lower Boundary for EMD

If ground distance is metric and distance between points can be calculated via the norm
of their difference, and total suppliers’ capacity is equal to total consumers’ capacity,
then it is easy to calculate lower boundary of EMD because:

ZZ e fi ZZHD. —qlti g = ZZle =~ [
Z[]Zfi,ij Z[Zﬁ JJql

e latter expression is the distance between the mass centers of the

Pi =i [fi

= szi Pi =20V qu
As it can be seen, t
systems.

Poor candidates can be easily rejected using this lower boundary for EMD distance,
when searching in the large image database.

Reference

cvCreateHist

Creates histogram.

CvHi stogrant CreateHi st (int c_dins, int* dins, CvH st Type type,
float** ranges=0, int unifornel);

c_di ms Number of histogram dimensions.

di ms Array with numbers of bins per each dimension.

inte|® 21-6

OpenCV Reference Manual

Histogram 2 1

type

ranges

uni form

Discussion

Histogram representation format: CV_H ST_ARRAY means that
histogram data is represented as an array; CV_HI ST_TREE means that
histogram data is represented as a sparse structure, that is, the
balanced tree in this implementation.

2-D array, or more exactly, an array of arrays, of bin ranges for every
histogram dimension. Its meaning depends on the uniform
parameter value.

Ifnot 0, the histogram has evenly spaced bins and every element of

ranges array is an array of two numbers - lower and upper

boundaries for the corresponding histogram dimension. If the

parameter is equal to 0, then i th element of ranges array

contains di ms[i] +1 elements: | (0),u(0) == 1(1),u(l) ==1(2),
., u(n-1),where | (i) and u(i) are lower and upper

boundaries for the i th bin, respectively.

The function cvCreat eHi st creates a histogram of the specified size and returns the
pointer to the created histogram. If the array r anges is 0, the histogram bin ranges
must be specified later via the function cvSet Hi st Bi nRanges.

cVReleaseHist

Releases histogram header and underlying data.

voi d cvRel easeHi st(CvHi stogrant* hist);

hi st

Discussion

Pointer to the released histogram.

The function cvRel easeHi st releases the histogram header and underlying data. The
pointer to histogram is cleared by the function. If * hi st pointer is already NULL, the
function has no effect.

21-7

OpenCV Reference Manual Histogram 2 1

cvMakeHistHeaderForArray

Initializes histogram header.

voi d cviMakeH st Header For Array(i nt c_di s, i nt* di ms, CvHi st ogrant hi st,
float* data, float** ranges=0,int uniforn¥l);

c_di ms Histogram dimension number.

di ms Dimension size array.

hi st Pointer to the histogram to be created.

data Pointer to the source data histogram.

ranges 2D array of bin ranges.

uni form If not 0, the histogram has evenly spaced bins.
Discussion

The function cvMakeHi st Header For Arr ay initializes the histogram header and sets
the data pointer to the given value dat a. The histogram must have the type

CV_HI ST_ARRAY. If the array r anges is 0, the histogram bin ranges must be specified
later via the function cvSet Hi st Bi nRanges.

cvQueryHistValue 1D

Queries value of histogram bin.

float cvQueryH stValue_1D(CvHi stogrant hist, int idx0);
hi st Pointer to the source histogram.
i dx0 Index of the bin.

inte|® 21-8

OpenCV Reference Manual Histogram 2 1

Discussion

The function cvQuer yH st Val ue_1D returns the value of the specified bin of 1D
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0.

cvQueryHistValue 2D

Queries value of histogram bin.

fl oat cvQueryHi stVal ue_2D(CvHi stogrant hist, int idx0, int idxl);

hi st Pointer to the source histogram.

i dx0 Index of the bin in the first dimension.

i dx1 Index of the bin in the second dimension.
Discussion

The function cvQuer yH st Val ue_2D returns the value of the specified bin of 2D
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0.

cvQueryHistValue 3D

Queries value of histogram bin.

float cvQueryH stValue_3D(CvHi stogrant hist, int idxO, int idx1, int idx2);

hi st Pointer to the source histogram.

i dx0 Index of the bin in the first dimension.

i dx1 Index of the bin in the second dimension.
i dx2 Index of the bin in the third dimension.

inte|® 21-9

OpenCV Reference Manual Histogram 2 1

Discussion

The function cvQuer yH st Val ue_3D returns the value of the specified bin of 3D
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0.

cvQueryHistValue _nD

Queries value of histogram bin.

fl oat cvQueryHi stVal ue_nD(CvHi stogrant hist, int* idx);

hi st Pointer to the source histogram.
i dx Array of bin indices, that is, a multi-dimensional index.
Discussion

The function cvQuer yH st Val ue_nDreturns the value of the specified bin of nD
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0. The function is the most general in the family of
Quer yHi st Val ue functions.

cvGetHistValue 1D

Returns pointer to histogram bin.

float* cvGet Hi stVal ue_1D(CvHi stogrant hist, int idx0);
hi st Pointer to the source histogram.

i dx0 Index of the bin.

inte|® 21-10

OpenCV Reference Manual Histogram 2 1

Discussion

The function cvGet Hi st Val ue_1D returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

cvGetHistValue 2D

Returns pointer to histogram bin.

float* cvGet Hi stVal ue_2D(CvHi stogrant hist, int idx0, int idxl);

hi st Pointer to the source histogram.

i dx0 Index of the bin in the first dimension.

i dx1 Index of the bin in the second dimension.
Discussion

The function cvGet Hi st Val ue_2D returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

cvGetHistValue 3D

Returns pointer to histogram bin.

float* cvGetH stVal ue_3D(CvH stogrant hist,int idx0, int idx1l, int idx2);

hi st Pointer to the source histogram.

i dx0 Index of the bin in the first dimension.

i dx1 Index of the bin in the second dimension.
i dx2 Index of the bin in the third dimension.

inte|® 21-11

OpenCV Reference Manual Histogram 2 1

Discussion

The function cvGet Hi st Val ue_3D returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

cvGetHistValue_nD

Returns pointer to histogram bin.

float* cvGet Hi stValue_nD(CvH stogrant hist, int* idx);

hi st Pointer to the source histogram.
i dx Array of bin indices, that is, a multi-dimensional index.
Discussion

The function cvGet Hi st Val ue_nD returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

cvGetMinMaxHistValue

Finds minimum and maximum histogram bins.

voi d cvGet M nMaxHi st Val ue(CvHi stogrant hist, float* mnVal, float* maxVal,
int* mnldx=0, int* maxldx=0);

hi st Pointer to the histogram.

mi nval Pointer to the minimum value of the histogram; can be NULL.
maxVal Pointer to the maximum value of the histogram; can be NULL.

m nl dx Pointer to the array of coordinates for minimum. If not NULL, must

have hi st - >c_di nms elements.

intel® 21-12

OpenCV Reference Manual Histogram 2 1

max| dx Pointer to the array of coordinates for maximum. If not NULL, must
have hi st - >c_di s elements.
Discussion

The function cvGet M nMaxHi st Val ue finds the minimum and maximum histogram
bins and their positions.

cvNormalizeHist

Normalizes histogram.

void cvNormalizeHi st(CvH stogrant hist, float factor);

hi st Pointer to the histogram.
fact or Normalization factor.
Discussion

The function cvNor nal i zeHi st normalizes the histogram, such that the sum of
histogram bins becomes equal to f act or.

cvThreshHist
Thresholds histogram.

voi d cvThreshH st (CvHi stogrant hist, float thresh);

hi st Pointer to the histogram.
t hresh Threshold level.
Discussion

The function cvThreshHi st clears histogram bins that are below the specified level.

int9|® 21-13

OpenCV Reference Manual Histogram 2 1

cvCompareHist

Compares two histograms.

doubl e cvConpar eHi st (CvHi stogrant histl, CvHi stogrant hist2, CvConpareMethod

nmet hod) ;

hist1l First histogram.

hi st 2 Second histogram.

met hod Comparison method; may be any of those listed below:
* CV_COW_CORREL;
* CV_COW_CH SQR;
* CV_COWP_I NTERSECT.

Discussion

The function cvConpar eH st compares two histograms using specified method.

Z‘ii(’i

/izlafﬂizoiz’

2
(q; =v;)
qi +Vi

CV_COW_CORREL result =

2

CV_COVWP_CHI SQRresult = %

CV_COMP_I NTERSECT resul t = $min(q;, v,).

The function returns the comparison result.

intel® 21-14

OpenCV Reference Manual Histogram 2 1

cvCopyHist

Copies histogram.

voi d cvCopyHi st(CvH stogrant src, CvH stogrant* dst);

src Source histogram.
dst Pointer to destination histogram.
Discussion

The function cvCopyHi st makes a copy of the histogram. If the second histogram
pointer *dst is null, it is allocated and the pointer is stored at *dst . Otherwise, both
histograms must have equal types and sizes, and the function simply copies the source
histogram bins values to destination histogram.

cvSetHistBinRanges
Sets bounds of histogram bins.

voi d cvSet H st Bi nRanges(CvHi stogrant hist, float** ranges, int unifornmel);

hi st Destination histogram.

ranges 2D array of bin ranges.

uni form If not 0, the histogram has evenly spaced bins.
Discussion

The function cvSet Hi st Bi nRanges is a stand-alone function for setting bin ranges

in the histogram. For more detailed description of the parameters r anges and uni f or m
see cvCr eat eHi st function, that can initialize the ranges as well. Ranges for
histogram bins must be set before the histogram is calculated or backproject of the
histogram is calculated.

21-15

OpenCV Reference Manual Histogram 2 1

cvCalcHist
Calculates histogram of image(s).

void cvCal cH st(IpllInage** ing, CvHi stogrant hist, int doNotC ear=0,
I pl I mage* mask=0);

i Ny Source images.
hi st Pointer to the histogram.
doNot Cl ear Clear flag.

mask Mask; determines what pixels of the source images are considered in
process of histogram calculation.

Discussion

The function cvCal cHi st calculates the histogram of the array of single-channel
images. If the parameter doNot O ear is 0, then the histogram is cleared before
calculation; otherwise the histogram is simply updated.

cvCalcBackProject
Calculates back project.

voi d cvCal cBackProject(I|pllnmage** inmg, |pllmge* dstlng, CvHi stogran® hist);

i ng Source images array.
dst | ng Destination image.
hi st Source histogram.
Discussion

The function cvCal cBackProj ect calculates the back project of the histogram. For
each group of pixels taken from the same position from all input single-channel images
the function puts the histogram bin value to the destination image, where the

21-16

OpenCV Reference Manual Histogram 2 1

coordinates of the bin are determined by the values of pixels in this input group. From
the statistical point of view, an output image pixel value characterizes probability of
the corresponding input pixels group belonging to an object, whose local features
distribution histogram is used.

For example, to find a red object in the picture the procedure is as follows:

1. Calculate a hue histogram for the red object assuming the image contains only
this object. The histogram is likely to have a strong maximum, corresponding
to red color.

2. Calculate back project using the histogram and get the picture, where bright
pixel corresponds to typical colors (for example, red) in the searched object.

3. Find connected components in the resulting picture and choose the right
component using some additional criteria, for example, the largest connected
component.

cvCalcBackProjectPatch
Calculates back project patch of histogram.

voi d cvCal cBackProj ect Pat ch(| pl I mage** i ng, |pl | mage* dst, CvSi ze pat chSi ze,

CvHi

stogrant hist, CvConpareMethod nethod, float nornfactor);
i g Source images array.

dst Destination image.

pat chSi ze Size of patch slid though the source image.

hi st Probabilistic model.

met hod Method of comparison.

nor nfFact or Normalization factor.

Discussion

The function cvCal cBackProj ect Pat ch calculates back projection by comparing
histograms of the source image patches with the given histogram. Taking measurement
results from some image at each location over ROI creates an array i ng. These results

21-17

OpenCV Reference Manual Histogram 2 1

might be one or more of hue, x derivative, y derivative, Laplacian filter, oriented
Gabor filter, etc. Each measurement output is collected into its own separate image.
The i mg image array is a collection of these measurement images. A
multi-dimensional histogram hi st is constructed by sampling from the i ng image
array. The final histogram is normalized. The hi st histogram has as many dimensions
as elements in i ng array.

Each new image is measured and then converted into an i ng image array over a chosen
ROI. Histograms are taken from this i g image in an area covered by a “patch” with
anchor at center as shown in Figure 21-1. The histogram is normalized using the
parameter nor m f act or so that it may be compared with hi st . The calculated
histogram is compared to the model histogram; hi st uses the function cvConpar eHi st
(the parameter met hod). The resulting output is placed at the location corresponding to
the patch anchor in the probability image dst . This process is repeated as the patch is
slid over the ROI. Subtracting trailing pixels covered by the patch and adding newly
covered pixels to the histogram can make many calculations redundant.

21-18

OpenCV Reference Manual Histogram 2 1

Figure 21-1 Back Project Calculation by Patches

img
Patch images

ROI

Each image of the image array i ng shown in the figure stores the corresponding
element of a multi-dimensional measurement vector. Histogram measurements are
drawn from measurement vectors over a patch with anchor at the center. A
multi-dimensional histogram hi st is used via the function cvConpar eHi st to
calculate the output at the patch anchor. The patch is slid around until the values are
calculated over the whole ROI.

int9|® 21-19

OpenCV Reference Manual Histogram 2 1

cvCalcEMD

Computes earth mover distance.

void cvCal cEMD(fl oat* signaturel, int sizel, float* signature2, int size2, int
di ns, CvDi sType distType, float (*dist_func)(float* f1, float* f2, void*
user_param), float* end, float* |owerBound, void* user_param;

signaturel First signature, array of si zel * (dins + 1) elements.

si gnat ur e2 Second signature, array of size2 * (dins + 1) elements.

di ns Number of dimensions in feature space.

di st Type Metrics used. CV_DI ST L1, CV_DI ST L2, and CV_DI ST_C stand for

one of the standard metrics. CV_DI ST_USER means that a
user-defined function is used as the metric. The function takes two
coordinate vectors and user parameter and returns the distance
between two vectors.

end Pointer to the calculated end distance.
| ower Bound Pointer to the calculated lower boundary.
Discussion

The function cvCal cEMD computes earth mover distance and/or a lower boundary of
the distance. The lower boundary can be calculated only if di ms > 0, and it has sense
only if the metric used satisfies all metric axioms. The lower boundary is calculated
very fast and can be used to determine roughly whether the two signatures are far
enough so that they cannot relate to the same object. If the parameter di ns is equal to
0, then si gnat ur el and si gnat ur e2 are considered simple /D histograms. Otherwise,
both signatures must look as follows:

(weight _i0,x0_i0,x1_i0,...,x(dins-1)_i0,
weight i1,x0_i1,x1 i1,...,x(dinms-1)_il1,
wei ght _(sizel-1),x0_(sizel-1),x1 (sizel-1, ...,x(dinms-1)_(sizel-1)),

21-20

OpenCV Reference Manual Histogram 2 1

where wei ght _i k is the weight of i k cl ust er, while x0_i k,..., x(di ns- 1) _i k are
coordinates of the cluster i k.

If the parameter | ower _bound is equal to 0, only end is calculated. If the calculated
lower boundary is greater than or equal to the value stored at this pointer, then the true
end is not calculated, but is set to that | ower _bound.

21-21

OpenCV Reference Manual Histogram 2 1

intel® 21-22

Gesture Recognition 22

This chapter describes specific functions for the static gesture recognition technology.

Overview

The gesture recognition algorithm can be divided into four main components as
illustrated in Figure 22-1.

The first component computes the 3D arm pose from range image data that may be
obtained from the standard stereo correspondence algorithm. The process includes 3D
line fitting, finding the arm position along the line and creating the arm mask image.

Figure 22-1 Gesture Recognition Algorithm

inte|® 22-1

OpenCV Reference Manual Gesture Recognition 2 2

The second component produces a frontal view of the arm image and arm mask
through a planar homograph transformation. The process consists of the homograph
matrix calculation and warping image and image mask (See Figure 22-2).

The third component segments the arm from the background based on the probability
density estimate that a pixel with a given hue and saturation value belongs to the arm.
For this 2D image histogram, image mask histogram, and probability density
histogram are calculated. Following that, initial estimate is iteratively refined using the
maximum likelihood approach and morphology operations (See Figure 22-3).

Figure 22-2 Arm Location and Image Warping

22-2

OpenCV Reference Manual Gesture Recognition 2 2

Figure 22-3 Arm Segmentation by Probability Density Estimation

The fourth step is the recognition step when normalized central moments or seven Hu
moments are calculated using the resulting image mask. These invariants are used to
match masks by the Mahalanobis distance metric calculation.

The functions operate with specific data of several types. Range image data is a set of
3D points in the world coordinate system calculated via the stereo correspondence
algorithm. The second data type is a set of the original image indices of this set of 3D
points, that is, projections on the image plane. The functions of this group enable the
user:

to locate the arm region in a set of 3D points (the functions cvFi ndHandRegi on,
cvFi ndHandRegi onA),

create image mask from a subset of 3D points and associated subset indices around
the arm center (the function cvCr eat eHandMask),

calculate the homography matrix for the initial image transformation from the
image plane to the plane defined by the frontal arm plane (the function
cvCal cl mageHonogr aphy),

and calculate the probability density histogram for the arm location (the function
cvCal cProbDensi ty).

22-3

OpenCV Reference Manual Gesture Recognition 2 2

Reference

cvFindHandRegion

Finds arm region in 3D range image data.

voi d cvFi ndHandRegi on(CvPoi nt 3D32f* points, int count, CvSeq* indexs, float*
line, CvSize2D32f size, int flag, CvPoint3D32f* center, CvMenftorage*
storage, CvSeqg** nunbers);

poi nts Pointer to the input 3D point data.

count Numbers of the input points.

i ndexs Sequence of the input points indices in the initial image.
line Pointer to the input points approximation line.

si ze Size of the initial image.

flag Flag of the arm orientation.

center Pointer to the output arm center.

st or age Pointer to the memory storage.

nunber s Pointer to the output sequence of the points indices.
Discussion

The function cvFi ndHandRegi on finds the arm region in 3D range image data. The
coordinates of the points must be defined in the world coordinates system. Each input
point has user-available transform indices in the initial image (i ndexs). The function
finds the arm region along the approximation line from the left, if fI ag = 0, or from
the right, if f1 ag = 1, in the points maximum accumulation by the points projection
histogram calculation. Also the function calculates the center of the arm region and the
indices of the points that lie near the arm center. The function cvFi ndHandRegi on
assumes that the arm length is equal to about 0.25m in the world coordinate system.

inte|® 22-4

OpenCV Reference Manual Gesture Recognition 2 2

cvFindHandRegionA

Finds arm region in 3D range image data and
defines arm orientation.

voi d cvFi ndHandRegi onA(CvPoi nt 3D32f * points, int count, CvSeq* indexs, float*
line, CvSize2D32f size, int jCenter, CvPoint3D32f* center, CvMenttorage*
storage, CvSeqg** nunbers);

poi nts Pointer to the input 3D point data.

count Number of the input points.

i ndexs Sequence of the input points indices in the initial image.
l'ine Pointer to the input points approximation line.

si ze Size of the initial image.

j Center Input j -index of the initial image center.

center Pointer to the output arm center.

st or age Pointer to the memory storage.

nunber s Pointer to the output sequence of the points indices.
Discussion

The function cvFi ndHandRegi onA finds the arm region in the 3D range image data
and defines the arm orientation (left or right). The coordinates of the points must be
defined in the world coordinates system. The input parameter j Cent er is the index j
of the initial image center in pixels (wi dt h/ 2). Each input point has user-available
transform indices on the initial image (i ndexs). The function finds the arm region
along approximation line from the left or from the right in the points maximum
accumulation by the points projection histogram calculation. Also the function
calculates the center of the arm region and the indices of points that lie near the arm
center. The function cvFi ndHandRegi onA assumes that the arm length is equal to
about 0.25m in the world coordinate system.

inte|® 22-5

OpenCV Reference Manual Gesture Recognition 2 2

cvCreateHandMask

Creates arm mask on image plane.

voi d cvCreat eHandMask(CvSeq* nunbers, |pllnmage *i ng_nmask, CvRect *roi);

nunber s Sequence of the input points indices in the initial image.
i mg_mask Pointer to the output image mask.

r oi Pointer to the output arm ROI.

Discussion

The function cvCreat eHandMask creates the arm mask on the image plane. The
pixels of the resulting mask associated with the set of indices on the initial image

(i ndexs) will have the maximum unsigned char value (255). All remaining pixels will
have the minimum unsigned char value (0). The output image mask (i mg_nask) has to
have the | PL_DEPTH_8U type and the number of channels is 1.

cvCalclmageHomography

Calculates homography matrix.

voi d cvCal cl nageHonogr aphy(float *1ine, CvPoint3D32f* center, float
intrinsic[3][3], float honmpbgraphy[3][3]);

l'ine Pointer to the input 3D line.
cent er Pointer to the input arm center.
intrinsic Matrix of the intrinsic camera parameters.

honogr aphy Output homography matrix.

inte|® 22-6

OpenCV Reference Manual Gesture Recognition 2 2

Discussion

The function cvCal cl mageHonogr aphy calculates the homograph matrix for the
initial image transformation from image plane to the plane, defined by 3D arm line
(See Figure 22-1). If n;=(nx, ny) and n,=(nx, nz) are coordinates of the normals of
the 3D line projection of planes XY and Xz, then the result image homography matrix is
calculated as H = AR, + (I3, 3—R;) (X, [10,0,1]) A" , where R, is the 3x3

matrixR, = R, [R,, and

))) _ T Ty T T,
Ry = [y g Ny U Ry = [0yl = [0,0,11 0, = 10,0,0 %, = £ = h,ﬁ’,l} ,

where (T,, T,, T,) is the arm center coordinates in the world coordinate system. A s the
intrinsic camera parameters matrix

f, 0 ¢,
A= .
0f,c
001
The diagonal entries f, and f, are the camera focal length in units of horizontal and

vertical pixels and the two remaining entries c,, ¢, are the principal point image
coordinates.

cvCalcProbDensity

Calculates arm mask probability density on
image plane.

voi d cvCal cProbDensity (CvHi stogrant hist, CvHi stogrant hist_nask,

CvH st ogrant hist_dens);
hi st Input image histogram.
hi st _mask Input image mask histogram.
hi st _dens Result probability density histogram.
intgl. 2.7

OpenCV Reference Manual Gesture Recognition 2 2

Discussion

The function cvCal cProbDensity calculates the arm mask probability density from
the two 2D-histograms. The input histograms have to be calculated in two channels on
the initial image. If {h;} and {hm} K 1<i<B; 1<j<B; are input histogram and mask
histogram respectively, then the result probability density histogram p;; is calculated
as

m:.
1 [255,if h;#0,
_)M
Pi = J0,if hy =0,

255, if m; > hij

So the values of the p;; are between 0 and 255.

cvMaxRect

Calculates the maximum rectangle.

voi d cviMaxRect (CvRect* rectl, CvRect* rect2, CvRect* max_rect);

rectl First input rectangle.

rect?2 Second input rectangle.
max_rect Result maximum rectangle.
Discussion

The function cvMaxRect calculates the maximum rectangle for two input rectangles
(Figure 22-4).

22-8

OpenCV Reference Manual Gesture Recognition 2 2

Figure 22-4 Maximum Rectangular for Two Input Rectangles

Maximum
rectangle

inte|® 22-9

OpenCV Reference Manual Gesture Recognition 2 2

intel® 22-10

Matrix Operations

This chapter describes functions for matrix operations.

Overview

OpenCV introduces special type CvMat for storing real single-precision or
double-precision matrices. Operations supported include basic matrix arithmetics,
eigen problem solution, SVD, 3D geometry and recognition-specific functions. To
reduce time call overhead the special type CvMat Ar r ay (array of matrices) and support
functions are also introduced.

Example 23-1 CvMat Structure Definition

t ypedef struct Cviat
{

int rows; /!l nunber of rows
int cols; /!l nunber of cols
Cvivat Type type; [/ type of matrix
int step; /1 not used

uni on

float* fl; //pointer to the float data
doubl e* db; //pointer to doubl e-precision data

} dat a;
} CvVat

Example 23-2 CvMatArray Structure Definition

typedef struct CvMatArray
{

int rows; //nunber of rows

int cols; [//nunber pf cols

int type; [/ type of matrices

int step; // not used

int count; // number of matrices in aary

inte|® 23-1

OpenCV Reference Manual Matrix Operations 2 3

Example 23-2 CvMatArray Structure Definition (continued)

uni on

float* fl;
float* db;
}data; // pointer to matrix array data
} Cvivat Array

Reference

cvmAlloc

Allocates memory for matrix data.

void cvmAll oc (Cvivat* mat);

mat Pointer to the matrix for which memory must be allocated.

Discussion

The function cvmAl | oc allocates memory for matrix data.

cvmAllocArray

Allocates memory for matrix array data.

void cvmAl | ocArray (CvMatArray* natAr);

mat Ar Pointer to the matrix array for which memory must be allocated.

Discussion

The function cvmAl | ocArray allocates memory for matrix array data.

inte|® 23-2

OpenCV Reference Manual Matrix Operations 2 3

cvmFree

Frees memory allocated for matrix data.

void cvnFree (CvMat* matAr);

mat Pointer to the matrix.

Discussion

The function cvnfree releases the memory allocated by the function cvmAl | oc.

cvmFreeArray

Frees memory allocated for matrix array data.

void cvnFreeArray (Cviat* rmatAr);
mat Pointer to the matrix array.
Discussion

The function cvnfreeArray releases the memory allocated by the function
cvmAl | ocArray.

cvmAdd

Computes sum of two matrices.

void cvmAdd (CvMmat* SrcA, CvMat* SrcB, CvMat* Dst);
SrcA Pointer to the first source matrix.

SrcB Pointer to the second source matrix.

i ntel ® 23-3

OpenCV Reference Manual Matrix Operations 2 3

Dst Pointer to the destination matrix.

Discussion
The function cvmAdd adds the matrix Sr cA to SrcB and stores the result in Dst .

(c =a+b,c =a+h).

cvmSub

Computes difference of two matrices.

void cvnSub (CvMat* SrcA, CvMat* SrcB, CvMat* Dst);

SrcA Pointer to the first source matrix.
SrcB Pointer to the second source matrix.
Dst Pointer to the destination matrix.
Discussion

The function cvnSub subtracts the matrix Sr ¢cB from the matrix Sr cA and stores the
result in Dst .

(c =a-b,c = a-b).

cvmsScale

Multiplies matrix by scalar value.

void cvnScale (CvMat* Src, CvhMat* Dst, double val ue);

Src Pointer to the source matrix.
Dst Pointer to the destination matrix.
val ue Factor.

i ntel ® 23-4

OpenCV Reference Manual

Matrix Operations 2 3

Discussion

The function cvntcal e multiplies every element of the matrix by a scalar value

C=aac = 0a.

cvmDotProduct

Calculates dot product of two vectors in
Euclidian metrics.

doubl e cvnDot Product (CvMat* Srcl, CvMat* Src2);

Srcl Pointer to the first source vector.
Src2 Pointer to the second source vector.
Discussion

The function cvnDot Product calculates and returns the Euclidean dot product of two

vectors.
N
DP = Z ab; .
i=1
cvmCrossProduct

Calculates cross product of two 3D vectors.

voi d cvnCrossProduct(CvMat* Srcl, CvMat* Src2, CviMat* Dest);

Srcl Pointer to the first source vector.
Src2 Pointer to the second source vector.
Dest Pointer to the destination vector.

inte|® 23-5

OpenCV Reference Manual Matrix Operations 2 3

Discussion

The function cvnCr ossProduct calculates the cross product of two 3-D vectors:

¢ = axb (¢; = ayby—agh, ¢, = azb; —a by, c3 = a;b,—ayb;).

cvmMul

Multiplies matrices.

void cvmvul (CvMat* SrcA, CvMat* SrcB, CvMwat* Dst);

SrcA Pointer to the first source matrix.
SrcB Pointer to the second source matrix.
Dst Pointer to the destination matrix
Discussion

The function cvnvul multiplies Sr cA by Sr cB and stores the result in Dst .
C = AB, C; = Y ABy -
k

cvmMulTransposed

Calculates product of matrix and transposition.

voi d cvmvul Transposed (CvMat* Src, Cviat* Dst, Int order);

Src Pointer to the source matrix.
Dest Mat r Pointer to the destination matrix.
O der Order of multipliers.

inte|® 23-6

OpenCV Reference Manual

Discussion

The function cvmivul Tr ansposed calculates the product of Srchat r and its
transposition.

The function evaluates B = A'A if Or der is non-zero, B = AA" otherwise.

cvmTranspose

Transposes matrix.

voi d cvnilranspose (CvMat* Src, Cviat*Dst);

Src Pointer to the source matrix.
Dst Pointer to the destination matrix.
Discussion

The function cvnilr anspose transposes Sr ¢ and stores result in Dst .
T
B=A,B;=A;.

cvminvert

Inverses matrix.

void cvm nvert (Cvivat* Src, CvMat*Dst);

Src Pointer to the source matrix.
Dst Pointer to the destination matrix.
Discussion

The function cvmi nvert inverts Src and stores the result in Dst .

B=A', AB=BA=1,

23-7

Matrix Operations 2 3

OpenCV Reference Manual Matrix Operations 2 3

cvmTrace

Returns trace of matrix.

doubl e cvnmlrace (CvMat* mat);

mat Pointer to the source matrix.

Discussion

The function cvnilr ace returns the sum of diagonal elements of the matrix mat .

cvmDet

Returns determinant of matrix.

doubl e cvnDet (CvMat* mat);

mat Pointer to the source matrix.

Discussion

The function cvnDet returns the determinant of the matrix mat .

cvmCopy

Copies one matrix to another.

void cvnCopy (CvMat* Src, CvMat* Dst);
Src Pointer to the source matrix.

Dest Pointer to the destination matrix.

i ntel ® 23-8

OpenCV Reference Manual

Matrix Operations 2 3

Discussion

The function cvnCopy copies the matrix Sr ¢ to the matrix Dest .

B=AB;=A;.

cvmSetZero_32f

Sets matrix to zero.

voi d cvnBet Zero_32f (Cviat* mat);

mat Pointer to the matrix to be set to zero.

Discussion

The function cvnfet Zer o_32f sets the matrix to zero.

A=0A; =0.

cvmSetldentity

Sets matrix to identity.

void cvnBSetldentity (CvMat* mat);
mat Pointer to the matrix to be set to identity.

Discussion

The function cvnBetldentity setsthe matrix to identity.

A=EA;=5;.

inte|® 23-9

OpenCV Reference Manual Matrix Operations 2 3

cvmMahalonobis

Calculates Mahalonobis distance between

vec

tors.

doubl e cvmvahal onobis (CvMat* SrcA, CvMat* SrcB, CviMat* mat);

SrcA Pointer to the first source vector.
SrcB Pointer to the second source vector.
Mat r Pointer to the weighted matrix.
Discussion

The function cvniahal onobi s calculates the weighted distance between two vectors
and returns it:

Dist = JZZTij(ai—bi)(aj—bj).
i

Here, T matrix is supposed to be inverse of covariation matrix.

cvmSVD

Calculates singular value decomposition.

void cvnSVD (CvMat* Src, CvMat* Orth, CvMat* Diag);

Src Pointer to the source matrix.

Oth Pointer to the matrix where the orthogonal matrix will be saved.
Di ag Pointer to the matrix where the diagonal matrix will be saved.
Discussion

The function cvnBVD decomposes the source matrix to product of two orthogonal and
one diagonal matrices.

23-10

OpenCV Reference Manual Matrix Operations 2 3

A = Al xDiag x Orth, where Al is orthogonal matrix and stored in A, Di ag is diagonal
matrix and Ort h is another orthogonal matrix. If A is square matrix, AL and Ort h will

be the same.
E NOTE. The function cvmSVD destroys the source matrix Src.
= Therefore, in case the source matrix is needed after decomposition,
the user is advised to clone it before running this function.
cvmEigenVvV

Computes eigenvalues and eigenvectors.

void cvnEi genwW (CvMat* Src, CvMat* evects CviMat* eval s, Doubl e eps);

Src Pointer to the source matrix.

evects Pointer to the matrix where eigenvectors must be stored.
eval s Pointer to the matrix where eigenvalues must be stored.
eps Accuracy of diagonalization.

Discussion

The function cvnEi genVW computes the eigenvalues and eigenvectors of the matrix
Src and stores them in the parameters eval s and evect s correspondingly. Jacobi
method is used.

intGIqa 23-11

OpenCV Reference Manual Matrix Operations 2 3

E NOTE. The function cvmEigenVV destroys the source matrix Src.

= Therefore, if the source matrix is needed after eigenvalues have been
calculated, the user is advised to clone it before running the function
cvmEigenVV.

cvmPerspectiveProject

Implements general transform of 3D vector
array.

voi d cvnPerspectiveProject (Cvivat* mat, CvMatArray src, CvMat Array dst);

mat 4x4 matrix.

src Source array of 3D vectors.

dst Destination array of 3D vectors.
Discussion

The function cvrPer spect i veProj ect maps every input 3D vector (x,y,z)' to
(xX/w,y/w,Z/w)" , where

w,wWZz0

' T— X T =
(x,y,z,w) = (mat)x(xy,zl) andw {1,w:o'

intel® 23-12

OpenCV Reference Manual Matrix Operations 2 3

inte|® 23-13

Eigen Objects

This chapter describes functions that operate on eigen objects.

Overview

Let us define an object u = {u;, u,...,u} inthe n-dimensional space as a sequence of
values u; that could be vectors, images, etc. Images may either have or not have ROI.
Let us assume that we have a group of input objects u' = {uil, uiz, s uin} , i =1,..,m;

usually m << n. Averaged, or mean, object a = {0, 0,,...,0} of this group is defined
as follows:

m
- 1 k
0==%u .
1=
k=1

Covariange matrix C= |c;| is a square symmetric matrix mx m:
_ i o
i = > (u-0) Hu-0)
=1

Eigen objects basis ¢ = {eil, eiz, ...,ein} , i =1, ..,m <m of the input objects group
may be calculated using the following relation:

m
i 1 i ko
e: = TZVLE(LJ' -q) ,

M

where A, and V' = {V},V},...,v;} are eigenvalues and the corresponding eigenvectors
of matrix C.

24-1

OpenCV Reference Manual FEigen Objects 2 4

Any input object ui as well as any other object u may be decomposed in the eigen
objects m;- D sub-space. Decomposition coefficients of the object u are:

w =y e: Huy —0y)

=1

Using these coefficients, we may calculate projection u = {u,, u,...,u} of the objectu
to the eigen objects sub-space, or, in other words, restore the object u in that sub-space:

my

o K,
U = > we +q
k=1

Reference

cvCalcCovarMatrixEx

Calculates covariance matrix for group of input
objects.

voi d cvCal cCovarMatri xEx(int nObjects, void* input, int ioFlags, int
i oBuf Si ze, uchar* buffer, void* userData, |pllmge* avg, float*
covarMatrix);

nQObj ect s Number of source objects.

i nput Pointer either to the array of | pl | mage input objects or to the read
callback function (depending on the parameter i oFl ags).

i oFl ags Input/output flags.

i oBuf Si ze Input/output buffer size.

buffer Pointer to input/output buffer.

user Dat a Pointer to the structure that contains all necessary data for the

callback functions.

inte|® 24-2

OpenCV Reference Manual FEigen Objects 2 4

avg Averaged object.

covarMatrix Covariance matrix. Output parameter; must be allocated before the
call.

Discussion

The function cvCal cCovar Mat ri xEx calculates a covariance matrix of the input
objects group using previously calculated averaged object. Depending on i oFl ags
parameter it may be used either in direct access or callback mode. If'i oFl ags is not
CV_EI GOBJ_NO_CALLBACK, buffer must be allocated before the function

cvCal cCovar Mat ri XEX.

cvCalcEigenObjects

Calculates orthonormal eigen basis and
averaged object for group of input objects.

voi d cvCal cEi genQbjects (int nCObjects, void* input, void* output, int ioFlags,
int ioBufSize, void* userData, CvTerntCriteria* calcLimt, Ipllnmage* avg,
float* eigVals;

nQbj ect s Number of source objects.

i nput Pointer either to the array of | pl | mage input objects or to the read
callback function (depending on the parameter i oFl ags).

out put Pointer either to the array of eigen objects or to the write callback
function (depending on the parameter i oFl ags).

i oFl ags Input/output flags.

i oBuf Si ze Input/output buffer size in bytes. The size is zero, if unknown.

user Dat a Pointer to the structure that contains all necessary data for the
callback functions.

cal cLimt Determines conditions for the calculation to be finished.

avg Averaged object.

i ntel ® 24-3

OpenCV Reference Manual FEigen Objects 2 4

eigval s Pointer to the eigenvalues array in the descending order; may be
NULL.

Discussion

The function cvCal cEi genObj ect s calculates orthonormal eigen basis and averaged
object for group of input objects. Depending on i oFl ags parameter it may be used
either in direct access or callback mode. Depending on the parameter cal cLinit,
calculations are finished either if the eigen faces number reaches a certain value or if
the relation between the current and the largest eigenvalues comes down to a certain
value, or any of the above conditions takes place. The value cal cLi ni t - >t ype must
be CV_TERVCRI T_NUMB, CV_TERMCRI T_EPS, or CV_TERMCRI T_NUMB |

CV_TERMCRI T_EPS. The function returns the real values cal cLi m t - >max| t er and
cal cLi m t->epsilon.

Averaged object is also calculated by the function cvCal cEi genQbj ect s, but it must
be created previously. Calculated eigen objects are ordered according to the
corresponding eigenvalues in the descending order.

The parameter ei gVal s may be equal to NULL, if eigenvalues are not needed.

The function cvCal cEi genObj ects uses the function cvCal cCovar Mat ri xEx.

cvCalcDecompCoeff

Calculates decomposition coefficient of input
object.

doubl e cvCal cDeconpCoef f(Ipl I mage* obj, Ipllmage* eiglbj, Ipllnmage* avg);

obj Input object.

ei gObj Eigen object.
avg Averaged object.
Discussion

i ntel @ 24-4

OpenCV Reference Manual FEigen Objects 2 4

The function cvCal cDeconpCoef f calculates one decomposition coefficient of the
input object using the previously calculated eigen object and the averaged object.

cvEigenDecomposite

Calculates all decomposition coefficients for
input object.

voi d cvEi genDeconposite(Ipllmge* obj, int nE glbjs, void* eiglnput, int
i oFl ags, void* userData, |pllmage* avg, float* coeffs);

obj Input object.

nEi gj s Number of eigen objects.

ei gl nput Pointer either to the array of | pl | mage eigen objects or to the read
callback function (depending on the parameter i oFl ags).

i oFl ags Input/output flags.

user Dat a Pointer to the structure that contains all necessary data for the
callback functions.

avg Averaged object.

coeffs Calculated coefficients; output parameter.

Discussion

The function cvEi genDeconposite calculates all decomposition coefficients for the
input object using the previously calculated eigen objects basis and the averaged
object. Depending on i oFl ags parameter it may be used either in direct access or
callback mode.

inte|® 24-5

OpenCV Reference Manual FEigen Objects 2 4

cvEigenProjection

Calculates object projection to the eigen
sub-space.

voi d cvEi genProjection (int nEi glbjs, void* eiglnput, int ioFlags, void*

user

Data, float* coeffs, Ipllmge* avg, |pllmage* proj);

nEi gj s Number of eigen objects.

ei gl nput Pointer either to the array of | pl | mage input objects or to the read
callback function (depending on the parameter i oFl ags).

i oFl ags Input/output flags.

user Dat a Pointer to the structure that contains all necessary data for the
callback functions.

coeffs Previously calculated decomposition coefficients.

avg Averaged object.

pr oj Decomposed object projection to the eigen sub-space.

Discussion

The function cvEi genProj ecti on calculates an object projection to the eigen
sub-space or, in other words, restores an object using previously calculated eigen
objects basis, averaged object, and decomposition coefficients of the restored object.
Depending on i oFl ags parameter it may be used either in direct access or callback
mode.

Use of Functions

The functions of the eigen objects group have been developed to be used for any
number of objects, even if their total size exceeds free RAM size. So the functions may
be used in two main modes.

Direct access mode is the best choice if the size of free RAM is sufficient for all input
and eigen objects allocation. This mode is set if the parameter i oFl ags is equal to
CV_EI GOBJ_NO_CALLBACK. In this case input and output parameters are pointers to

24-6

OpenCV Reference Manual FEigen Objects 2 4

arrays of input (output) objects of I pl | mage* type. The parameters i oBuf Si ze and
user Dat a are not used. An example of the function cvCal cEi genQbj ect s used in
direct access mode is given below.

Example 24-1 Use of function cvCalcEigenObjects in Direct Access Mode

I pl | mage** obj ects;
I pl I mage** ei genObj ect s;
| pl I mage* avg;

float* ei gval s;

CQvSi ze size = cvSize(nx, ny);

if(!'(eigvals = (float*) cvAl loc(nObjects*sizeof(float))))
_ ERROR EXIT__;

if('(avg = cvCreatelmage(size, |PL_DEPTH 32F, 1)))
_ ERROR EXIT__;

for("1=0; i< nObjects; i++)

objects[i] = cvCreatel mage(size, |PL_DEPTH 8U, 1);
ei genObj ects[i] = cvCreatel mage(size, |IPL_DEPTH 32F, 1);
if(!'(objects[i] & eigenOojects[i]))

_ ERROR EXIT__;

}
cvCal cEi genObj ects (nQbjects,
(voi d*) obj ect s,
(voi d*) ei genbj ect s,
CV_El GOBJ_NO_CALLBACK,
01
NULL,
calcLimt,
avg,
eigvals);

The callback mode is the right choice in case when the number and the size of objects
are large, which happens when all objects and/or eigen objects cannot be allocated in
free RAM. In this case input/output information may be read/written and developed by
portions. Such regime is called callback mode and is set by the parameter i oFl ags.
Three kinds of the callback mode may be set:

| oFl ag = CV_EI GOBJ_| NPUT_CALLBACK, only input objects are read by portions;

| oFl ag = CV_EI GOBJ_OQUTPUT_CALLBACK, only eigen objects are calculated and
written by portions;

24-7

OpenCV Reference Manual FEigen Objects 2 4

| oFl ag = CV_ElI GOBJ_BOTH_CALLBACK, Or | oFl ag = CV_El GOBJ_| NPUT_CALLBACK |
CV_EI GOBJ_QUTPUT_CALLBACK, both processestake place. If one of the above modes is
realized, the parameters i nput and out put, both or either of them, are pointers to
read/write callback functions. These functions must be written by the user; their
prototypes are the same:

CvStatus callback_read (int ind, void* buffer, void* userData);

CvStatus call back_wite(int ind, void* buffer, void* userData);

i nd Index of the read or written object.

buf fer Pointer to the start memory address where the object will be
allocated.

user Dat a Pointer to the structure that contains all necessary data for the

callback functions.

The user must define the user data structure which may carry all information necessary
to read/write procedure, such as the start address or file name of the first object on the
HDD or any other device, row length and full object length, etc.

Ifi oFl ag is not equal to CV_EI GOBJ_NO CALLBACK, the function

cvCal cEi genObj ect s allocates a buffer in RAM for objects/eigen objects portion
storage. The size of the buffer may be defined either by the user or automatically. If the
parameter i oBuf Si ze is equal to 0, or too large, the function will define the buffer
size. The read data must be located in the buffer compactly, that is, row after row,
without alignment and gaps.

An example of the user data structure, i/o callback functions, and the use of the
function cvCal cEi genQbj ect s in the callback mode is shown below.

Example 24-2 User Data Structure, 1/0 Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode

/'l User data structure
typedef struct _UserData

i nt obj Length; /* Obj. length (in elenents, not in bytes !) */
i nt step; /* Obj. step (in elements, not in bytes !) */
CvSize size; /* RO or full size */
CvPoi nt roil ndent;
char* r ead_nane;
char* write_nane;

} User Dat a;

In

tel.

24-8

OpenCV Reference Manual FEigen Objects 2 4

Example 24-2 User Data Structure, 1/0O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode (continued)

/'l Read cal |l back function
CvStatus cal l back_read_8u (int ind, void* buffer, void* userData)

int i, j, k=0, m

User Dat a* data = (UserData*)userDat a;
uchar* buff = (uchar*)buf;

char nane[32] ;

FILE *f;

f(ind<O) return CV_StsBadArg;
i f(buf==NULL || userData==NULL) CV_StsNul | Ptr;

for(i=0; i<28; i++)
{

name[i] = data->read_nane[i];

if(nane[i]=="." || nane[i]==" ")) break;
nane[i] = 48 + ind/100;
nane[i +1] = 48 + (i nd%d00)/10;
nane[i +2] = 48 + i nd%.0;

i f((f=fopen(nane, "r"))==NULL) return CV_BadCal | Back;
m = dat a->roi | ndent.y*step + data->roil ndent.x;

for(i=0; i<data->size.height; i++ mt=data->step)

fseek(f, m, SEEK_SET);
for(j=0; j<data->size.width; j++, k++)
fread(buff+k, 1, 1, f);
}

fclose(f);
return CV_Sts;

/1 Wite callback function
E:vStatus cal | back_write_32f (int ind, void* buffer, void* userData)
int i, j, k=0, m
User Dat a* data = (User Dat a*) user Dat a;
float* buff = (float*)buf;
char nane[32];
FILE *f;

if(ind<O) return CV_StsBadArg;
i f(buf==NULL || userData==NULL) CV_StsNul | Ptr;

inte|® 24-9

OpenCV Reference Manual FEigen Objects 2 4

Example 24-2 User Data Structure, 1/0O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode (continued)

for(i=0; i<28; i++)

nane[i] = data->read_nane[i];
if(nane[i]=="." || nane[i]==" ")) break;

——

i f((f=fopen(nane, "w'))==NULL) return CV_BadCal | Back;
m = 4 * (ind*data->o0bjLength + data->roilndent.y*step
+ data->roilndent.Xx);

for(i=0; i<data->size.height; i++ mt=4*data->step)
fseek(f, m, SEEK SET);

for(j=0; j<data->size.width; j++ Kk++)
fwite(buff+k, 4, 1, f);

}
fclose(f);
return CV_Sts;
}
e i

/1l fragnents of the main function
{
int bufSize = 32¥*1024*1024; //32 MB RAMfor i/o buffer
float* avg;
cv UserData data;
cvStatus r;
cvStatus (*read_cal |l back)(int ind, void* buf, void* userData)=
read_cal | back_8u;
cvStatus (*write_callback)(int ind, void* buf, void* userData)=
write_call back_32f;
(cvlnput*) & ead_cal | back;
(cvlnput*)&wite_call back;
(u_r)->data;

cvlnput* u_r
cvlnput* u_w
voi d* read_

void* wite_ (u_w) ->dat a;
dat a- >r e'ad'_n'an'e C= n'pu't o
data->wite_nane = "ei gens”;

avg = (float*)cvAll oc(sizeof (float) * obj_w dth * obj_height);

cvCal cEi genObj ect s(obj _nunber,
read_,
wite_,
CV_EI GOBJ_BOTH_CALLBACK,
buf Si ze,

i ntel ® 24-10

OpenCV Reference Manual FEigen Objects 2 4

Example 24-2 User Data Structure, 1/0O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode (continued)

(voi d*) &dat a,
&imt,

avg,

ei gval);

intel® 24-11

Embedded Hidden Markov

Models 2 5

This chapter describes functions for using Embedded Hidden Markov Models (HMM)
in face recognition task.

Overview

HMM Structures
In order to support embedded models the user must define structures to represent 1D
HMM and 2D embedded HMM model.
t ypedef struct _CvEHW
{
int |evel;
i nt num st at es;
float* transP;
float** obsProb;
uni on
{
CvVEHWESE at e* st at e;
struct _CvEHMWF ehnm
Py
} CvEHMM

Below is the description of the CvEHWM fields:

inte|® 25-1

OpenCV Reference Manual

Embedded Hidden Markov Models 2 5

| evel

num st at es

transP

obsProb

state

ehmm

Level of embedded HMM. If | evel ==0, HMM is most external. In
2D HMM there are two types of HMM: 1 external and several
embedded. External HMM has | evel ==1, embedded HMMs have
| evel ==0.

Number of states in 1D HMM.

State-to-state transition probability, square matrix
(numstatexnumstate).

Observation probability matrix.

Array of HMM states. For the last-level HMM, that is, an HMM
without embedded HMMs, HMM states are “real”.

Array of embedded HMMs. If HMM is not last-level, then HMM
states are not “real” and they are HMMs.

For representation of observations the following structure is defined:

typedef struct CvlngQbslnfo

{

i nt obs_x;
int obs_y;

i nt obs_si ze;

float** obs;

int* state;

int* mx;
} Qvl ngQbsl nf o;

This structure is used for storing observation vectors extracted from 2D image.

obs_x
obs_y
obs_si ze

obs

state

Number of observations in the horizontal direction.
Number of observations in the vertical direction.
Length of every observation vector.

Pointer to observation vectors stored consequently. Number of
vectors is obs_x*obs_y.

Array of indices of states, assigned to every observation vector.

25-2

OpenCV Reference Manual Embedded Hidden Markov Models 2 5

m x Index of mixture component, corresponding to the observation
vector within an assigned state.

Reference

cvCreate2DHMM
Creates 2D embedded HMM.

CvEHMVF cvCreat e2DHVWM int* stateNunber, int* nunmM x, int obsSize);

st at eNunber Array, the first element of the which specifies the number of
superstates in the HMM. All subsequent elements specify the
number of states in every embedded HMM, corresponding to each
superstate. So, the length of the array is st at eNunber [0] +1.

nunmM x Array with numbers of Gaussian mixture components per each
internal state. The number of elements in the array is equal to
number of internal states in the HMM, that is, superstates (or
external states) are not counted here.

obsSi ze Size of observation vectors to be used with created HMM.

Discussion

The function cvCreat e2DHWM returns created structure of the type CvEHMMwith
specified parameters.

cvRelease2DHMM
Releases 2D embedded HMM.

voi d cvRel ease2DHVM CvEHMW * hnm) ;
hmm Address of pointer to HMM to be released.

i ntel ® 25-3

OpenCV Reference Manual Embedded Hidden Markov Models 2 5

Discussion

The function cvRel ease2DHWM frees all memory used by HMM and clears the pointer
to HMM.

cvCreateObsInfo

Creates structure to store image observation
vectors.

Cvl ngGbsl nf o* cvCreat eObsl nfo(CvSi ze numlbs, int obsSize);

nunobs Numbers of observations in the horizontal and vertical directions.
For the given image and scheme of extracting observations the
parameter can be computed via the macro CV_COUNT_OBS(roi,
dct Si ze, delta, numObs), whereroi, dct Si ze, del t a, nunObs
are the pointers to structures of the type CvSi ze. The pointer r oi
means size of r oi of image observed, nunObs is the output
parameter of the macro.

obsSi ze Size of observation vectors to be stored in the structure.

Discussion

The function cvCreat eCbsl nf o creates new structures to store image observation
vectors. For definitions of the parameters r oi , dct Si ze, and del t a see the
specification of the function cvl ngToCbs_DCT.

cVReleaseObsInfo

Releases observation vectors structure.

voi d cvRel easeObsl| nfo(Cvl ngCbsl nfo** obs_info);
obs_info Address of the pointer to the structure Cvl ngQbsl nf o.

i ntel ® 25-4

OpenCV Reference Manual Embedded Hidden Markov Models 2 5

Discussion

The function cvRel easeCbsl nfo frees all memory used by observations and the
clears pointer to the structure Cvl ngQbs| nf o.

cvimgToObs DCT

Extracts observation vectors from image.

voi d cvl ngToCbs_DCT(| pl I mage* image, float* obs, CvSize dctSize, CvSize
obsSi ze, CvSize delta);

i mage Input image.

obs Pointer to consequently stored observation vectors.

dct Si ze Size of image blocks for which DCT coefficients are to be computed.
obsSi ze Number of the lowest DCT coefficients in the horizontal and vertical

directions that will be put into the observation vector.

delta Shift in pixels between two consecutive image blocks in the
horizontal and vertical directions.

Discussion

The function cvl ngToCbs DCT extracts observation vectors, that is, DCT coefficients,
from the image. The user must pass obs_i nf 0. obs as the parameter obs to use this
function with other HMM functions and use the structure obs_i nf o of the

Cvl ngbsi nfo type.

Example 25-1

Cvl mgObsl nf o* obs_i nf o;
CvimgToCbs_DCT(i mage,
obs_info->obs, //!!!
dct Si ze, obsSize, delta);

inte|® 25-5

OpenCV Reference Manual Embedded Hidden Markov Models 2 5

cvUniformimgSegm

Performs uniform segmentation of image
observations by HMM states.

voi d cvUni form ngSegm(Cvl ngQbsl nf o* obs_i nfo, CVEHMW hnmj ;

obs_info Observations structure.
hmm HMM structure.
Discussion

The function cvUni f or i ngSegm segments image observations by HMM states
uniformly (see Figure 25-1 for 2D embedded HMM with 5 superstates and 3, 6, 6, 6, 3
internal states of every corresponding superstate).

Figure 25-1 Initial Segmentation for 2D Embedded HMM

cvInitMixSegm

Segments all observations within every internal
state of HMM by state mixture components.

void cvlnitM xSegm CvlnmgQObslnfo** obs_info_array, int num.ing, CvEHMM hm);
obs_info_array Array of pointers to the observation structures.

num.i g Length of above array.

inte|® 25-6

OpenCV Reference Manual Embedded Hidden Markov Models 2 5

hmm HMM.

Discussion

The function cvl ni t M xSegm takes a group of observations from several training
images already segmented by states and splits a set of observation vectors within every
internal HMM state into as many clusters as number of mixture components in the
state.

cvEstimateHMMStateParams
Estimates all parameters of every HMM state.

voi d cvEsti mat eHWVSt at ePar ans(Cvl ngObsl nf o** obs_info_array, int num.i ng,

CvEHMVF hm) ;
obs_info_array Array of pointers to the observation structures.
num i g Length of the array.
hrmm HMM.
Discussion

The function cvEsti nmat eHMVBt at ePar ans computes all inner parameters of every
HMM state, including Gaussian means, variances, etc.

cvEstimateTransProb

Computes transition probability matrices for
embedded HMM.

voi d cvEsti mat eTransProb(CvlngQbslnfo** obs_info_array, int num.ing, CvEHMW
hnm ;

obs_info_array Array of pointers to the observation structures.

inte|® 25-7

OpenCV Reference Manual Embedded Hidden Markov Models 2 5

num i g Length of above array.
hmm HMM.
Discussion

The function cvEsti mat eTr ansProb uses current segmentation of image
observations to compute transition probability matrices for all embedded and external
HMMs.

cvEstimateObsProb

Computes probability of every observation of
several images.

voi d cvEsti mat eCbsProb(CvlngObsl nfo* obs_i nfo, CvEHMM hmm);

obs_info Observation structure.
hnmm HMM structure.
Discussion

The function cvEsti mat eObsPr ob computes Gaussian probabilities of each
observation to occur in each of the internal HMM states.

cvEViterbi
Executes Viterbi algorithm for embedded HMM.

Fl oat cvEViterbi (CvlngQbsl nfo* obs_info, CvEHMM hm);
obs_info Observation structure.
hmm HMM structure.

i ntel ® 25-8

OpenCV Reference Manual Embedded Hidden Markov Models 2 5

Discussion

The function cvEVi terbi executes Viterbi algorithm for embedded HMM. Viterbi
algorithm evaluates the likelihood of the best match between given image observations
and given HMM and performs segmentation of image observations by HMM states.
The segmentation is done on the basis of the match found.

cvMixSegmL2

Segments observations from all training images
by mixture components of newly assigned states.

voi d cvM xSegnlL2(CvlmgQoslnfo** obs_info_array, int num.ing, CVEHMW hnmj;

obs_info_array Array of pointers to the observation structures.
num i g Length of the array.

hmm HMM.

Discussion

The function cvM xSegnl2 segments observations from all training images by
mixture components of newly Viterbi algorithm-assigned states. The function uses
Euclidean distance to group vectors around existing mixtures centers.

25-9

OpenCV Reference Manual Embedded Hidden Markov Models 2 5

intel® 25-10

Drawing Primitives

This chapter describes simple drawing functions.

Overview

The functions described in this chapter are intended mainly to mark out recognized or
tracked features in the image. With tracking or recognition pipeline implemented it is
often necessary to represent results of the processing in the image. Despite the fact that
most Operating Systems have advanced graphic capabilities, they often require an
image, where one is going to draw, to be created by special system functions. For
example, under Win32 a graphic context (DC) must be created in order to use GDI
draw functions. Therefore, several simple functions for 2D vector graphic rendering
have been created. All of them are platform-independent and work with | pl I mage
structure. Now supported image formats include byte-depth (dept h ==1 PL_DEPTH_8U
or depth==1PL_DEPTH_8S) single channel (grayscale) or three channel (RGB or,
more exactly, BGR (that is, blue channel goes first) images.

There are several notes that can be made for each drawing function in the library,
therefore, they are put below - not in discussion sections:

* All of the functions take col or parameter that means brightness for grayscale
images and RGB color for color images. In the latter case a value, passed to the
function, can be composed via CV_RGB macro that is defined as:

#define CV_RGB(r,g,b) ((((r)&255) << 16)|(((9)&255) << 8)|((b)&255))

* Any function in the group takes one or more points (CvPoi nt structure instance(s))
as input parameters. Point coordinates are counted from top-left ROI corner for
top-origin images and from bottom-left ROI corner for bottom-origin images.

26-1

OpenCV Reference Manual Drawing Primitives 2 6

Referenc

All the functions are divided into two classes - with or without antialiasing. For
several functions there exist antialiased versions that end with AA suffix. The
coordinates, passed to AA-functions, can be specified with sub-pixel accuracy, that
is they can have several fractional bits, which number is passed via scal e
parameter. For example, if cvGi r cl eAA function is passed center =

cvPoi nt (34, 18) and scal e = 2 then the actual center coordinates will be
(34/4.,19/4.)==(16.5,4.75).

Simple (that is, non-antialiased) functions have t hi ckness parameter that
specifies thickness of lines a figure is drawn with. For some functions the
parameter may take negative values. It causes the functions to draw a filled figure
instead of drawing its outline. To improve code readability one may use constant
CV_FILLED= -1 asathickness value to draw filled figures.

e

cvlLine

Draws simple or thick line segment.

voi d cvLine(Ipllmge* inmg, CvPoint ptl, CvPoint pt2, int color, int
t hi ckness=1);

i ng
ptl
pt 2
col
t hi

Image.

First point of the line segment.

Second point of the line segment.
or Line color (RGB) or brightness (grayscale image).
ckness Line thickness.

26-2

OpenCV Reference Manual Drawing Primitives 2 6

Discussion

The function cvLi ne draws the line segment between pt 1 and pt 2 points in the
image. The line is clipped by the image or ROI rectangle. The Bresenham algorithm is
used for simple line segments. Thick lines are drawn with rounding endings. To
specify the line color the user may use the macro CV_RGB (r, g, b) that makes a 32-bit
color value from the color components.

cvLineAA

Draws antialiased line segment.

voi d cvLi neAA(|pllInmage* ing, CvPoint ptl, CvPoint pt2, int color, int scale=0

E

i g Image.

ptl First point of the line segment.

pt 2 Second point of the line segment.

col or Line color (RGB) or brightness (grayscale image).
scal e Number of fractional bits in the end point coordinates.
Discussion

The function cvLi neAA draws the line segment between pt 1 and pt 2 points in the
image. The line is clipped by the image or ROI rectangle. Drawing algorithm includes
some sort of Gaussian filtering to get smooth picture. To specify the line color the user
may use the macro CV_RGB (r, g, b) that makes a 32-bit color value from the color
components.

26-3

OpenCV Reference Manual Drawing Primitives 2 6

cvRectangle
Draws simple, thick or filled rectangle.

voi d cvRectangl e(Ipllmage* ing, CvPoint ptl, CvPoint pt2,
int color, int thickness);

i g Image.

pt 1 One of the rectangle vertices.

pt 2 Opposite rectangle vertex.

col or Line color (RGB) or brightness (grayscale image).
t hi ckness Thickness of lines that make up the rectangle.
Discussion

The function cvRect angl e draws rectangle with two opposite corners pt 1 and pt 2. If
the parameter t hi ckness is positive or zero, the outline of the rectangle is drawn with
that thickness, otherwise a filled rectangle is drawn.

cvCircle
Draws simple, thick or filled circle.

void cvCircle(I pllmge* i g, CvPoint center, int radius, int color,
int thickness=1);

i ng Image where the line is drawn.

center Center of the circle.

radi us Radius of the circle.

col or Circle color (RGB) or brightness (grayscale image).

t hi ckness Thickness of the circle outline if positive, otherwise indicates that a

filled circle should be drawn.

i ntel ® 26-4

OpenCV Reference Manual Drawing Primitives 2 6

Discussion

The function cvGCircl e draws a simple or filled circle with given center and radius.
The circle is clipped by ROI rectangle. The Bresenham algorithm is used both for
simple and filled circles. To specify the circle color the user may use the macro CvV_RGB
(r, g, b) that makes a 32-bit color value from the color components.

cVvEllipse
Draws simple or thick elliptic arc or fills ellipse
sector.

void cvEl lipse(I pllnmge* img, CvPoint center, CvSize axes, double angl e,
doubl e start_angl e, double end_angle, int color, int thickness=1);

i g Image.

cent er Center of the ellipse.
axes Length of ellipse axes.
angl e Rotation angle.

start_angl e Starting angle of the elliptic arc.

end_angl e Ending angle of the elliptic arc.

col or Ellipse color (RGB) or brightness (grayscale image).
t hi ckness Thickness of the ellipse arc.

Discussion

The function cvEl | i pse draws a simple or thick elliptic arc or fills an ellipse sector.
The arc is clipped by ROI rectangle. Generalized Bresenham algorithm for conic
section is used for simple elliptic arcs here, and piecewise-linear approximation is used
for antialiased arcs and thick arcs. All the angles are given in degrees. The meaning of
parameters is shown in Figure 26-1:

26-5

OpenCV Reference Manual Drawing Primitives 2 6

Figure 26-1
First ellipse axis
Second ellipse axis
Drawn arc
Starting angle of the arc
Ending angle of the arc
4 //
// R4 Rotation angle
/
/ ,//
1 4
! e
I e
1 Pid
\ P
\ i
\ ~e - -
cvEllipseAA

Draws antialiased elliptic arc.

voi d cvEl | i pseAA(| pl I mage* i ng, CvPoint center, CvSi ze axes, doubl e angl e,
doubl e start_angle, double end_angle, int color, int scale=0);

i g Image.

cent er Center of the ellipse.
axes Length of ellipse axes.
angl e Rotation angle.

start_angle Starting angle of the elliptic arc.
end_angl e Ending angle of the elliptic arc.

inte|® 26-6

OpenCV Reference Manual Drawing Primitives 2 6

col or Ellipse color (RGB) or brightness (grayscale image).

scal e Specifies the number of fractional bits in the center coordinates and
axes sizes.

Discussion

The function cvEl | i pseAA draws an antialiased elliptic arc. The arc is clipped by
ROI rectangle. Generalized Bresenham algorithm for conic section is used for simple
elliptic arcs here, and piecewise-linear approximation is used for antialiased arcs and
thick arcs. All the angles are in degrees. The meaning of parameters is shown in

Figure 26-1.

cvFillPoly

Fills polygons interior.

void cvFil I Poly(I pllmge* i mg, CvPoint** pts, int* npts, int contours,

i nt

color);

i ny Image.

pts Array of pointers to polygons.

npts Array of array counters or a single counter.

contours Number of contours that bind the filled region.

col or Polygon color (RGB) or brightness (grayscale image).
Discussion

The function cvFi |l | Pol y fills an area, bounded by several polygonal contours. The
function fills complex areas, e.g., areas with holes, contour self-intersection, etc.

26-7

OpenCV Reference Manual Drawing Primitives 2 6

cvFillConvexPoly
Fills convex polygon.

void cvFill ConvexPoly(Ipllmage* ing, CvPoint* pts, int npts, int color);

i g Image.

pts Array of pointers to a single polygon.

npts Array of array counters or a single counter.

col or Polygon color (RGB) or brightness (grayscale image).
Discussion

The function cvFi I | ConvexPol y fills convex polygon interior. The function

cVvFi | | ConvexPol y is much faster than the function cvFi || Pol y and fills not only
the convex polygon but any monotonic polygon, that is, a polygon, whose contour
intersects every horizontal line (scan line) twice at the most.

cvPolyLine
Draws simple or thick polygons.

voi d cvPol yLi ne(| pl Il mage* inmg, CvPoint** pts, int* npts, int contours,
is_closed, int color, int thickness=1);

i ng Image.

pts Array of pointers to polylines.

npts Array of polyline counters or a single counter.

contours Number of polyline contours.

i s_closed Indicates whether the polylines must be drawn closed. If closed, the

function draws the line from the last vertex of every contour to the
first vertex.

i ntel ® 26-8

OpenCV Reference Manual Drawing Primitives 2 6

col or Polygon color (RGB) or brightness (grayscale image).
t hi ckness Thickness of the polyline edges.
Discussion

The function cvPol yLi ne draws a set of simple or thick polylines.

cvPolyLineAA

Draws antialiased polygons.

voi d cvPol yLi neAA(| pl | mage* i mg, CvPoint** pts, int* npts, int contours,
is_closed, int color, int scale=0);

i g Image.

pts Array of pointers to polylines.

npts Array of polyline counters or a single counter.

contours Number of polyline contours.

i s_closed Indicates whether the polylines must be drawn closed. If closed, the

function draws the line from the last vertex of every contour to the
first vertex.

col or Polygon color (RGB) or brightness (grayscale image).

scal e Specifies number of fractional bits in the coordinates of polyline
vertices.

Discussion

The function cvPol yLi neAA draws a set of antialiased polylines.

inte|® 26-9

OpenCV Reference Manual Drawing Primitives 2 6

cvinitFont

Initializes font structure.

void cvlnitFont(CvFont* font, CvFontFace font_face, float hscale, float
vscale, float italic_scale, int thickness);

f ont Pointer to the resultant font structure.

font _face Font name identifier. Only the font Cv_FONT_VECTORO is currently
supported.

hscal e Horizontal scale. If equal to 1. 0f , the characters will have the

original width depending on the font type. If equal to 0. 5f , the
characters will be half of the original width.

vscal e Vertical scale. If equal to 1. 0f , the characters will have the original
height depending on the font type. If equal to 0. 5f, the characters
will be half of the original height.

italic_scale Approximate tangent of the character slope relative to the vertical
line. Zero value means a non-italic font, 1. 0f means ~45x slope, etc.

t hi ckness Thickness of lines composing letters outlines. The function cvLi ne
is used for drawing letters.

Discussion

The function cvl ni t Font initializes the font structure that can be passed further into
text drawing functions. Although only one font is supported, it is possible to get
different font “flavors” by varying the scale parameters, slope, and thickness.

cvPutText

Draws the text string.

voi d cvPut Text (| pl I mage* i mg, const char* text, CvPoint org, CvFont* font, int
color);

intel. 2610

OpenCV Reference Manual

Drawing Primitives 2 6

ing
t ext
org
f ont

col or

Discussion

Input image.

String to print.

Coordinates of bottom-left corner of the first letter.
Pointer to the font structure.

Text color (RGB) or brightness (grayscale image).

The function cvPut Text renders the text in the image with the specified font and
color. The printed text is clipped by ROI rectangle. Symbols that do not belong to the
specified font are replaced with the “rectangle” symbol.

cvGetTextSize
Retrieves width and height of text string.

voi d cvGet Text Si ze(CvFont* font, const char* text_string, CvSize* text_size,
int* ymn);

f ont
text _string

text _size

ym n

Discussion

Pointer to the font structure.
Input string.

Resultant size of the text string. Height of the text does not include
the height of character parts that are below the baseline.

Lowest y coordinate of the text relative to the baseline. Negative, if
the text includes such characters as g, j, p, ¢, y, etc., and zero
otherwise.

The function cvGet Text Si ze calculates the binding rectangle for the given text string
when the specified font is used.

26-11

OpenCV Reference Manual Drawing Primitives 2 6

intel® 26-12

System Functions

This chapter describes system library functions.

Reference

cvLoadPrimitives

Loads optimized versions of functions for specific
platform.

int cvLoadPrimtives (char* dll Nane, char* processorType);
dl | Name Name of dynamically linked library without postfix that
contains the optimized versions of functions
processor Type Postfix that specifies the platform type:

“Wr” for Pentium® 4 processor, “A6” for Intel® Pentium® 11
processor, “Ms” for Intel® Pentium® II processor, NULL for
auto detection of the platform type.

Discussion

The function cvLoadPrinitives loads the versions of functions that are optimized
for a specific platform. The function is automatically called before the first call to the
library function, if not called earlier.

inte|® 27-1

OpenCV Reference Manual

System Functions 2 7

cvGetLibrarylnfo

Gets the library information string.

void cvGetlLibrarylnfo (char** version, int* |oaded, char** dl| Nane);

version Pointer to the string that will receive the build date information; can
be NULL.
| oaded Postfix that specifies the platform type:

“Wr” for Pentium® 4 processor, “A6” for Intel® Pentium® I1I
processor, “Ms” for Intel® Pentium® II processor, NULL for auto
detection of the platform type.

dl | Nare Pointer to the full name of dynamically linked library without path,
could be NULL.

Discussion

The function cvGet Li braryl nf o retrieves information about the library: the build

date, the flag that indicates whether optimized DLLs have been loaded or not, and their
names, if loaded.

27-2

OpenCV Reference Manual System Functions 2 7

inte|® 27-3

OpenCV Reference Manual System Functions 2 7

inte|® 27-4

Utility

The chapter describes unclassified OpenCV functions.

Reference

cvAbsDiff

Calculates absolute difference between two
images and between image and scalar value.

void cvAbsDi ff(Ipllmage* srcA, |pllmge* srcB, |pllnmage* dst);

srcA First compared image.
srcB Second compared image.
dst Destination image.

val ue Value to compare.
Discussion

The function cvAbsDi ff calculates the absolute difference between two images or
between an image and a scalar value.

cvAbsDi ff: dst[i] = abs(src[i]—-dst][i]).

inte|® 28-1

OpenCV Reference Manual Utility 2 8

cvAbsDIffS

Calculates absolute difference between two
images and between image and scalar value.

voi d cvAbsDi ffS(|pllmage* srcA |pllnmage* dst, double value);

SrcA First compared image.
srcB Second compared image.
dst Destination image.

val ue Value to compare.
Discussion

The function cvAbsDi ffS calculates the absolute difference between two images or
between an image and a scalar value.

cvAbsDi ffS: dst[i] = abs(src[i]-val ue).

cvMatchTemplate

Fills characteristic image for given image and
template.

voi d cvivat chTenpl ate(| pllmage* ing, |Ipllmge* tenpl, |pllnmage* result,
CvTenpl Mat chMet hod net hod) ;

i g Image where the search is running.

t enpl Searched template; must be not greater than the source image. The
parameters i ng and t enpl must be single-channel images and have
the same depth (I PL_DEPTH_8U, | PL_DEPTH_8S, or
| PL_DEPTH_32F).

inte|® 28-2

OpenCV Reference Manual Utility 2 8

resul t Output characteristic image. It has to be a single-channel image with
depth equal to | PL_DEPTH_32F. If the parameter i ng has the size of
Wx H and the template has the size of size wx h, the resulting image
must have the size or selected ROl W—w+1xH-h+1.

met hod Specifies the way the template must be compared with image
regions.
Discussion

The function cvMat chTenpl at e implements a set of methods for finding regions in
the image that are similar to the given template.

Given a source image with Wx H pixels and template with wx h pixels, we get the
resulting image with W—w+ 1xH-h +1 pixels, and the pixel value in each location
(x, y) characterizes the similarity between the template and the image rectangle with
the top-left corner at (x, y) and the right-bottom corner at (x + w - 1,y + h - 1).
Similarity can be calculated in several ways:

Squared difference (net hod == CV_TM SQDI FF)

h-1w-1

Se,y) = 3 ST Y) -1 (x+xy +y)1%,

y'=0x'=0
where | (x,y) is the value of the image pixel in the location (x, y) , while T(x, y) is the
value of the template pixel in the location (x, y) .

Normalized squared difference (nmet hod == CV_TM SQDI FF_NORVED)

h-1w-1
3OS T Y) -1 (x XLy +y)1
S(x,y) = y'=0x'=0

h—1w-1 h-1w-1)
JZ ST Y)Y S (x+xy +y)?

y'=0x'=0 y'=0x'=0

Cross correlation (met hod == CV_TM _CCORR):

28-3

OpenCV Reference Manual Utility 2 8
h-1w-1

Chxy) = 3 > T YN (x+xiy +y’).

y'=0x'=0

Cross correlation, normalized (nmet hod == CV_TM CCORR_NORMED):

h-1w-1
DD T Y (X XLy +y7)

f:x, - y'=0x'=0
(y) h-1w-1 h-1w-1

S Y TEY) Y Ty +y)’

y'=0x'=0 y'=0x'=0

Correlation coefficient (met hod == CV_TM CCCEFF):

h-1w-1
RGY) = 3 3 Ty (x+x,y +y),
y'=0x'=0

where T(x',y') = T(X,y") =T, I'(x +X,y +y') = | (x +X,y +y') =T (x,y), and where T
stands for the average value of pixels in the template raster and I'(x,y) stands for the
average value of the pixels in the current “window” of the image.

Correlation coefficient, normalized (met hod == CV_TM CCOEFF_NORMED):

h-1w-1
33 T Y (X Xy +Y)

ﬁ(x,y) = y'=0x'=0
h-1w-1 h-1w-1

S Y Iy Y Y T xexy+y)

y'=0x'=0 y'=0x'=0

After the function cvMat chTenpl at e returns the resultant image, probable positions
of the template in the image could be located as the local or global maximums of the
resultant image brightness.

i ntel ® 28-4

OpenCV Reference Manual Utility 2 8

cvCvtPixToPlane

Divides pixel image into separate planes.

voi d cvCvt Pi xToPl ane(| pl I mage* src, Ipllnmage* dstO, Ipllnmage* dstl, |pllmage*
dst2, Ipllmage* dst3);

src Source image.
dstO...dst 4 Destination planes.
Discussion

The function cvCvt Pi xToPl ane divides a color image into separate planes. Two
modes are available for the operation. Under the first mode the parameters dst 0, dst 1,
and dst 2 are non-zero, while dst 3 must be zero for the three-channel source image.
For the four-channel source image all the destination image pointers are non-zero, in
this case the function splits the three/four channel image into separate planes and
writes them to destination images. Under the second mode only one of the destination
images is not NULL; in this case, the corresponding plane is extracted from the image
and placed into destination image.

cvCvtPlaneToPix

Composes color image from separate planes.

void cvCvt Pl aneToPi x(I pl I mage* srcO, Ipllmage* srcl, Ipllmage* src2,
| pl mage* src3, |pllnmage* dst);

src0...src4 Source planes.

dst Destination image.

inte|® 28-5

OpenCV Reference Manual Utility 2 8

Discussion

The function cvCvt Pl aneToPi x composes color image from separate planes. If the
dst has three channels, then sr c0, src1, and sr c2 must be non-zero, otherwise dst
must have four channels and all the source images must be non-zero.

cvConvertScale

Converts one image to another with linear
transformation.

voi d cvConvert Scal e(I pllmage* src, |pllmge* dst, double scale, double

shift);
src Source image.
dst Destination image.
Discussion

The function cvConvert Scal e applies linear transform to all pixels in the source
image and puts the result into the destination image with appropriate type conversion.
The following conversions are supported: | PL_DEPTH 8U <->| PL_DEPTH_32F,

| PL_DEPTH_8U<->| PL_DEPTH_16S, | PL_DEPTH_8S <-> | PL_DEPTH_32F,

| PL_DEPTH_8S <->| PL_DEPTH_16S, | PL_DEPTH_16S <-> | PL_DEPTH_32F and

| PL_DEPTH 32S<->1 PL_DEPTH_32F. The unsigned char to float conversion is effected
by the formula

dst(x,y) = (float)(src(x,y)*scale + shift);

The float is converted to unsigned char by the following algorithm:
t = round(src(x,y)*scale + shift);

if(t <0)

dst(x,y) = 0;

else if(t > 255)

dst (x,y) = 255;

el se

inte|® 28-6

OpenCV Reference Manual Utility 2 8

dst(x,y) = (unsigned char)t;

cvinitLinelterator

Initializes line iterator.

int cvinitLinelterator(Ipllmge* inmg, CvPoint ptl, CvPoint pt2,

CvLi

nelterator* linelterator);

i g Image.
pt1l Starting line point.
pt 2 Ending line point.

linelterator Pointer to the line iterator state structure.

Discussion

The function cvl nit Li nel terator initializes the line iterator and returns the number
of pixels between two ending points. Both points must be inside the image. After the
iterator has been initialized, all the points on the raster line that connects the two
ending points may be retrieved by successive calls of CV_NEXT_LI NE_PO NT point. The
points on the line are calculated one by one using the 8-point connected Bresenham
algorithm. Below follows an example how to draw the line on the RGB image, such
that the image pixels that belong to the line are mixed with the given color using the
XOR operation.

voi d put_xor _line(Ipllnmage* inmg, CvPoint ptl, CvPoint pt2, int r, int
g, int b)) {

CvLinelterator iterator;

int count = cvlinitLinelterator(ing, ptl, pt2, &terator);

for(int i =0; i < count; i++){

iterator.ptr[0] ~= (uchar)b;

iterator.ptr[1] ~= (uchar)g;

iterator.ptr[2] ~= (uchar)r;

CV_NEXT_LINE_PO NT(iterator);

28-7

OpenCV Reference Manual Utility 2 8

cvSampleLine
Reads raster line to buffer.

int cvSanpl eLine(Ipllmge* inmg, CvPoint ptl, CvPoint pt2, void* buffer);

i g Image.

pt1l Starting line point.

pt 2 Ending line point.

buf f er Buffer to store the line points; must have enough size to store

MAX(|pt2.x - ptl.x| + 1,|pt2.y - ptl.y|+1) points.

Discussion

The function cvSanpl eLi ne implements one particular case of application of line
iterators. The function reads all the image points, lying on the line between pt 1 and
pt 2, including the ending points, and stores them into the buffer.

cvGetRectSubPix

Retrieves raster rectangle from image with
sub-pixel accuracy.

voi d cvGet Rect SubPi x(I pllmage* src, Ipllmge* rect, CvPoint2D32f center);

src Source image.
rect Extracted rectangle; must have odd width and height.
cent er Floating point coordinates of the rectangle center. The center must

be inside the image.

i ntel ® 28-8

OpenCV Reference Manual Utility 2 8

buf fer Buffer to store the line points; must have enough size to store
MAX(|pt2.x - ptl.x| + 1,|pt2.y-ptl.y| + 1) points.

Discussion

The function cvGet Rect SubPi x extracts pixels from sr ¢, if the pixel coordinates
satisfy the conditions below:

center.x —(widthrect-1)/2 <= x <= center.x + (widthrect-1)/2;
center.y-(heightrect-1)/2 <=y <= center.y+(heightrect-1)/2.

Since the center coordinates are not integer, bilinear interpolation is applied to get the
values of pixels in non-integer locations. Although the rectangle center must be inside
the image, the whole rectangle may be partially occluded. In this case, the pixel values
are spread from the boundaries outside the image to approximate values of occluded
pixels.

cvbFastArctan

Calculates fast arctangent approximation for
arrays of abscissas and ordinates.

voi d cvbFast Acrtan(const float* y, const float* x, float* angle, int len);

y Array of ordinates.

X Array of abscissas.

angl e Calculated angles of points (x[i], y[i]).
I en Number of elements in the arrays.
Discussion

The function cvbFast Arct an calculates an approximate arctangent value, the angle
of the point (x, y) . The angle is in the range from 0° to 360°. Accuracy is about 0.1°.
For point (0, 0) the resultant angle is 0.

28-9

OpenCV Reference Manual Utility 2 8

cvsqrt

Calculates square root of single float argument
or array of floats.

float cvsSgrt(float x);

X Argument, scalar or array.

y Resultant array.

I en Number of elements in the arrays.
Discussion

The function cvSgrt calculates the square root of arguments. The arguments should
be non-negative, otherwise the result is unpredictable. The relative error for the scalar
version is less than 9e- 6, for the vector function less than 3e- 7.

cvbSqrt

Calculates square root of single float argument
or array of floats.

void cvbSqrt(const float* x, float* y, int len);

X Argument, scalar or array.

y Resultant array.

I en Number of elements in the arrays.
Discussion

The function cvbSqrt calculates the square root of arguments. The arguments should
be non-negative, otherwise the result is unpredictable. The relative error for the scalar
version is less than 9e- 6, for the vector function less than 3e- 7.

intel. 2810

OpenCV Reference Manual Utility 2 8

cvinvSgrt

Calculates inverse square root of single float
argument or array of floats.

float cvlinvSqrt(float x);

X Argument, scalar or array.

y Resultant array.

I en Number of elements in the arrays.
Discussion

The function cvlnvSgrt calculates the inverse square root of arguments. The
arguments should be non-negative, otherwise the result is unpredictable. The relative
error for the scalar version is less than 9e- 6, for the vector function less than 3e- 7.

cvblnvSqrt

Calculates inverse square root of single float
argument or array of floats.

void cvblnvSqrt(const float* x, float* y, int len);

X Argument, scalar or array.

y Resultant array.

I en Number of elements in the arrays.
Discussion

The function cvbl nvSgrt calculates the inverse square root of their arguments. The
arguments should be non-negative, otherwise the result is unpredictable. The relative
error for the scalar version is less than 9e- 6, for the vector function less than 3e- 7.

intGIqa 28-11

OpenCV Reference Manual Utility 2 8

cvbReciprocal

Calculates inverse of array of floats.

voi d cvbReci procal (const float* x, float* y, int len);

X Argument, scalar or array.

y Resultant array.

I en Number of elements in the arrays.
Discussion

The function cvbReci procal calculates the inverse (1/ x) of arguments. The
arguments should be non-zero. The function gives a very precise result with the
relative error less than le- 7.

cvbCartToPolar

Calculates magnitude and angle for array of
abscissas and ordinates.

voi d cvbCart ToPol ar(const float* y, const float* x, float* nag, float* angle,

int len);
y Array of ordinates.
X Array of abscissas.
mag Calculated magnitudes of points (x[i], y[i]).
angl e Calculated angles of points (x[i], y[i]).
I en Number of elements in the arrays.

intel® 28-12

OpenCV Reference Manual Utility 2 8

Discussion

The function cvbCart ToPol ar calculates the magnitude /x[i 12+y[i 1% and the angle
arctan(y[i]/x[i]) of each point (x[i],y[i]). The angle is measured in degrees and
varies from 0° to 360°. The function is a combination of the functions cvbFast Ar ct an
and cvbSqgrt, so the accuracy is the same as in these functions. If pointers to the angle
array or the magnitude array are NULL, the corresponding part is not calculated.

cvbFastExp
Calculates fast exponent approximation for array
of floats.
voi d cvbFast Exp(const float* x, double* exp_x, int len);
X Array of arguments.
exp_x Array of results.
I en Number of elements in the arrays.
Discussion

The function cvbFast Exp calculates fast exponent approximation for each element of
the input array. Maximal relative error is about 7e- 6.

cvbFastLog

Calculates fast approximation of natural
logarithm for array of doubles.

voi d cvbFast Log(const double* x, float* log x, int len);
X Array of arguments.

exp_x Array of results.

intel. 2813

OpenCV Reference Manual Utility 2 8

I en Number of elements in the arrays.

Discussion

The function cvbFast Log calculates fast logarithm approximation for each element
of the input array. Maximal relative error is about 7e- 6.

cvRandlInit

Initializes state of random number generator.

voi d cvRandl ni t (CvRandState* state, float |lower, float upper, int seed);

state Pointer to the initialized random number generator state.
| ower Lower boundary of uniform distribution.

upper Upper boundary of uniform distribution.

seed Initial 32-bit value to start a random sequence.
Discussion

The function cvRandl ni t initializes the st at e structure that is used for generating
uniformly distributed numbers in the range [| ower, upper). A multiply-with-carry
generator is used.

cvbRand

Fills array with random numbers

void cvbRand(CvRandState* state, float* x, int len);

state Random number generator state.
X Destination array.
I en Number of elements in the array.

intel® 28-14

OpenCV Reference Manual Utility 2 8

Discussion

The function cvbRand fills the array with random numbers and updates generator
state.

cvFilllmage

Fills image with constant value.

void cvFilllmage(|pllmge* ing, double val);
i ng Filled image.
val Value to fill the image.
Discussion
The function cvFil | | mage is equivalent to eitheri pl Set FPori pl Set, depending on

the pixel type, that is, floating-point or integer.

cvRandSetRange

Sets range of generated random numbers without
reinitializing RNG state.

voi d cvRandSet Range(CvRandState* state, double |ower, double upper);

state State of random number generator (RNG).
| over New lower bound of generated numbers.
upper New upper bound of generated numbers.

intel. 2815

OpenCV Reference Manual Utility 2 8

Discussion

The function cvRandSet Range changes the range of generated random numbers
without reinitializing RNG state. For the current implementation of RNG the function
is equivalent to the following code:

unsi gned seed = state. seed;

unsi gned carry = state.carry;
cvRandlnit(&state, |ower, upper, 0);
state. seed = seed;

state.carry = carry;

However, the function is preferable because of compatibility with the next versions of
the library.

cvKMeans

Splits set of vectors into given number of clusters.

void cvKMeans (int numclusters, CvVect32f* sanples, int numsanples, int
vec_size, CvTernCriteria terncrit, int* cluster);

num cl usters Number of required clusters.
sanpl es Pointer to array of input vectors.

num sanpl es Number of input vectors.

vec_si ze Size of every input vector.

terncrit Criteria of iterative algorithm termination.

cluster Characteristic array of cluster numbers, corresponding to each input
vector.

Discussion

The function cvKMeans iteratively adjusts mean vectors of every cluster. Termination
criteria must be used to stop the execution of the algorithm. At every iteration the
convergence value is computed as follows:

intel. 2816

OpenCV Reference Manual

Utility 2 8

K

> ol d_mean; —new_nean; H2

i=1

The function terminatesif E<Terncrit.epsilon.

28-17

Bibliography 2

This bibliography provides a list of publications that might be useful to the Intel®
Computer Vision Library users. This list is not complete; it serves only as a starting

point.

[Borgefors86]

[BradskiOO0]

[Burt81]

[Canny86]

[Davis97]

[DeMenthon92]

[Fitzgibbon95]

[Hu62]

Gunilla Borgefors. Distance Transformations in Digital Images.
Computer Vision, Graphics and Image Processing 34, 344-371
(1986).

G. Bradski and J. Davis. Motion Segmentation and Pose Recognition
with Motion History Gradients. IEEE WACV'00, 2000.

P. J. Burt, T. H. Hong, A. Rosenfeld. Segmentation and Estimation
of Image Region Properties Through Cooperative Hierarchical
Computation. IEEE Tran. On SMC, Vol. 11, N.12, 1981, pp.
802-809.

J. Canny. 4 Computational Approach to Edge Detection, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 8(6), pp.
679-698 (1986).

J. Davis and Bobick. The Representation and Recognition of Action
Using Temporal Templates. MIT Media Lab Technical Report 402,
1997.

Daniel F. DeMenthon and Larry S. Davis. Model-Based Object Pose
in 25 Lines of Code. In Proceedings of ECCV '92, pp. 335-343, 1992.

Andrew W. Fitzgibbon, R.B.Fisher. 4 Buyer’s Guide to Conic
Fitting, Proc.5th British Machine Vision Conference, Birmingham,
pp. 513-522, 1995.

M. Hu. Visual Pattern Recognition by Moment Invariants, IRE
Transactions on Information Theory, 8:2, pp. 179-187, 1962.

29-1

OpenCV Reference Manual

Bibliography 2 9

[Jahne97]
[Kass88]

[Matas98]
[Rosenfeld73]

[RubnerJan98]

[RubnerSept98]

[RubnerOct98]

[Serra82]

[Schiele2000]

[Suzuki85]
[Teh89]

[Trucco98]

B. Jahne. Digital Image Processing. Springer, New York, 1997.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes.: Active Contour

Models, International Journal of Computer Vision, pp. 321-331,
1988.

J.Matas, C.Galambos, J.Kittler. Progressive Probabilistic Hough
Transform. British Machine Vision Conference, 1998.

A. Rosenfeld and E. Johnston. Angle Detection on Digital Curves.
IEEE Trans. Computers, 22:875-878, 1973.

Y. Rubner. C. Tomasi, L.J. Guibas. Metrics for Distributions with
Applications to Image Databases. Proceedings of the 1998 IEEE
International Conference on Computer Vision, Bombay, India,
January 1998, pp. 59-66.

Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover s Distance as a
Metric for Image Retrieval. Technical Report STAN-CS-TN-98-86,
Department of Computer Science, Stanford University, September
1998.

Y. Rubner. C. Tomasi. Texture Metrics. Proceeding of the IEEE
International Conference on Systems, Man, and Cybernetics,
San-Diego, CA, October 1998, pp. 4601-4607.

http://robotics.stanford.edu/~rubner/publications.html

J. Serra. Image Analysis and Mathematical Morphology. Academic
Press, 1982.

Bernt Schiele and James L. Crowley. Recognition without
Correspondence Using Multidimensional Receptive Field
Histograms. In International Journal of Computer Vision 36 (1),
pp- 31-50, January 2000.

S. Suzuki, K. Abe. Topological Structural Analysis of Digital Binary
Images by Border Following. CVGIP, v.30, n.1. 1985, pp. 32-46.

C.H. Teh, R.T. Chin. On the Detection of Dominant Points on
Digital Curves. - IEEE Tr. PAMI, 1989, v.11, No.8, p. 859-872.

Emanuele Trucco, Alessandro Verri. Introductory Techniques for
3-D Computer Vision. Prentice Hall, Inc., 1998.

29-2

1

OpenCV Reference Manual

Bibliography 2 9

[Williams92]

[Yuille89]

[Zhang96]

D.J. Williams and M. Shah. 4 Fast Algorithm for Active Contours
and Curvature Estimation. CVGIP: Image Understanding, Vol. 55,
No. 1, pp. 14-26, Jan., 1992._
http://www.cs.ucf.edu/~vision/papers/shah/92/WIS92 A.pdf.

A.Y.Yuille, D.S.Cohen, and P.W.Hallinan. Feature Extraction from
Faces Using Deformable Templates in CVPR, pp. 104-109, 1989.

Zhengyou Zhang. Parameter Estimation Techniques: A Tutorial
with Application to Conic Fitting, Image and Vision Computing
Journal, 1996.

29-3

Williams92
Williams92

OpenCV Reference Manual Bibliography 2 9

inte|® 29-4

Index

A

Active Contours
cvSnakelmage, 17-3

B

Background Subtraction, 9-1
cvAcc, 9-2
cvMultiplyAcc, 9-3
cvRunningAvg, 9-4
cvSquareAcc, 9-3

C

Camera Calibration
cvCalibrateCamera, 13-5
cvCalibrateCamera_64d, 13-6
cvFindChessBoardCornerGuesses, 13-12
cvFindExtrinsicCameraParams, 13-7
cvFindExtrinsicCameraParams_64d, 13-8
cvRodrigues, 13-9
cvRodrigues_64d, 13-9
cvUnDistort, 13-12
cvUnDistortlnit, 13-11
cvUnDistortOnce, 13-10

CamShift
cvCamShift, 16-7
cvMeanShift, 16-8

Contour Processing
cvApproxChains, 3-24
cvApproxPoly, 3-26
cvContourArea, 3-28
cvContourFromContourTree, 3-30

cvContoursMoments, 3-27
cvCreateContourTree, 3-30
cvDrawContours, 3-26
cvEndFindContours, 3-23
cvFindContours, 3-20
cvFindNextContour, 3-22
cvMatchContours, 3-28
cvMatchContourTrees, 3-31
cvReadChainPoint, 3-25
cvStartFindContours, 3-21
cvStartReadChainPoints, 3-25
cvSubstituteContour, 3-23
cvCalcPGH, 4-14
cvCheckContourConvexity, 4-12
cvCreateStructuringElementEx, 8-6
cvEndFindContours, 3-23
cvFitLine2D, 4-5
cvLaplace, 5-7
cvReleaseStructuringElement, 8-7
cvSeqElemldx, 2-17
cvSeqPopFront, 2-13

D

Distance Transform
cvDistTransform, 10-1

Drawing Primitives
cvCircle, 26-4
cvEllipse, 26-5
cvEllipseAA, 26-6
cvFillConvexPoly, 26-8
cvFillPoly, 26-7

intel.

Intel Restricted Secret

Book Title Goes Here

Index

cvGetTextSize, 26-11
cvlnitFont, 26-10
cvLine, 26-2
cvLineAA, 26-3
cvPolyLine, 26-8
cvPolyLineAA, 26-9
cvPutText, 26-10
cvRectangle, 26-4

Dynamic Data Structures
Graphs
cvClearGraph, 2-42
cvCreateGraph, 2-35
cvFindGraphEdge, 2-40

cvFindGraphEdgeByPtr, 2-40

cvGetGraphVitx, 2-43
cvGraphAddEdge, 2-37

cvGraphAddEdgeByPtr, 2-38

cvGraphAddVix, 2-36
cvGraphEdgeldx, 2-44

cvGraphRemoveEdge, 2-39

cvSeqPushFront, 2-13
cvSeqPushMulti, 2-14
cvSeqRemove, 2-16
cvSetSeqBlockSize, 2-11
Sets
cvClearSet, 2-31
cvCreateSet, 2-29
cvGetSetElem, 2-30
cvSetAdd, 2-29
cvSetRemove, 2-30
Writing and Reading Sequences
cvEndWriteSeq, 2-22
cvFlushSeqWriter, 2-23
cvGetSeqReaderPos, 2-24
cvSetSeqReaderPos, 2-25
cvStartAppendToSeq, 2-21
cvStartReadSeq, 2-23
cvStartWriteSeq, 2-21

cvGraphRemoveEdgeByPtr, 2-39 E
cvGraphRemove Vtx, 2-36 Eigen Objects
cvGraphRemoveVtxByPtr, 2-37 cvCalcCovarMatrixEx, 24-2
cvGraphVtxDegree, 2-41 cvCalcDecompCoeff, 24-4
cvGraphVtxDegreeByPtr, 2-42 cvCalcEigenObjects, 24-3
cvGraphVixldx, 2-43 cvEigenDecomposite, 24-5

Memory Functions cvEigenProjection, 24-6
cvClearMemStorage, 2-4 Estimators
cvCreateChildMemStorage, 2-3 cvConDensInitSampleSet, 19-8
cvCreateMemStorage, 2-3 cvConDensUpdatebyTime, 19-9
cvReleaseMemStorage, 2-4 cvCreateConDensation, 19-7
cvRestoreMemStoragePos, 2-5 cvCreateKalman, 19-4

Sequences cvKalmanUpdateByMeasurement, 19-6
cvClearSeq, 2-16 cvKalmanUpdateByTime, 19-5
cvCreateSeq, 2-10 cvReleaseConDensation, 19-8
cvCvtSeqToArray, 2-18 cvReleaseKalman, 19-5
cvGetSeqElem, 2-17
cvMakeSeqHeaderForArray, 2-18
cvSeqElemldx, 2-17 F
cvSeqlnsert, 2-15 Features
cvSeqPop, 2-13 Feature Detection Functions
cvSeqPopFront', 2-13 cvCanny, 5-11
cvSeqPopMulti, 2-14 cvCornerEigenValsandVecs, 5-12
cvSeqPush, 2-12

te|® Index-2 Intel Restricted Secret

Book Title Goes Here Index

cvCornerMinEigenVal, 5-13 cvGetHistValue_nD, 21-12
cvFindCornerSubPix, 5-14 cvGetMinMaxHistValue, 21-12
cvGoodFeaturesToTrack, 5-16 cvMakeHistHeaderForArray, 21-8
cvPreCornerDetect, 5-12 cvNormalizeHist, 21-13

Hough Transform cvQueryHistValue_1D, 21-8
cvHoughLines, 5-18 cvQueryHistValue_2D, 21-9
cvHoughLinesP, 5-19 cvQueryHistValue_3D, 21-9
cvHoughLinesSDiv, 5-19 cvQueryHistValue_nD, 21-10

Optimal Filter Kernels cvReleaseHist, 21-7
cvLaplace, 5-7 cvSetHistThresh, 21-15
cvSobel, 5-7 cvThreshHist, 21-13

Flood Fill

cvFloodFill, 12-2 |

Image Function Reference

G cvCopylmage, 1-10

Geometry cvCreatelmage, 1-5
cvCalcPGH, 4-14 cvCreatelmageData, 1-6
cvCheckContourConvexity, 4-12 cvCreatelmageHeader, 1-4
cvContourConvexHull, 4-9 cvGetlmageRawData, 1-9
cvContourConvexHullApprox, 4-11 cvnitlmageHeader, 1-9
cvConvexHull, 4-9 cvReleaselmage, 1-6
cvConvexHullApprox, 4-10 cvReleaselmageData, 1-7
cvConvexityDefects, 4-12 cvReleaseImageHeader, 1-5
cvFitEllipse_32f, 4-4 cvSetlmageCOl, 1-8
cvFitLine, 4-5 cvSetlmageData, 1-7
cvMinAreaRect, 4-13 cvSetImageROI, 1-8
cvMinEnclosingCircle, 4-15 Image Statistics
cvProject3D, 4-8 cvCountNonZero, 6-2

cvGetCentralMoment, 6-7
cvGetHuMoments, 6-9

H cvGetNormalizedCentralMoment, 6-8
Histogram cvGetSpatialMoment, 6-7
cvCalcBackProject, 21-16 cvMean, 6-3
cvCalcBackProjectPatch, 21-17 cvMean_StdDev, 6-3
cvCalcEMD, 21-20 cvMinMaxLoc, 6-4
cvCalcHist, 21-16 cvMinMaxLocMask, 6-4
cvCompareHist, 21-14 cvMoments, 6-6
cvCopyHist, 21-15 cvNorm, 6-4
cvCreateHist, 21-6 cvSumPixels, 6-2

cvGetHistValue_1D, 21-10
cvGetHistValue_2D, 21-11
cvGetHistValue_3D, 21-11

|nte|® Index-3 Intel Restricted Secret

Book Title Goes Here

Index

M

Morphology, 8-1
cvCreateStructuringElementEx, 8-6
cvDilate, 8-8
cvErode, 8-7
cvMorphologyEx, 8-9
cvReleaseStructuringElement, 8-7

Motion Templates
cvCalcGlobalOrientation, 15-9
cvCalcMotionGradient, 15-8
cvSegmentMotion, 15-10

O

Optical Flow
cvCalcOpticalFlowBM, 18-5
cvCalcOpticalFlowHS, 18-4
cvCalcOpticalFlowLK, 18-4
cvCalcOpticalFlowPyrLK, 18-6

P

Pixel Access Macro Reference, 1-10
CV_INIT_PIXEL_POS, 1-12
CV_MOVE, 1-13
CV_MOVE_PARAM, 1-14
CV_MOVE_PARAM_WRAP, 1-15
CV_MOVE_TO, 1-13
CV_MOVE_WRAP, 1-14

POSIT
cvCreatePOSITObject, 20-7
c¢vPOSIT, 20-7
cvReleasePOSITObject, 20-8

Pyramids
cvPyrDown, 7-6
cvPyrSegmentation, 7-7
cvPyrUp, 7-6

S

System Functions
cvGetLibraryInfo, 27-2

cvLoadPrimitives, 27-1

Threshold Functions

cvAdaptiveThreshold, 11-2
cvThreshold, 11-3

Utility

cvADbsDIff, 28-1
cvADbsDIffS, 28-2
cvbCartToPolar, 28-12
cvbFastArctan, 28-9
cvbFastExp, 28-13
cvbFastLog, 28-13
cvblnvSqrt, 28-11
cvbRand, 28-14
cvbReciprocal, 28-12
cvbSqrt, 28-10
cvConvertScale, 28-6
cvCvtPixToPlane, 28-5
cvCvtPlaneToPix, 28-5
cvFilllmage, 28-15
cvGetRectSubPix, 28-8
cvlnitLinelterator, 28-7
cvinvSqrt, 28-11
cvKMeans, 28-16
cvMatchTemplate, 28-2
cvRandInit, 28-14
cvRandSetRange, 28-15
cvSampleLine, 28-8
cvSqrt, 28-10

View Morphing

cvDeleteMoire, 14-12
cvDynamicCorrespondMulti, 14-9
cvFindFundamentalMatrix, 14-5
cvFindRuns, 14-8
cvMakeAlphaScanlines, 14-9

intel.

Index-4

Intel Restricted Secret

Book Title Goes Here Index

cvMakeScanlines, 14-6
cvMorphEpilinesMulti, 14-10
cvPostWarplmage, 14-11
cvPreWarplmage, 14-7

|nte|® Index-5 Intel Restricted Secret

	Open Source �Computer Vision Library
	Contents
	Image Functions
	Overview
	Reference
	cvCreateImageHeader
	cvCreateImage
	cvReleaseImageHeader
	cvReleaseImage
	cvCreateImageData
	cvReleaseImageData
	cvSetImageData
	cvSetImageCOI
	cvSetImageROI
	cvGetImageRawData
	cvInitImageHeader
	cvCopyImage

	Pixel Access Macros
	Overview
	CV_INIT_PIXEL_POS
	CV_MOVE_TO
	CV_MOVE
	CV_MOVE_WRAP
	CV_MOVE_PARAM
	CV_MOVE_PARAM_WRAP

	Dynamic Data Structures
	Memory Storage
	Overview
	cvCreateMemStorage
	cvCreateChildMemStorage
	cvReleaseMemStorage
	cvClearMemStorage
	cvSaveMemStoragePos
	cvRestoreMemStoragePos

	Sequences
	Overview
	cvCreateSeq
	cvSetSeqBlockSize
	cvSeqPush
	cvSeqPop
	cvSeqPushFront
	cvSeqPopFront
	cvSeqPushMulti
	cvSeqPopMulti
	cvSeqInsert
	cvSeqRemove
	cvClearSeq
	cvGetSeqElem
	cvSeqElemIdx
	cvCvtSeqToArray
	cvMakeSeqHeaderForArray

	Writing and Reading Sequences
	Overview
	Reference
	cvStartAppendToSeq
	cvStartWriteSeq
	cvEndWriteSeq
	cvFlushSeqWriter
	cvStartReadSeq
	cvGetSeqReaderPos
	cvSetSeqReaderPos

	Sets
	Overview

	Reference
	cvCreateSet
	cvSetAdd
	cvSetRemove
	cvGetSetElem
	cvClearSet

	Graphs
	Overview
	Reference
	cvCreateGraph
	cvGraphAddVtx
	cvGraphRemoveVtx
	cvGraphRemoveVtxByPtr
	cvGraphAddEdge
	cvGraphAddEdgeByPtr
	cvGraphRemoveEdge
	cvGraphRemoveEdgeByPtr
	cvFindGraphEdge
	cvFindGraphEdgeByPtr
	cvGraphVtxDegree
	cvGraphVtxDegreeByPtr
	cvClearGraph
	cvGetGraphVtx
	cvGraphVtxIdx
	cvGraphEdgeIdx

	Contour Processing
	Overview
	Basic Definitions
	Contour Representation
	Contour Retrieving Algorithm
	Polygonal Approximation
	Douglas-Peucker Approximation
	Contours Moments
	Hierarchical Representation of Contours
	Data Structures

	Reference
	cvFindContours
	cvStartFindContours
	cvFindNextContour
	cvSubstituteContour
	cvEndFindContours
	cvApproxChains
	cvStartReadChainPoints
	cvReadChainPoint
	cvApproxPoly
	cvDrawContours
	cvContoursMoments
	cvContourArea
	cvMatchContours
	cvCreateContourTree
	cvContourFromContourTree
	cvMatchContourTrees

	Geometry
	Overview
	Ellipse Fitting
	Line Fitting
	Convexity Defects

	Reference
	cvFitEllipse
	cvFitLine2D
	cvFitLine3D
	cvProject3D
	cvConvexHull
	cvContourConvexHull
	cvConvexHullApprox
	cvContourConvexHullApprox
	cvCheckContourConvexity
	cvConvexityDefects
	cvMinAreaRect
	cvCalcPGH
	cvMinEnclosingCircle

	Features
	Fixed Filters
	Overview
	Sobel Derivatives

	Optimal Filter Kernels with Floating Point Coefficients
	First Derivatives
	Second Derivatives
	Laplacian Approximation

	Reference
	cvLaplace
	cvSobel

	Feature Detection Functions
	Overview
	Corner Detection
	Canny Edge Detector

	Reference
	cvCanny
	cvPreCornerDetect
	cvCornerEigenValsAndVecs
	cvCornerMinEigenVal
	cvFindCornerSubPix
	cvGoodFeaturesToTrack

	Hough Transform
	Overview

	Reference
	cvHoughLines
	cvHoughLinesSDiv
	Discussion

	cvHoughLinesP
	Discussion

	Image Statistics
	Overview
	Reference
	cvCountNonZero
	cvSumPixels
	cvMean
	cvMean_StdDev
	cvMinMaxLoc
	cvNorm
	cvMoments
	cvGetSpatialMoment
	cvGetCentralMoment
	cvGetNormalizedCentralMoment
	cvGetHuMoments

	Pyramids
	Overview
	Reference
	cvPyrDown
	cvPyrUp
	cvPyrSegmentation

	Morphology
	Overview
	Flat Structuring Elements for Gray Scale

	Reference
	cvCreateStructuringElementEx
	cvReleaseStructuringElement
	cvErode
	cvDilate
	cvMorphologyEx

	Background Subtraction
	Overview
	Reference
	cvAcc
	cvSquareAcc
	cvMultiplyAcc
	cvRunningAvg

	Distance Transform
	Overview
	Reference
	cvDistTransform

	Threshold Functions
	Overview
	Reference
	cvAdaptiveThreshold
	cvThreshold

	Flood Fill
	Overview
	Reference
	cvFloodFill

	Camera Calibration
	Overview
	Camera Parameters
	Homography
	Pattern
	Lens Distortion
	Rotation Matrix and Rotation Vector

	Reference
	cvCalibrateCamera
	cvCalibrateCamera_64d
	cvFindExtrinsicCameraParams
	cvFindExtrinsicCameraParams_64d
	cvRodrigues
	cvRodrigues_64d
	cvUnDistortOnce
	cvUnDistortInit
	cvUnDistort
	cvFindChessBoardCornerGuesses

	View Morphing
	Overview
	Algorithm
	Using Functions for View Morphing Algorithm

	Reference
	cvFindFundamentalMatrix
	cvMakeScanlines
	cvPreWarpImage
	cvFindRuns
	cvDynamicCorrespondMulti
	cvMakeAlphaScanlines
	cvMorphEpilinesMulti
	cvPostWarpImage
	cvDeleteMoire

	Motion Templates
	Overview
	Motion Representation and Normal Optical Flow Method
	Motion Representation
	A) Updating MHI Images
	B) Making Motion Gradient Image
	C) Finding Regional Orientation or Normal Optical Flow
	Motion Segmentation

	Reference
	cvUpdateMotionHistory
	cvCalcMotionGradient
	cvCalcGlobalOrientation
	cvSegmentMotion

	CamShift
	Overview
	Mass Center Calculation for 2D Probability Distribution
	CamShift Algorithm
	Calculation of 2D Orientation

	Reference
	cvCamShift
	cvMeanShift

	Active Contours
	Overview
	Reference
	cvSnakeImage

	Optical Flow
	Overview
	Lucas & Kanade Technique
	Horn & Schunck Technique
	Block Matching

	Reference
	cvCalcOpticalFlowHS
	cvCalcOpticalFlowLK
	cvCalcOpticalFlowBM
	cvCalcOpticalFlowPyrLK

	Estimators
	Overview
	Definitions and Motivation
	Models
	Estimators
	Kalman Filtering

	Reference
	cvCreateKalman
	cvReleaseKalman
	cvKalmanUpdateByTime
	cvKalmanUpdateByMeasurement
	ConDensation Algorithm

	Implementation of Nonlinear Models

	Reference
	cvCreateConDensation
	cvReleaseConDensation
	cvConDensInitSampleSet
	cvConDensUpdatebyTime

	POSIT
	Overview
	Background
	Camera parameters
	Geometric Image Formation
	Pose Approximation Method
	Algorithm

	Reference
	cvCreatePOSITObject
	cvPOSIT
	cvReleasePOSITObject

	Histogram
	Overview
	Histograms and Signatures
	Example Ground Distances
	Lower Boundary for EMD

	Reference
	cvCreateHist
	cvReleaseHist
	cvMakeHistHeaderForArray
	cvQueryHistValue_1D
	cvQueryHistValue_2D
	cvQueryHistValue_3D
	cvQueryHistValue_nD
	cvGetHistValue_1D
	cvGetHistValue_2D
	cvGetHistValue_3D
	cvGetHistValue_nD
	cvGetMinMaxHistValue
	cvNormalizeHist
	cvThreshHist
	cvCompareHist
	cvCopyHist
	cvSetHistBinRanges
	cvCalcHist
	cvCalcBackProject
	cvCalcBackProjectPatch
	cvCalcEMD

	Gesture Recognition
	Overview
	Reference
	cvFindHandRegion
	cvFindHandRegionA
	cvCreateHandMask
	cvCalcImageHomography
	cvCalcProbDensity
	cvMaxRect

	Matrix Operations
	Overview
	Reference
	cvmAlloc
	cvmAllocArray
	cvmFree
	cvmFreeArray
	cvmAdd
	cvmSub
	cvmScale
	cvmDotProduct
	cvmCrossProduct
	cvmMul
	cvmMulTransposed
	cvmTranspose
	cvmInvert
	cvmTrace
	cvmDet
	cvmCopy
	cvmSetZero_32f
	cvmSetIdentity
	cvmMahalonobis
	cvmSVD
	cvmEigenVV
	cvmPerspectiveProject

	Eigen Objects
	Overview
	Reference
	cvCalcCovarMatrixEx
	cvCalcEigenObjects
	cvCalcDecompCoeff
	cvEigenDecomposite
	cvEigenProjection
	Use of Functions

	Embedded Hidden Markov Models
	Overview
	HMM Structures

	Reference
	cvCreate2DHMM
	cvRelease2DHMM
	cvCreateObsInfo
	cvReleaseObsInfo
	cvImgToObs_DCT
	cvUniformImgSegm
	cvInitMixSegm
	cvEstimateHMMStateParams
	cvEstimateTransProb
	cvEstimateObsProb
	cvEViterbi
	cvMixSegmL2

	Drawing Primitives
	Overview
	Reference
	cvLine
	cvLineAA
	cvRectangle
	cvCircle
	cvEllipse
	cvEllipseAA
	cvFillPoly
	cvFillConvexPoly
	cvPolyLine
	cvPolyLineAA
	cvInitFont
	cvPutText
	cvGetTextSize

	System Functions
	Reference
	cvLoadPrimitives
	cvGetLibraryInfo

	Utility
	Reference
	cvAbsDiff
	cvAbsDiffS
	cvMatchTemplate
	cvCvtPixToPlane
	cvCvtPlaneToPix
	cvConvertScale
	cvInitLineIterator
	cvSampleLine
	cvGetRectSubPix
	cvbFastArctan
	cvSqrt
	cvbSqrt
	cvInvSqrt
	cvbInvSqrt
	cvbReciprocal
	cvbCartToPolar
	cvbFastExp
	cvbFastLog
	cvRandInit
	cvbRand
	cvFillImage
	cvRandSetRange
	cvKMeans

	Bibliography
	Index

