
Open Source
Computer Vision
Library

Reference Manual

Copyright © 1999-2001 Intel Corporation
All Rights Reserved
Issued in U.S.A.
Order Number: TBD

World Wide Web: http://developer.intel.com

http://developer.intel.com

ii

This Open Source Computer Vision Library Reference Manual as well as the software described in it is furnished under license and may
only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only,
is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in associa-
tion with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means without the express written consent of Intel Corporation.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel
assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including
liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellec-
tual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to
specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them.

The Open Source Computer Vision Library may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Copyright © Intel Corporation 1999-2001.

*Third-party brands and names are the property of their respective owners.

Version Version History Date

-001 Original Issue December 8, 2000

v

Contents

Contents

Chapter 1
Image Functions

Overview .. 1-1
Reference... 1-4

cvCreateImageHeader... 1-4
cvCreateImage .. 1-5
cvReleaseImageHeader .. 1-5
cvReleaseImage.. 1-6
cvCreateImageData... 1-6
cvReleaseImageData .. 1-7
cvSetImageData .. 1-7
cvSetImageCOI ... 1-8
cvSetImageROI ... 1-8
cvGetImageRawData... 1-9
cvInitImageHeader .. 1-9
cvCopyImage... 1-10

Pixel Access Macros .. 1-10
Overview.. 1-10
CV_INIT_PIXEL_POS ... 1-12
CV_MOVE_TO .. 1-13
CV_MOVE ... 1-13
CV_MOVE_WRAP .. 1-14
CV_MOVE_PARAM... 1-14

OpenCV Reference Manual Contents

vi

CV_MOVE_PARAM_WRAP .. 1-15

Chapter 2
Dynamic Data Structures

Memory Storage ... 2-1
Overview.. 2-1
cvCreateMemStorage .. 2-3
cvCreateChildMemStorage.. 2-3
cvReleaseMemStorage.. 2-4
cvClearMemStorage .. 2-4
cvSaveMemStoragePos... 2-5
cvRestoreMemStoragePos .. 2-5

Sequences.. 2-7
Overview.. 2-7
cvCreateSeq .. 2-10
cvSetSeqBlockSize.. 2-11
cvSeqPush... 2-12
cvSeqPop... 2-13
cvSeqPushFront .. 2-13
cvSeqPopFront .. 2-13
cvSeqPushMulti ... 2-14
cvSeqPopMulti ... 2-14
cvSeqInsert.. 2-15
cvSeqRemove.. 2-16
cvClearSeq .. 2-16
cvGetSeqElem... 2-17
cvSeqElemIdx.. 2-17
cvCvtSeqToArray ... 2-18
cvMakeSeqHeaderForArray... 2-18

Writing and Reading Sequences .. 2-19
Overview.. 2-19
Reference .. 2-21
cvStartAppendToSeq ... 2-21

OpenCV Reference Manual Contents

vii

cvStartWriteSeq... 2-21
cvEndWriteSeq .. 2-22
cvFlushSeqWriter .. 2-23
cvStartReadSeq... 2-23
cvGetSeqReaderPos ... 2-24
cvSetSeqReaderPos.. 2-25

.. 2-25
Sets .. 2-25

Overview.. 2-25
Reference ... 2-29

cvCreateSet ... 2-29
cvSetAdd ... 2-29
cvSetRemove... 2-30
cvGetSetElem.. 2-30
cvClearSet ... 2-31

Graphs.. 2-32
Overview.. 2-32
Reference .. 2-35
cvCreateGraph... 2-35
cvGraphAddVtx.. 2-36
cvGraphRemoveVtx... 2-36
cvGraphRemoveVtxByPtr .. 2-37
cvGraphAddEdge... 2-37
cvGraphAddEdgeByPtr.. 2-38
cvGraphRemoveEdge.. 2-39
cvGraphRemoveEdgeByPtr ... 2-39
cvFindGraphEdge.. 2-40
cvFindGraphEdgeByPtr ... 2-40
cvGraphVtxDegree .. 2-41
cvGraphVtxDegreeByPtr.. 2-42
cvClearGraph... 2-42
cvGetGraphVtx .. 2-43

OpenCV Reference Manual Contents

viii

cvGraphVtxIdx ... 2-43
cvGraphEdgeIdx .. 2-44

Chapter 3
Contour Processing

Overview.. 3-1
Basic Definitions.. 3-1
Contour Representation .. 3-4
Contour Retrieving Algorithm .. 3-5
Polygonal Approximation... 3-6
Douglas-Peucker Approximation ... 3-9
Contours Moments.. 3-10
Hierarchical Representation of Contours 3-13
Data Structures ... 3-19

Reference ... 3-20
cvFindContours.. 3-20
cvStartFindContours .. 3-21
cvFindNextContour .. 3-22
cvSubstituteContour .. 3-23
cvEndFindContours ... 3-23
cvApproxChains... 3-24
cvStartReadChainPoints.. 3-25
cvReadChainPoint ... 3-25
cvApproxPoly ... 3-26
cvDrawContours .. 3-26
cvContoursMoments .. 3-27
cvContourArea... 3-28
cvMatchContours... 3-28
cvCreateContourTree... 3-30
cvContourFromContourTree .. 3-30
cvMatchContourTrees .. 3-31

Chapter 4

OpenCV Reference Manual Contents

ix

Geometry
Overview... 4-1

Ellipse Fitting... 4-1
Line Fitting... 4-2
Convexity Defects ... 4-3

Reference ... 4-4
cvFitEllipse... 4-4
cvFitLine2D.. 4-5
cvFitLine3D.. 4-6
cvProject3D ... 4-8
cvConvexHull ... 4-9
cvContourConvexHull .. 4-9
cvConvexHullApprox.. 4-10
cvContourConvexHullApprox ... 4-11
cvCheckContourConvexity ... 4-12
cvConvexityDefects.. 4-12
cvMinAreaRect .. 4-13
cvCalcPGH .. 4-14
cvMinEnclosingCircle... 4-15

Chapter 5
Features

Fixed Filters .. 5-1
Overview.. 5-1

Sobel Derivatives .. 5-1
Optimal Filter Kernels with Floating Point Coefficients 5-5

First Derivatives... 5-5
Second Derivatives ... 5-6
Laplacian Approximation... 5-6

Reference ... 5-7
cvLaplace... 5-7
cvSobel .. 5-7

Feature Detection Functions... 5-8

OpenCV Reference Manual Contents

x

Overview.. 5-8
Corner Detection.. 5-8
Canny Edge Detector... 5-9

Reference ... 5-11
cvCanny ... 5-11
cvPreCornerDetect .. 5-12
cvCornerEigenValsAndVecs .. 5-12
cvCornerMinEigenVal .. 5-13
cvFindCornerSubPix.. 5-14
cvGoodFeaturesToTrack .. 5-16

Hough Transform .. 5-17
Overview.. 5-17

Reference ... 5-18
cvHoughLines .. 5-18
cvHoughLinesSDiv .. 5-19

Discussion... 5-19
cvHoughLinesP.. 5-19

Discussion... 5-20

Chapter 6
Image Statistics

Overview... 6-1
Reference ... 6-2

cvCountNonZero.. 6-2
cvSumPixels .. 6-2
cvMean .. 6-3
cvMean_StdDev... 6-3
cvMinMaxLoc... 6-4
cvNorm .. 6-4
cvMoments .. 6-6
cvGetSpatialMoment ... 6-7
cvGetCentralMoment ... 6-7
cvGetNormalizedCentralMoment... 6-8

OpenCV Reference Manual Contents

xi

cvGetHuMoments .. 6-9

Chapter 7
Pyramids

Overview... 7-1
Reference ... 7-6

cvPyrDown... 7-6
cvPyrUp ... 7-6
cvPyrSegmentation.. 7-7

Chapter 8
Morphology

Overview... 8-1
Flat Structuring Elements for Gray Scale... 8-3

Reference ... 8-6
cvCreateStructuringElementEx.. 8-6
cvReleaseStructuringElement ... 8-7
cvErode.. 8-7
cvDilate .. 8-8
cvMorphologyEx .. 8-9

Chapter 9
Background Subtraction

Overview... 9-1
Reference .. 9-2
cvAcc ... 9-2
cvSquareAcc.. 9-3
cvMultiplyAcc ... 9-3
cvRunningAvg.. 9-4

Chapter 10
Distance Transform

Overview... 10-1
Reference ... 10-1

OpenCV Reference Manual Contents

xii

cvDistTransform ... 10-1

Chapter 11
Threshold Functions

Overview... 11-1
Reference ... 11-2

cvAdaptiveThreshold ... 11-2
cvThreshold ... 11-3

Chapter 12
Flood Fill

Overview... 12-1
Reference ... 12-2

cvFloodFill.. 12-2

Chapter 13
Camera Calibration

Overview... 13-1
Camera Parameters .. 13-1
Homography.. 13-2
Pattern... 13-3
Lens Distortion .. 13-3
Rotation Matrix and Rotation Vector ... 13-5

Reference ... 13-5
cvCalibrateCamera .. 13-5
cvCalibrateCamera_64d .. 13-6
cvFindExtrinsicCameraParams.. 13-7
cvFindExtrinsicCameraParams_64d.. 13-8
cvRodrigues... 13-9
cvRodrigues_64d... 13-9
cvUnDistortOnce.. 13-10
cvUnDistortInit ... 13-11
cvUnDistort .. 13-12

OpenCV Reference Manual Contents

xiii

cvFindChessBoardCornerGuesses ... 13-12

Chapter 14
View Morphing

Overview... 14-1
Algorithm... 14-1
Using Functions for View Morphing Algorithm 14-4

Reference ... 14-5
cvFindFundamentalMatrix ... 14-5
cvMakeScanlines ... 14-6
cvPreWarpImage ... 14-7
cvFindRuns.. 14-8
cvDynamicCorrespondMulti ... 14-9
cvMakeAlphaScanlines.. 14-9
cvMorphEpilinesMulti ... 14-10
cvPostWarpImage.. 14-11
cvDeleteMoire .. 14-12

Chapter 15
Motion Templates

Overview... 15-1
Motion Representation and Normal Optical Flow Method 15-1

Motion Representation .. 15-1
A) Updating MHI Images... 15-2
B) Making Motion Gradient Image .. 15-2
C) Finding Regional Orientation or Normal Optical Flow 15-4
Motion Segmentation .. 15-6

Reference ... 15-8
cvUpdateMotionHistory.. 15-8
cvCalcMotionGradient.. 15-8
cvCalcGlobalOrientation .. 15-9
cvSegmentMotion .. 15-10

OpenCV Reference Manual Contents

xiv

Chapter 16
CamShift

Overview... 16-1
Mass Center Calculation for 2D Probability Distribution 16-3
CamShift Algorithm ... 16-3
Calculation of 2D Orientation .. 16-6

Reference ... 16-7
cvCamShift .. 16-7
cvMeanShift ... 16-8

Chapter 17
Active Contours

Overview... 17-1
Reference ... 17-3

cvSnakeImage ... 17-3

Chapter 18
Optical Flow

Overview... 18-1
Lucas & Kanade Technique .. 18-2
Horn & Schunck Technique... 18-2
Block Matching.. 18-3

Reference ... 18-4
cvCalcOpticalFlowHS .. 18-4
cvCalcOpticalFlowLK ... 18-4
cvCalcOpticalFlowBM.. 18-5
cvCalcOpticalFlowPyrLK.. 18-6

Chapter 19
Estimators

Overview... 19-1
Definitions and Motivation ... 19-1
Models... 19-1

OpenCV Reference Manual Contents

xv

Estimators ... 19-2
Kalman Filtering .. 19-2

Reference ... 19-4
cvCreateKalman .. 19-4
cvReleaseKalman.. 19-5
cvKalmanUpdateByTime ... 19-5
cvKalmanUpdateByMeasurement ... 19-6

ConDensation Algorithm ... 19-6
Implementation of Nonlinear Models ... 19-7

Reference ... 19-7
cvCreateConDensation.. 19-7
cvReleaseConDensation ... 19-8
cvConDensInitSampleSet .. 19-8
cvConDensUpdatebyTime ... 19-9

Chapter 20
POSIT

Overview... 20-1
Background.. 20-1

Camera parameters .. 20-1
Geometric Image Formation ... 20-2
Pose Approximation Method ... 20-3
Algorithm... 20-5

Reference ... 20-7
cvCreatePOSITObject ... 20-7
cvPOSIT .. 20-7
cvReleasePOSITObject ... 20-8

Chapter 21
Histogram

Overview... 21-1
Histograms and Signatures... 21-2
Example Ground Distances .. 21-5

OpenCV Reference Manual Contents

xvi

Lower Boundary for EMD.. 21-6
Reference ... 21-6

cvCreateHist .. 21-6
cvReleaseHist .. 21-7
cvMakeHistHeaderForArray... 21-8
cvQueryHistValue_1D.. 21-8
cvQueryHistValue_2D.. 21-9
cvQueryHistValue_3D.. 21-9
cvQueryHistValue_nD.. 21-10
cvGetHistValue_1D.. 21-10
cvGetHistValue_2D.. 21-11
cvGetHistValue_3D.. 21-11
cvGetHistValue_nD.. 21-12
cvGetMinMaxHistValue.. 21-12
cvNormalizeHist... 21-13
cvThreshHist .. 21-13
cvCompareHist .. 21-14
cvCopyHist... 21-15
cvSetHistBinRanges .. 21-15
cvCalcHist .. 21-16
cvCalcBackProject ... 21-16
cvCalcBackProjectPatch.. 21-17
cvCalcEMD .. 21-20

Chapter 22
Gesture Recognition

Overview... 22-1
Reference ... 22-4

cvFindHandRegion .. 22-4
cvFindHandRegionA.. 22-5
cvCreateHandMask ... 22-6
cvCalcImageHomography.. 22-6
cvCalcProbDensity .. 22-7

OpenCV Reference Manual Contents

xvii

cvMaxRect ... 22-8

Chapter 23
Matrix Operations

Overview... 23-1
Reference ... 23-2

cvmAlloc .. 23-2
cvmAllocArray .. 23-2
cvmFree ... 23-3
cvmFreeArray... 23-3
cvmAdd.. 23-3
cvmSub.. 23-4
cvmScale ... 23-4
cvmDotProduct .. 23-5
cvmCrossProduct .. 23-5
cvmMul .. 23-6
cvmMulTransposed .. 23-6
cvmTranspose.. 23-7
cvmInvert ... 23-7
cvmTrace.. 23-8
cvmDet... 23-8
cvmCopy .. 23-8
cvmSetZero_32f .. 23-9
cvmSetIdentity ... 23-9
cvmMahalonobis .. 23-10
cvmSVD... 23-10
cvmEigenVV .. 23-11
cvmPerspectiveProject... 23-12

Chapter 24
Eigen Objects

Overview... 24-1
Reference ... 24-2

OpenCV Reference Manual Contents

xviii

cvCalcCovarMatrixEx... 24-2
cvCalcEigenObjects... 24-3
cvCalcDecompCoeff .. 24-4
cvEigenDecomposite ... 24-5
cvEigenProjection .. 24-6

Use of Functions ... 24-6

Chapter 25
Embedded Hidden Markov Models

Overview... 25-1
HMM Structures .. 25-1

Reference ... 25-3
cvCreate2DHMM ... 25-3
cvRelease2DHMM... 25-3
cvCreateObsInfo .. 25-4
cvReleaseObsInfo ... 25-4
cvImgToObs_DCT.. 25-5
cvUniformImgSegm ... 25-6
cvInitMixSegm ... 25-6
cvEstimateHMMStateParams .. 25-7
cvEstimateTransProb ... 25-7
cvEstimateObsProb ... 25-8
cvEViterbi... 25-8
cvMixSegmL2 .. 25-9

Chapter 26
Drawing Primitives

Overview.. 26-1
Reference ... 26-2

cvLine .. 26-2
cvLineAA.. 26-3
cvRectangle ... 26-4
cvCircle .. 26-4

OpenCV Reference Manual Contents

xix

cvEllipse... 26-5
cvEllipseAA.. 26-6
cvFillPoly.. 26-7
cvFillConvexPoly .. 26-8
cvPolyLine.. 26-8
cvPolyLineAA... 26-9
cvInitFont ... 26-10
cvPutText ... 26-10
cvGetTextSize .. 26-11

Chapter 27
System Functions

Reference ... 27-1
cvLoadPrimitives.. 27-1
cvGetLibraryInfo .. 27-2

Chapter 28
Utility

Reference ... 28-1
cvAbsDiff.. 28-1
cvAbsDiffS ... 28-2
cvMatchTemplate ... 28-2
cvCvtPixToPlane .. 28-5
cvCvtPlaneToPix .. 28-5
cvConvertScale.. 28-6
cvInitLineIterator .. 28-7
cvSampleLine .. 28-8
cvGetRectSubPix... 28-8
cvbFastArctan .. 28-9
cvSqrt... 28-10
cvbSqrt... 28-10
cvInvSqrt.. 28-11
cvbInvSqrt.. 28-11

OpenCV Reference Manual Contents

xx

cvbReciprocal .. 28-12
cvbCartToPolar .. 28-12
cvbFastExp .. 28-13
cvbFastLog .. 28-13
cvRandInit .. 28-14
cvbRand... 28-14
cvFillImage... 28-15
cvRandSetRange... 28-15
cvKMeans .. 28-16

Bibliography

Index

1-1

1Image Functions

The chapter describes basic functions for manipulating raster images.

Overview
OpenCV library represents images in the format IplImage that comes from Intel®

Image Processing Library (IPL). IPL reference manual gives detailed information
about the format, but, for completeness, it is also briefly described here.

Example 1-1 IplImage Structure Definition

typedef struct _IplImage {
int nSize; /* size of iplImage struct */
int ID; /* image header version */
int nChannels;
int alphaChannel;
int depth; /* pixel depth in bits */
char colorModel[4];
char channelSeq[4];
int dataOrder;
int origin;
int align; /* 4- or 8-byte align */
int width;
int height;
struct _IplROI *roi; /* pointer to ROI if any */
struct _IplImage *maskROI; /*pointer to mask ROI if any */
void *imageId; /* use of the application */
struct _IplTileInfo *tileInfo; /* contains information on tiling

*/
int imageSize; /* useful size in bytes */
char *imageData; /* pointer to aligned image */
int widthStep; /* size of aligned line in bytes */
int BorderMode[4]; /* the top, bottom, left,
and right border mode */
int BorderConst[4]; /* constants for the top, bottom,

left, and right border */
char *imageDataOrigin; /* ptr to full, nonaligned image */

OpenCV Reference Manual Image Functions 1

1-2

Only a few of the most important fields of the structure are described here. The fields
width and height contain image width and height in pixels, respectively. The field
depth contains information about the type of pixel values.

All possible values of the field depth listed in ipl.h header file include:

IPL_DEPTH_8U - unsigned 8-bit integer value (unsigned char),

IPL_DEPTH_8S - signed 8-bit integer value (signed char or simply char),

IPL_DEPTH_16S - signed 16-bit integer value (short int),

IPL_DEPTH_32S - signed 32-bit integer value (int),

IPL_DEPTH_32F - 32-bit floating-point single-precision value (float).

In the above list the corresponding types in C are placed in parentheses. The parameter
nChannelsmeans the number of color planes in the image. Grayscale images contain a
single channel, while color images usually include three or four channels. The
parameter origin indicates, whether the top image row (origin == IPL_ORIGIN_TL)
or bottom image row (origin == IPL_ORIGIN_BL) goes first in memory. Windows
bitmaps are usually bottom-origin, while in most of other environments images are
top-origin. The parameter dataOrder indicates, whether the color planes in the color
image are interleaved (dataOrder == IPL_DATA_ORDER_PIXEL) or separate
(dataOrder == IPL_DATA_ORDER_PLANE). The parameter widthStep contains the
number of bytes between points in the same column and successive rows. The
parameter width is not sufficient to calculate the distance, because each row may be
aligned with a certain number of bytes to achieve faster processing of the image, so
there can be some gaps between the end of ith row and the start of (i+1)th row. The
parameter imageData contains pointer to the first row of image data. If there are
several separate planes in the image (when dataOrder == IPL_DATA_ORDER_PLANE),
they are placed consecutively as separate images with height*nChannels rows total.

} IplImage;

Example 1-1 IplImage Structure Definition (continued)

OpenCV Reference Manual Image Functions 1

1-3

It is possible to select some rectangular part of the image or a certain color plane in the
image, or both, and process only this part. The selected rectangle is called "Region of
Interest" or ROI. The structure IplImage contains the field roi for this purpose. If the
pointer not NULL, it points to the structure IplROI that contains parameters of selected
ROI, otherwise a whole image is considered selected.

As can be seen, IplROI includes ROI origin and size as well as COI (“Channel of
Interest”) specification. The field coi, equal to 0, means that all the image channels are
selected, otherwise it specifies an index of the selected image plane.

Unlike IPL, OpenCV has several limitations in support of IplImage:

— Each function supports only a few certain depths and/or number of channels.
For example, image statistics functions support only single-channel or
three-channel images of the depth IPL_DEPTH_8U, IPL_DEPTH_8S or
IPL_DEPTH_32F. The exact information about supported image formats is
usually contained in the description of parameters or in the beginning of the
chapter if all the functions described in the chapter are similar. It is quite
different from IPL that tries to support all possible image formats in each
function.

— OpenCV supports only interleaved images, not planar ones.

— The fields colorModel, channelSeq, BorderMode, and BorderConst are
ignored.

— The field align is ignored and widthStep is simply used instead of
recalculating it using the fields width and align.

— The fields maskROI and tileInfo must be zero.

— COI support is very limited. Now only image statistics functions accept
non-zero COI values. Use the functions cvCvtPixToPlane and
cvCvtPlaneToPix as a work-around.

Example 1-2 IplROI Structure Definition

typedef struct _IplROI {
int coi; /* channel of interest or COI */
int xOffset;
int yOffset;
int width;
int height;

} IplROI;

OpenCV Reference Manual Image Functions 1

1-4

— ROIs of all the input/output images have to match exactly one another. For
example, input and output images of the function cvErode must have ROIs
with equal sizes. It is unlike IPL again, where the ROIs intersection is actually
affected.

Despite all the limitations, OpenCV still supports most of the commonly used image
formats that can be supported by IplImage and, thus, can be successfully used with
IPL on common subset of possible IplImage formats.

The functions described in this chapter are mainly short-cuts for operations of creating,
destroying, and other common operations on IplImage, and they are often
implemented as wrappers for original IPL functions.

Reference

cvCreateImageHeader
Allocates, initializes, and returns structure
IplImage.

IplImage* cvCreateImageHeader(CvSize size, int depth, int channels);

size Image width and height.

depth Image depth.

channels Number of channels.

Discussion

The function cvCreateImageHeader allocates, initializes, and returns the structure
IplImage. This call is a shortened form of

iplCreateImageHeader(channels, 0, depth,

channels == 1 ? "GRAY" : "RGB",

channels == 1 ? "GRAY" : channels == 3 ? "BGR" : "BGRA",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL, 4,

OpenCV Reference Manual Image Functions 1

1-5

size.width, size.height,

0,0,0,0);

cvCreateImage
Creates header and allocates data.

IplImage* cvCreateImage(CvSize size, int depth, int channels);

size Image width and height.

depth Image depth.

channels Number of channels.

Discussion

The function cvCreateImage creates the header and allocates data. This call is a
shortened form of

header = cvCreateImageHeader(size,depth,channels);

cvCreateImageData(header);

cvReleaseImageHeader
Releases header.

void cvReleaseImageHeader(IplImage** image);

image Double pointer to the deallocated header.

Discussion

The function cvReleaseImageHeader releases the header. This call is a shortened
form of

if(image)

OpenCV Reference Manual Image Functions 1

1-6

{

iplDeallocate(*image,

IPL_IMAGE_HEADER | IPL_IMAGE_ROI);

*image = 0;

}

cvReleaseImage
Releases header and image data.

void cvReleaseImage(IplImage** image)

image Double pointer to the header of the deallocated image.

Discussion

The function cvReleaseImage releases the header and image data. This call is a
shortened form of

if(image)

{

iplDeallocate(*image, IPL_IMAGE_ALL);

*image = 0;

}

cvCreateImageData
Allocates image data.

void cvCreateImageData(IplImage* image);

image Image header.

OpenCV Reference Manual Image Functions 1

1-7

Discussion

The function cvCreateImageData allocates the image data. This call is a shortened
form of

if(image->depth == IPL_DEPTH_32F)

{

iplAllocateImageFP(image, 0, 0);

}

else

{

iplAllocateImage(image, 0, 0);

}

cvReleaseImageData
Releases image data.

void cvReleaseImageData(IplImage* image);

image Image header.

Discussion

The function cvReleaseImageData releases the image data. This call is a shortened
form of

iplDeallocate(image, IPL_IMAGE_DATA);

cvSetImageData
Sets pointer to data and step parameters to given
values.

void cvSetImageData(IplImage* image, void* data, int step);

OpenCV Reference Manual Image Functions 1

1-8

image Image header.

data User data.

step Distance between the raster lines in bytes.

Discussion

The function cvSetImageData sets the pointer to data and step parameters to given
values.

cvSetImageCOI
Sets channel of interest to given value.

void cvSetImageCOI(IplImage* image, int coi);

image Image header.

coi Channel of interest.

Discussion

The function cvSetImageCOI sets the channel of interest to a given value. If ROI is
NULL and coi != 0, ROI is allocated.

cvSetImageROI
Sets image ROI to given rectangle.

void cvSetImageROI(IplImage* image, CvRect rect);

image Image header.

rect ROI rectangle.

OpenCV Reference Manual Image Functions 1

1-9

Discussion

The function cvSetImageROI sets the image ROI to a given rectangle. If ROI is NULL
and the value of the parameter rect is not equal to the whole image, ROI is allocated.

cvGetImageRawData
Fills output variables with image parameters.

void cvGetImageRawData(const IplImage* image, uchar** data, int* step,
CvSize* roiSize);

image Image header.

data Pointer to the top-left corner of ROI.

step Full width of the raster line, equals to image->widthStep.

roiSize ROI width and height.

Discussion

The function cvGetImageRawData fills output variables with the image parameters.
All output parameters are optional and could be set to NULL.

cvInitImageHeader
Initializes image header structure without
memory allocation.

void cvInitImageHeader(IplImage* image, CvSize size, int depth, int channels,
int origin, int align, int clear);

image Image header.

size Image width and height.

depth Image depth.

OpenCV Reference Manual Image Functions 1

1-10

channels Number of channels.

origin IPL_ORIGIN_TL or IPL_ORIGIN_BL.

align Alignment for the raster lines.

clear If the parameter value equals 1, the header is cleared before
initialization.

Discussion

The function cvInitImageHeader initializes the image header structure without
memory allocation.

cvCopyImage
Copies entire image to another without
considering ROI.

void cvCopyImage(IplImage* src, IplImage* dst);

src Source image.

dst Destination image.

Discussion

The function cvCopyImage copies the entire image to another without considering
ROI. If the destination image is smaller, the destination image data is reallocated.

Pixel Access Macros

Overview

This section describes macros that are useful for fast and flexible access to image
pixels. The basic ideas behind these macros are as follows:

Yangtze
高亮

OpenCV Reference Manual Image Functions 1

1-11

1. Some structures of CvPixelAccess type are introduced. These structures
contain all information about ROI and its current position. The only difference
across all these structures is the data type, not the number of channels.

2. There exist fast versions for moving in a specific direction, e.g.,
CV_MOVE_LEFT, wrap and non-wrap versions. More complicated and slower
macros are used for moving in an arbitrary direction that is passed as a
parameter.

3. Most of the macros require the parameter cs that specifies the number of the
image channels to enable the compiler to remove superfluous multiplications
in case the image has a single channel, and substitute faster machine
instructions for them in case of three and four channels.

Example 1-3 CvPixelPosition Structures Definition

typedef struct _CvPixelPosition8u
{

unsigned char* currline;
/* pointer to the start of the current

pixel line */
unsigned char* topline;

/* pointer to the start of the top pixel
line */

unsigned char* bottomline;
/* pointer to the start of the first

line which is below the image */
int x; /* current x coordinate (in pixels) */
int width; /* width of the image (in pixels)*/
int height; /* height of the image (in pixels)*/
int step; /* distance between lines (in

elements of single plane) */
int step_arr[3]; /* array: (0, -step, step).

It is used for vertical
moving */

} CvPixelPosition8u;

/*this structure differs from the above only in data type*/
typedef struct _CvPixelPosition8s
{

char* currline;
char* topline;
char* bottomline;
int x;
int width;
int height;
int step;

OpenCV Reference Manual Image Functions 1

1-12

CV_INIT_PIXEL_POS
Initializes one of CvPixelPosition structures.

#define CV_INIT_PIXEL_POS(pos, origin, step, roi, x, y, orientation)

pos Initialization of structure.

origin Pointer to the left-top corner of ROI.

step Width of the whole image in bytes.

roi Width and height of ROI.

x, y Initial position.

orientation Image orientation; could be either

CV_ORIGIN_TL - top/left orientation, or

CV_ORIGIN_BL - bottom/left orientation.

int step_arr[3];
} CvPixelPosition8s;

/* this structure differs from the CvPixelPosition8u only in data type
*/
typedef struct _CvPixelPosition32f
{

float* currline;
float* topline;
float* bottomline;
int x;
int width;
int height;
int step;
int step_arr[3];

} CvPixelPosition32f;

Example 1-3 CvPixelPosition Structures Definition (continued)

OpenCV Reference Manual Image Functions 1

1-13

CV_MOVE_TO
Moves to specified absolute position.

#define CV_MOVE_TO(pos, x, y, cs)

pos Position structure.

x, y Coordinates of the new position.

cs Number of the image channels.

CV_MOVE
Moves by one pixel relative to current position.

#define CV_MOVE_LEFT(pos, cs)

#define CV_MOVE_RIGHT(pos, cs)

#define CV_MOVE_UP(pos, cs)

#define CV_MOVE_DOWN(pos, cs)

#define CV_MOVE_LU(pos, cs)

#define CV_MOVE_RU(pos, cs)

#define CV_MOVE_LD(pos, cs)

#define CV_MOVE_RD(pos, cs)

pos Position structure.

cs Number of the image channels.

OpenCV Reference Manual Image Functions 1

1-14

CV_MOVE_WRAP
Moves by one pixel relative to current position
and wraps when position reaches image
boundary.

#define CV_MOVE_LEFT_WRAP(pos, cs)

#define CV_MOVE_RIGHT_WRAP(pos, cs)

#define CV_MOVE_UP_WRAP(pos, cs)

#define CV_MOVE_DOWN_WRAP(pos, cs)

#define CV_MOVE_LU_WRAP(pos, cs)

#define CV_MOVE_RU_WRAP(pos, cs)

#define CV_MOVE_LD_WRAP(pos, cs)

#define CV_MOVE_RD_WRAP(pos, cs)

pos Position structure.

cs Number of the image channels.

CV_MOVE_PARAM
Moves by one pixel in specified direction.

#define CV_MOVE_PARAM(pos, shift, cs)

pos Position structure.

cs Number of the image channels.

shift Direction; could be any of the following:

CV_SHIFT_NONE,

CV_SHIFT_LEFT,

CV_SHIFT_RIGHT,

CV_SHIFT_UP,

OpenCV Reference Manual Image Functions 1

1-15

CV_SHIFT_DOWN,

CV_SHIFT_UL,

CV_SHIFT_UR,

CV_SHIFT_DL.

CV_MOVE_PARAM_WRAP
Moves by one pixel in specified direction with
wrapping.

#define CV_MOVE_PARAM_WRAP(pos, shift, cs)

pos Position structure.

cs Number of the image channels.

shift Direction; could be any of the following:

CV_SHIFT_NONE,

CV_SHIFT_LEFT,

CV_SHIFT_RIGHT,

CV_SHIFT_UP,

CV_SHIFT_DOWN,

CV_SHIFT_UL,

CV_SHIFT_UR,

CV_SHIFT_DL.

OpenCV Reference Manual Image Functions 1

1-16

2-1

2Dynamic Data Structures

This chapter describes several resizable data structures and basic functions that are
designed to operate on these structures.

Memory Storage

Overview

Memory storages provide the space for storing all the dynamic data structures
described in this chapter. A storage consists of a header and a double-linked list of
memory blocks. This list is treated as a stack, that is, the storage header contains a
pointer to the block that is not occupied entirely and an integer value, the number of
free bytes in this block. When the free space in the block has run out, the pointer is
moved to the next block, if any, otherwise, a new block is allocated and then added to
the list of blocks. All the blocks are of the same size and, therefore, this technique
ensures an accurate memory allocation and helps avoid memory fragmentation if the
blocks are large enough (see Figure 2-1).

OpenCV Reference Manual Dynamic Data Structures 2

2-2

Figure 2-1 Memory Storage Organization

Actual data of the memory blocks follows the header, that is, the ith byte of the
memory block can be retrieved with the expression .
However, the occasions on which the need for direct access to the memory blocks
arises are quite rare. The structure described below stores the position of the stack top

Example 2-1 CvMemStorage Structure Definition

typedef struct CvMemStorage
{

CvMemBlock* bottom;/* first allocated block */
CvMemBlock* top; /*current memory block - top of the stack */
struct CvMemStorage* parent; /* borrows new blocks from */
int block_size; /* block size */
int free_space; /* free space in the current block */

} CvMemStorage;

Example 2-2 CvMemBlock Structure Definition

typedef struct CvMemBlock
{

struct CvMemBlock* prev;
struct CvMemBlock* next;

} CvMemBlock;

Storage header

BOTTOM

TOP

Memory blocks

Free space

char∗(() mem_block_ptr 1)) i[]+(

OpenCV Reference Manual Dynamic Data Structures 2

2-3

that can be saved/restored:

cvCreateMemStorage
Creates memory storage.

CvMemStorage* cvCreateMemStorage(int blockSize=0);

blockSize Size of the memory blocks in the storage; bytes.

Discussion

The function cvCreateMemStorage creates a memory storage and returns the pointer
to it. Initially the storage is empty. All fields of the header are set to 0. The parameter
blockSize must be positive or zero; if the parameter equals 0, the block size is set to
the default value, currently 64K.

cvCreateChildMemStorage
Creates child memory storage.

CvMemStorage* cvCreateChildMemStorage(CvMemStorage* parent);

parent Parent memory storage.

Example 2-3 CvMemStoragePos Structure Definition

typedef struct CvMemStoragePos
{

CvMemBlock* top;
int free_space;

}
CvMemStoragePos;

OpenCV Reference Manual Dynamic Data Structures 2

2-4

Discussion

The function cvCreateChildMemStorage creates a child memory storage similar to
the simple memory storage except for the differences in the memory
allocation/de-allocation mechanism. When a child storage needs a new block to add to
the block list, it tries to get this block from the parent. The first unoccupied parent
block available is taken and excluded from the parent block list. If no blocks are
available, the parent either allocates a block or borrows one from its own parent, if any.
In other words, the chain, or a more complex structure, of memory storages where
every storage is a child/parent of another is possible. When a child storage is released
or even cleared, it returns all blocks to the parent. Note again, that in other aspects, the
child storage is the same as the simple storage.

cvReleaseMemStorage
Releases memory storage.

void cvCreateChildMemStorage(CvMemStorage** storage);

storage Pointer to the released storage.

Discussion

The function cvReleaseMemStorage de-allocates all storage memory blocks or
returns them to the parent, if any. Then it de-allocates the storage header and clears the
pointer to the storage. All children of the storage must be released before the parent is
released.

cvClearMemStorage
Clears memory storage

void cvClearMemStorage(CvMemStorage* storage);

storage Memory storage.

OpenCV Reference Manual Dynamic Data Structures 2

2-5

Discussion

The function cvClearMemStorage resets the top (free space boundary) of the storage
to the very beginning. This function does not de-allocate any memory. If the storage
has a parent, the function returns all blocks to the parent.

cvSaveMemStoragePos
Saves memory storage position.

void cvSaveMemStoragePos(CvMemStorage* storage, CvMemStoragePos* pos);

storage Memory storage.

pos Currently retrieved position of the in-memory storage top.

Discussion

The function cvSaveMemStoragePos saves the current position of the storage top to
the parameter pos. This position can be retrieved further by the function
cvRestoreMemStoragePos.

cvRestoreMemStoragePos
Restores memory storage position.

void cvRestoreMemStoragePos(CvMemStorage* storage, CvMemStoragePos* pos);

storage Memory storage.

pos New storage top position.

Discussion

The function cvRestoreMemStoragePos restores the position of the storage top from
the parameter pos. This function and the function cvClearMemStorage are the only
methods to release memory occupied in memory blocks.

OpenCV Reference Manual Dynamic Data Structures 2

2-6

In other words, the occupied space and free space in the storage are continuous. If the
user needs to process data and put the result to the storage, there arises a need for the
storage space to be allocated for temporary results. In this case the user may simply
write all the temporary data to that single storage. However, as a result garbage appears
in the middle of the occupied part. See Figure 2-2.

Figure 2-2 Storage Allocation for Temporary Results

Saving/Restoring does not work in this case. Creating a child memory storage,
however, can resolve this problem. The algorithm writes to both storages
simultaneously, and, once done, releases the temporary storage. See Figure 2-3.

Temporary Data (Garbage)

Input/Output Storage

Input/Output Storage

Input (Occupied) Data

Output Data

OpenCV Reference Manual Dynamic Data Structures 2

2-7

Figure 2-3 Release of Temporary Storage

Sequences

Overview

A sequence is a resizable array of arbitrary type elements located in the memory
storage. The sequence is discontinuous. Sequence data may be partitioned into several
continuous blocks, called sequence blocks, that can be located in different memory
blocks. Sequence blocks are connected into a circular double-linked list to store large
sequences in several memory blocks or keep several small sequences in a single
memory block. For example, such organization is suitable for storing contours. The
sequence implementation provides fast functions for adding/removing elements
to/from the head and tail of the sequence, so that the sequence implements a deque.
The functions for inserting/removing elements in the middle of a sequence are also
available but they are slower. The sequence is the basic type for many other dynamic
data structures in the library, e.g., sets, graphs, and contours; just like all these types,
the sequence never returns the occupied memory to the storage. However, the
sequence keeps track of the memory released after removing elements from the
sequence; this memory is used repeatedly. To return the memory to the storage, the
user may clear a whole storage, or use save/restoring position functions, or keep
temporary data in child storages.

IInput/Output Storage

Temporary Child Storage

Will be returned to the parent

OpenCV Reference Manual Dynamic Data Structures 2

2-8

Figure 2-4 Sequence Structure

Such an unusual definition simplifies the extension of the structure CvSeq with
additional parameters. To extend CvSeq the user may define a new structure and put
user-defined fields after all CvSeq fields that are included via the macro
CV_SEQUENCE_FIELDS(). The field header_size contains the actual size of the
sequence header and must be more than or equal to sizeof(CvSeq). The fields

Example 2-4 CvSequence Structure Definition

#define CV_SEQUENCE_FIELDS() \
int header_size; /* size of sequence header */ \
struct CvSeq* h_prev; /* previous sequence */ \
struct CvSeq* h_next; /* next sequence */ \
struct CvSeq* v_prev; /* 2nd previous sequence */ \
struct CvSeq* v_next; /* 2nd next sequence */ \
int flags; /* micsellaneous flags */ \
int total; /* total number of elements */ \
int elem_size;/* size of sequence element in bytes */ \
char* block_max;/* maximal bound of the last block */ \
char* ptr; /* current write pointer */ \
int delta_elems; /* how many elements allocated when the seq

grows */ \
CvMemStorage* storage; /* where the seq is stored */ \
CvSeqBlock* free_blocks; /* free blocks list */ \
CvSeqBlock* first; /* pointer to the first sequence block */

typedef struct CvSeq
{

CV_SEQUENCE_FIELDS()
} CvSeq;

Storage header

Sequence header and, probably,
the first sequence block.

Sequence blocks.

Links between blocks.

OpenCV Reference Manual Dynamic Data Structures 2

2-9

h_prev, h_next, v_prev, v_next can be used to create hierarchical structures from
separate sequences. The fields h_prev and h_next point to the previous and the next
sequences on the same hierarchical level while the fields v_prev and v_next point to
the previous and the next sequence in the vertical direction, that is, parent and its first
child. But these are just names and the pointers can be used in a different way. The
field first points to the first sequence block, whose structure is described below. The
field flags contain miscellaneous information on the type of the sequence and should
be discussed in greater detail. By convention, the lowest CV_SEQ_ELTYPE_BITS bits
contain the ID of the element type. The current version has CV_SEQ_ELTYPE_BITS
equal to 5, that is, it supports up to 32 non-overlapping element types now. The file
CVTypes.h declares the predefined types.

The next CV_SEQ_KIND_BITS bits, also 5 in number, specify the kind of the sequence.
Again, predefined kinds of sequences are declared in the file CVTypes.h.

The remaining bits are used to identify different features specific to certain sequence
kinds and element types. For example, curves made of points
(CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_POINT), together with the flag
CV_SEQ_FLAG_CLOSED belong to the type CV_SEQ_POLYGON or, if other flags are used,
its subtype. Many contour processing functions check the type of the input sequence

Example 2-5 Standard Types of Sequence Elements

#define CV_SEQ_ELTYPE_POINT 1 /* (x,y) */
#define CV_SEQ_ELTYPE_CODE 2 /* freeman code: 0..7 */
#define CV_SEQ_ELTYPE_PPOINT 3 /* &(x,y) */
#define CV_SEQ_ELTYPE_INDEX 4 /* #(x,y) */
#define CV_SEQ_ELTYPE_GRAPH_EDGE 5 /* &next_o,&next_d,&vtx_o,
&vtx_d */
#define CV_SEQ_ELTYPE_GRAPH_VERTEX 6 /* first_edge, &(x,y) */
#define CV_SEQ_ELTYPE_TRIAN_ATR 7 /* vertex of the binary tree
*/
#define CV_SEQ_ELTYPE_CONNECTED_COMP 8 /* connected component */
#define CV_SEQ_ELTYPE_POINT3D 9 /* (x,y,z) */

Example 2-6 Standard Kinds of Sequences

#define CV_SEQ_KIND_SET (0 << CV_SEQ_ELTYPE_BITS)
#define CV_SEQ_KIND_CURVE (1 << CV_SEQ_ELTYPE_BITS)
#define CV_SEQ_KIND_BIN_TREE (2 << CV_SEQ_ELTYPE_BITS)
#define CV_SEQ_KIND_GRAPH (3 << CV_SEQ_ELTYPE_BITS)

OpenCV Reference Manual Dynamic Data Structures 2

2-10

and report an error if they do not support this type. The file CVTypes.h stores the
complete list of all supported predefined sequence types and helper macros designed to
get the sequence type of other properties.

Below follows the definition of the building block of sequences.

Sequence blocks make up a circular double-linked list, so the pointers prev and next

are never NULL and point to the previous and the next sequence blocks within the
sequence. It means that next of the last block is the first block and prev of the first
block is the last block. The fields start_index and count help to track the block
location within the sequence. For example, if the sequence consists of 10 elements and
splits into three blocks of 3, 5, and 2 elements, and the first block has the parameter
start_index = 2, then pairs <start_index, count> for the sequence blocks are
<2,3>, <5,5>, and <10,2> correspondingly. The parameter start_index of the first
block is usually 0 unless some elements have been inserted at the beginning of the
sequence.

cvCreateSeq
Creates sequence.

CvSeq* cvCreateSeq(int seqFlags, int headerSize, int elemSize, CvMemStorage*
storage);

Example 2-7 CvSeqBlock Structure Definition

typedef struct CvSeqBlock
{

struct CvSeqBlock* prev; /* previous sequence block */
struct CvSeqBlock* next; /* next sequence block */
int start_index; /* index of the first element in the block +

sequence->first->start_index */
int count; /* number of elements in the block */
char* data; /* pointer to the first element of the block */

} CvSeqBlock;

OpenCV Reference Manual Dynamic Data Structures 2

2-11

seqFlags Flags of the created sequence. If the sequence is not passed to any
function working with a specific type of sequences, the sequence
value may be equal to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

headerSize Size of the sequence header; must be more than or equal to
sizeof(CvSeq). If a specific type or its extension is indicated, this
type must fit the base type header.

elemSize Size of the sequence elements in bytes. The size must be consistent
with the sequence type. For example, for a sequence of points to be
created, the element type CV_SEQ_ELTYPE_POINT should be specified
and the parameter elemSize must be equal to sizeof(CvPoint).

storage Sequence location.

Discussion

The function cvCreateSeq creates a sequence and returns the pointer to it. The
function allocates the sequence header in the storage block as one continuous chunk
and fills the parameter elemSize, flags headerSize, and storage with passed values,
sets the parameter deltaElems (see the function cvSetSeqBlockSize) to the default
value, and clears other fields, including the space behind sizeof(CvSeq).

cvSetSeqBlockSize
Sets up sequence block size.

void cvSetSeqBlockSize(CvSeq* seq, int blockSize);

NOTE. All headers in the memory storage, including sequence
headers and sequence block headers, are aligned with the 4-byte
boundary.

OpenCV Reference Manual Dynamic Data Structures 2

2-12

seq Sequence.

blockSize Desirable block size.

Discussion

The function cvSetSeqBlockSize affects the memory allocation granularity. When
the free space in the internal sequence buffers has run out, the function allocates
blockSize bytes in the storage. If this block immediately follows the one previously
allocated, the two blocks are concatenated, otherwise, a new sequence block is created.
Therefore, the bigger the parameter, the lower the sequence fragmentation probability,
but the more space in the storage is wasted. When the sequence is created, the
parameter blockSize is set to the default value ~1K. The function can be called any
time after the sequence is created and affects future allocations. The final block size
can be different from the one desired, e.g., if it is larger than the storage block size, or
smaller than the sequence header size plus the sequence element size.

The next four functions cvSeqPush, cvSeqPop, cvSeqPushFront, cvSeqPopFront

add or remove elements to/from one of the sequence ends. Their time complexity is
O(1), that is, all these operations do not shift existing sequence elements.

cvSeqPush
Adds element to sequence end.

void cvSeqPush(CvSeq* seq, void* element);

seq Sequence.

element Added element.

Discussion

The function cvSeqPush adds an element to the end of the sequence. Although this
function can be used to create a sequence element by element, there is a faster method
(refer to Writing and Reading Sequences).

OpenCV Reference Manual Dynamic Data Structures 2

2-13

cvSeqPop
Removes element from sequence end.

void cvSeqPop(CvSeq* seq, void* element);

seq Sequence.

element Optional parameter. If the pointer is not zero, the function copies the
removed element to this location.

Discussion

The function cvSeqPop removes an element from the sequence. The function reports
an error if the sequence is already empty.

cvSeqPushFront
Adds element to sequence beginning.

void cvSeqPushFront(CvSeq* seq, void* element);

seq Sequence.

element Added element.

Discussion

The function cvSeqPushFront adds an element to the beginning of the sequence.

cvSeqPopFront
Removes element from sequence beginning.

void cvSeqPopFront(CvSeq* seq, void* element);

OpenCV Reference Manual Dynamic Data Structures 2

2-14

seq Sequence.

element Optional parameter. If the pointer is not zero, the function copies the
removed element to this location.

Discussion

The function cvSeqPopFront removes an element from the beginning of the
sequence. The function reports an error if the sequence is already empty.

Next two functions cvSeqPushMulti, cvSeqPopMulti are batch versions of the
PUSH/POP operations.

cvSeqPushMulti
Pushes several elements to sequence end.

void cvSeqPushMulti(CvSeq* seq, void* elements, int count);

seq Sequence.

elements Added elements.

count Number of elements to push.

Discussion

The function cvSeqPushMulti adds several elements to the end of the sequence. The
elements are added to the sequence in the same order as they are arranged in the input
array but they can fall into different sequence blocks.

cvSeqPopMulti
Removes several elements from sequence end.

void cvSeqPopMulti(CvSeq* seq, void* elements, int count);

OpenCV Reference Manual Dynamic Data Structures 2

2-15

seq Sequence.

elements Removed elements.

count Number of elements to pop.

Discussion

The function cvSeqPopMulti removes several elements from the end of the sequence.
If the number of the elements to be removed exceeds the total number of elements in
the sequence, the function removes as many elements as possible.

cvSeqInsert
Inserts element in sequence middle.

void cvSeqInsert(CvSeq* seq, int beforeIndex, void* element);

seq Sequence.

beforeIndex Index before which the element is inserted. Inserting before 0 is
equal to cvSeqPushFront and inserting before seq->total is equal
to cvSeqPush. The index values in these two examples are
boundaries for allowed parameter values.

element Inserted element.

Discussion

The function cvSeqInsert shifts the sequence elements from the inserted position to
the nearest end of the sequence before it copies an element there, therefore, the
algorithm time complexity is O(n/2).

OpenCV Reference Manual Dynamic Data Structures 2

2-16

cvSeqRemove
Removes element from sequence middle.

void cvSeqRemove(CvSeq* seq, int index);

seq Sequence.

index Index of removed element.

Discussion

The function cvSeqRemove removes elements with the given index. If the index is
negative or greater than the total number of elements less 1, the function reports an
error. An attempt to remove an element from an empty sequence is a specific case of
this situation. The function removes an element by shifting the sequence elements
from the nearest end of the sequence index.

cvClearSeq
Clears sequence.

void cvClearSeq(CvSeq* seq);

seq Sequence.

Discussion

The function cvClearSeq empties the sequence. The function does not return the
memory to the storage, but this memory is used again when new elements are added to
the sequence. This function time complexity is O(1).

OpenCV Reference Manual Dynamic Data Structures 2

2-17

cvGetSeqElem
Returns n-th element of sequence.

char* cvGetSeqElem(CvSeq* seq, int index, CvSeqBlock** block=0);

seq Sequence.

index Index of element.

block Optional argument. If the pointer is not NULL, the address of the
sequence block that contains the element is stored in this location.

Discussion

The function cvGetSeqElem finds the element with the given index in the sequence
and returns the pointer to it. In addition, the function can return the pointer to the
sequence block that contains the element. If the element is not found, the function
returns 0. The function supports negative indices, where -1 stands for the last sequence
element, -2 stands for the one before last, etc. If there is a big chance that the sequence
consists of a single sequence block or desired element is located in the first block, then
the macro CV_GET_SEQ_ELEM (elemType, seq, index) should be used, where the
parameter elemType is the type of sequence elements (CvPoint for example), the
parameter seq is a sequence, and the parameter index is the index of the desired
element. The macro checks first whether the desired element belongs to the first block
of the sequence and, if so, returns the element, otherwise the macro calls the main
function cvGetSeqElem. Negative indices always cause the cvGetSeqElem call.

cvSeqElemIdx
Returns index of concrete sequence element.

int cvSeqElemIdx(CvSeq* seq, void* element, CvSeqBlock** block=0);

seq Sequence.

element Pointer to the element within the sequence.

OpenCV Reference Manual Dynamic Data Structures 2

2-18

block Optional argument. If the pointer is not NULL, the address of the
sequence block that contains the element is stored in this location.

Discussion

The function cvSeqElemIdx returns the index of a sequence element or a negative
number if the element is not found.

cvCvtSeqToArray
Copies sequence to one continuous block of
memory.

void* cvCvtToArray(CvSeq* seq, void* array, CvSlice slice=CV_WHOLE_SEQ(seq)
);

seq Sequence.

array Pointer to the destination array that must fit all the sequence
elements.

slice Start and end indices within the sequence so that the
corresponding subsequence is copied.

Discussion

The function cvCvtSeqToArray copies the entire sequence or subsequence to the
specified buffer and returns the pointer to the buffer.

cvMakeSeqHeaderForArray
Constructs sequence from array.

void cvMakeSeqHeaderForArray(int seqType, int headerSize, int elemSize, void*
array, int total, CvSeq* sequence, CvSeqBlock* block);

OpenCV Reference Manual Dynamic Data Structures 2

2-19

seqType Type of the created sequence.

headerSize Size of the header of the sequence. Parameter sequence must point to
the structure of that size or greater size.

elemSize Size of the sequence element.

array Pointer to the array that makes up the sequence.

total Total number of elements in the sequence. The number of array
elements must be equal to the value of this parameter.

sequence Pointer to the local variable that is used as the sequence header.

block Pointer to the local variable that is the header of the single sequence
block.

Discussion

The function cvMakeSeqHeaderForArray, the exact opposite of the function
cvCvtSeqToArray, builds a sequence from an array. The sequence always consists of a
single sequence block, and the total number of elements may not be greater than the
value of the parameter total, though the user may remove elements from the
sequence, then add other elements to it with the above restriction.

Writing and Reading Sequences

Overview

Although the functions and macros described below are irrelevant in theory because
functions like cvSeqPush and cvGetSeqElem enable the user to write to sequences
and read from them, the writing/reading functions and macros are very useful in
practice because of their speed.

The following problem could provide an illustrative example. If the task is to create a
function that forms a sequence from N random values, the PUSH version runs as
follows:

CvSeq* create_seq1(CvStorage* storage, int N) {

CvSeq* seq = cvCreateSeq(0, sizeof(*seq), sizeof(int), storage);

for(int i = 0; i < N; i++) {

OpenCV Reference Manual Dynamic Data Structures 2

2-20

int a = rand();

cvSeqPush(seq, &a);

}

return seq;

}

The second version makes use of the fast writing scheme, that includes the following
steps: initialization of the writing process (creating writer), writing, closing the writer
(flush).

CvSeq* create_seq1(CvStorage* storage, int N) {

CvSeqWriter writer;

cvStartWriteSeq(0, sizeof(*seq), sizeof(int),

storage, &writer);

for(int i = 0; i < N; i++) {

int a = rand();

CV_WRITE_SEQ_ELEM(a, writer);

}

return cvEndWriteSeq(&writer);

}

If N = 100000 and 500MHz Pentium® III processor is used, the first version takes 230
milliseconds and the second one takes 111 milliseconds to finish. These characteristics
assume that the storage already contains a sufficient number of blocks so that no new
blocks are allocated. A comparison with the simple loop that does not use sequences
gives an idea as to how effective and efficient this approach is.

int* create_seq3(int* buffer, int N) {

for(i = 0; i < N; i++) {

buffer[i] = rand();

}

return buffer;

}

This function takes 104 milliseconds to finish using the same machine.

OpenCV Reference Manual Dynamic Data Structures 2

2-21

Generally, the sequences do not make a great impact on the performance and the
difference is very insignificant (less than 7% in the above example). However, the
advantage of sequences is that the user can operate the input or output data even
without knowing their amount in advance. These structures enable him/her to allocate
memory iteratively. Another problem solution would be to use lists, yet the sequences
are much faster and require less memory.

Reference

cvStartAppendToSeq
Initializes process of writing to sequence.

void cvStartAppendToSeq(CvSeq* seq, CvSeqWriter* writer);

seq Pointer to the sequence.

writer Pointer to the working structure that contains the current status of the
writing process.

Discussion

The function cvStartAppendToSeq initializes the writer to write to the sequence.
Written elements are added to the end of the sequence. Note that during the writing
process other operations on the sequence may yield incorrect result or even corrupt the
sequence (see Discussion of the function cvFlushSeqWriter).

cvStartWriteSeq
Creates new sequence and initializes writer for it.

void cvStartWriteSeq(int seqFlags, int headerSize, int elemSize, CvMemStorage*
storage, CvSeqWriter* writer);

OpenCV Reference Manual Dynamic Data Structures 2

2-22

seqFlags Flags of the created sequence. If the sequence is not passed to any
function working with a specific type of sequences, the sequence
value may be equal to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

headerSize Size of the sequence header. The parameter value may not be less
than sizeof(CvSeq). If a certain type or extension is specified, it
must fit the base type header.

elemSize Size of the sequence elements in bytes; must be consistent with the
sequence type. For example, if the sequence of points is created
(element type CV_SEQ_ELTYPE_POINT), then the parameter elemSize
must be equal to sizeof(CvPoint).

storage Sequence location.

writer Pointer to the writer status.

Discussion

The function cvStartWriteSeq is the exact sum of the functions cvCreateSeq and
cvStartAppendToSeq.

cvEndWriteSeq
Finishes process of writing.

CvSeq* cvEndWriteSeq(CvSeqWriter* writer);

writer Pointer to the writer status.

Discussion

The function cvEndWriteSeq finishes the writing process and returns the pointer to
the resulting sequence. The function also truncates the last sequence block to return the
whole of unfilled space to the memory storage. After that the user may read freely
from the sequence and modify it.

OpenCV Reference Manual Dynamic Data Structures 2

2-23

cvFlushSeqWriter
Updates sequence headers using writer state.

void cvFlushSeqWriter(CvSeqWriter* writer);

writer Pointer to the writer status.

Discussion

The function cvFlushSeqWriter is intended to enable the user to read sequence
elements, whenever required, during the writing process, e.g., in order to check
specific conditions. The function updates the sequence headers to make reading from
the sequence possible. The writer is not closed, however, so that the writing process
can be continued any time. Frequent flushes are not recommended, the function
cvSeqPush is preferred.

cvStartReadSeq
Initializes process of sequential reading from
sequence.

void cvStartReadSeq(CvSeq* seq, CvSeqReader* reader, int reverse=0);

seq Sequence.

reader Pointer to the reader status.

reverse Whenever the parameter value equals 0, the reading process is going
in the forward direction, that is, from the beginning to the end,
otherwise the reading process direction is reverse, from the end to
the beginning.

OpenCV Reference Manual Dynamic Data Structures 2

2-24

Discussion

The function cvStartReadSeq initializes the reader structure. After that all the
sequence elements from the first down to the last one can be read by subsequent calls
of the macro CV_READ_SEQ_ELEM (elem, reader) that is similar to
CV_WRITE_SEQ_ELEM. The function puts the reading pointer to the last sequence
element if the parameter reverse does not equal zero. After that the macro
CV_REV_READ_SEQ_ELEM (elem, reader) can be used to get sequence elements from
the last to the first. Both macros put the sequence element to elem and move the
reading pointer forward (CV_READ_SEQ_ELEM) or backward (CV_REV_READ_SEQ_ELEM).
A circular structure of sequence blocks is used for the reading process, that is, after the
last element has been read by the macro CV_READ_SEQ_ELEM, the first element is read
when the macro is called again. The same applies to CV_REV_READ_SEQ_ELEM. Neither
function ends reading since the reading process does not modify the sequence, nor
requires any temporary buffers. The reader field ptr points to the current element of
the sequence that is to be read first.

cvGetSeqReaderPos
Returns index of element to read position.

int cvGetSeqReaderPos(CvSeqReader* reader);

reader Pointer to the reader status.

Discussion

The function cvGetSeqReaderPos returns the index of the element in which the
reader is currently located.

OpenCV Reference Manual Dynamic Data Structures 2

2-25

cvSetSeqReaderPos
Moves read position to specified index.

void cvGetSeqReaderPos(CvSeqReader* reader, int index, int isRelative=0);

reader Pointer to the reader status.

index Position where the reader must be moved.

isRelative If the parameter value is not equal to zero, the index means an offset
relative to the current position.

Discussion

The function cvSetSeqReaderPos moves the read position to the absolute or relative
position. This function allows for cycle character of the sequence.

Sets

Overview

The set structure is mostly based on sequences but has a totally different purpose. For
example, the user is unable to use sequences for location of the dynamic structure
elements that have links between one another because if some elements have been
removed from the middle of the sequence, other sequence elements are moved to
another location and their addresses and indices change. In this case all links have to be
fixed anew. Another aspect of this problem is that removing elements from the middle
of the sequence is slow, with time complexity of O(n), where n is the number of
elements in the sequence.

OpenCV Reference Manual Dynamic Data Structures 2

2-26

The problem solution lies in making the structure sparse and unordered, that is,
whenever a structure element is removed, other elements must stay where they have
been, while the cell previously occupied by the element is added to the pool of three
cells; when a new element is inserted into the structure, the vacant cell is used to store
this new element. The set (See Example 2-8) operates in this very way.

The set looks like a list yet keeps no links between the structure elements. However,
the user is free to make and keep such lists, if needed. The set is implemented as a
sequence subclass; the set uses sequence elements as cells and organizes a list of free
cells.

See Figure 2-5 for an example of a set. For simplicity, the figure does not show
division of the sequence/set into memory blocks and sequence blocks.

Figure 2-5 Set Structure

The set elements, both existing and free cells, are all sequence elements. A special bit
indicates whether the set element exists or not: in the above diagram the bits marked
by 1 are free cells and the ones marked by 0 are occupied cells. The macro

0 1 1 0 1 0

together

lements

OpenCV Reference Manual Dynamic Data Structures 2

2-27

CV_IS_SET_ELEM_EXISTS(set_elem_ptr) uses this special bit to return a non-zero
value if the set element specified by the parameter set_elem_ptr belongs to the set,
and 0 otherwise. Below follows the definition of the structure CvSet:

In other words, a set is a sequence plus a list of free cells.

There are two modes of working with sets. The first mode uses indices for referencing
the set elements within a sequence while the second mode uses pointers for the same
purpose. Whereas at times the first mode is a better option, the pointer mode is faster
because it does not need to find the set elements by their indices, which is done in the
same way as in simple sequences. The decision on which method should be used in
each particular case depends on the type of operations to be performed on the set and
the way these operations should be performed.

The ways in which a new set is created and new elements are added to the existing set
are the same in either mode, the only difference between the two being the way the
elements are removed from the set. The user may even use both methods of access
simultaneously, provided he or she has enough memory available to store both the
index and the pointer to each element.

Like in sequences, the user may create a set with elements of arbitrary type and specify
any size of the header, which, however, may not be less than sizeof(CvSet). At the
same time the size of the set elements is restricted to be not less than 8 bytes and
divisible by 4. The reason behind this restriction is the internal set organization: if the
set has a free cell available, the first 4-byte field of this set element is used as a pointer
to the next free cell, which enables the user to keep track of all free cells. The second
4-byte field of the cell contains the cell to be returned when the cell becomes occupied.

Example 2-8 CvSet Structure Definition

#define CV_SET_FIELDS() \
CV_SEQUENCE_FIELDS() \
CvMemBlock* free_elems;

typedef struct CvSet
{

CV_SET_FIELDS()
}
CvSet;

OpenCV Reference Manual Dynamic Data Structures 2

2-28

When the user removes a set element while operating in the index mode, the index of
the removed element is passed and stored in the released cell again. The bit indicating
whether the element belongs to the set is the least significant bit of the first 4-byte
field. This is the reason why all the elements must have their size divisible by 4. In this
case they are all aligned with the 4-byte boundary, so that the least significant bits of
their addresses are always 0.

In free cells the corresponding bit is set to 1 and, in order to get the real address of the
next free cell, the functions mask this bit off. On the other hand, if the cell is occupied,
the corresponding bit must be equal to 0, which is the second and last restriction: the
least significant bit of the first 4-byte field of the set element must be 0, otherwise the
corresponding cell is considered free. If the set elements comply with this restriction,
e.g., if the first field of the set element is a pointer to another set element or to some
aligned structure outside the set, then the only restriction left is a non-zero number of
4- or 8-byte fields after the pointer. If the set elements do not comply with this
restriction, e.g., if the user wants to store integers in the set, the user may derive his or
her own structure from the structure CvSetElem or include it into his or her structure as
the first field.

The first field is a dummy field and is not used in the occupied cells, except the least
significant bit, which is 0. With this structure the integer element could be defined as
follows:

typedef struct _IntSetElem

{

CV_SET_ELEM_FIELDS()

int value;

}

IntSetElem;

Example 2-9 CvSetElem Structure Definition

#define CV_SET_ELEM_FIELDS() \
int* aligned_ptr;

typedef struct _CvSetElem
{

CV_SET_ELEM_FIELDS()
}
CvSetElem;

OpenCV Reference Manual Dynamic Data Structures 2

2-29

Reference

cvCreateSet
Creates empty set.

CvSet* cvCreateSet(int setFlags, int headerSize, int elemSize, CvMemStorage*
storage);

setFlags Type of the created set.

headerSize Set header size; may not be less than sizeof(CvSeq).

elemSize Set element size; may not be less than 8 bytes, must be divisible by 4.

storage Future set location.

Discussion

The function cvCreateSet creates an empty set with the specified header size and
returns the pointer to the set. The function simply redirects the call to the function
cvCreateSeq.

cvSetAdd
Adds element to set.

int cvSetAdd(CvSet* set, CvSet* elem, CvSet** insertedElem=0);

set Set.

elem Optional input argument, inserted element. If not NULL, the function
copies the data to the allocated cell omitting the first 4-byte field.

insertedElem Optional output argument; points to the allocated cell.

OpenCV Reference Manual Dynamic Data Structures 2

2-30

Discussion

The function cvSetAdd allocates the new cell, optionally copies input element data to
it, and returns the pointer and the index to the cell. The index value is taken from the
second 4-byte field of the cell. In case the cell was previously deleted and a wrong
index was specified, the function returns this wrong index. However, if the user works
in the pointer mode, no problem occurs and the pointer stored at the parameter
insertedElem may be used to get access to the added set element.

cvSetRemove
Removes element from set.

void cvSetRemove(CvSet* set, int index);

set Set.

index Index of the removed element.

Discussion

The function cvSetRemove removes an element with specified index from the set.
The function is typically used when set elements are accessed by their indices. If
pointers are used, the macro CV_REMOVE_SET_ELEM(set, index, elem), where elem
is a pointer to the removed element and index is any non-negative value, may be used
to remove the element. Alternative way to remove an element by its pointer is to
calculate index of the element via the function cvSeqElemIdx after which the function
cvSetRemove may be called, but this method is much slower than the macro.

cvGetSetElem
Finds set element by index.

CvSetElem* cvGetSetElem(CvSet* set, int index);

OpenCV Reference Manual Dynamic Data Structures 2

2-31

set Set.

index Index of the set element within a sequence.

Discussion

The function cvGetSetElem finds the set element by index. The function returns the
pointer to it or 0 if the index is invalid or the corresponding cell is free. The function
supports negative indices through calling the function cvGetSeqElem.

cvClearSet
Clears set.

void cvClearSet(CvSet* set);

set Cleared set.

Discussion

The function cvClearSet empties the set by calling the function cvClearSeq and
setting the pointer to the list of free cells. The function takes O(1) time.

NOTE. The user can check whether the element belongs to the set
with the help of the macro CV_IS_SET_ELEM_EXISTS(elem) once the
pointer is set to a set element.

OpenCV Reference Manual Dynamic Data Structures 2

2-32

Graphs

Overview

The structure set described above helps to build graphs because a graph consists of two
sets, namely, vertices and edges, that refer to each other.

In OOP terms, the graph structure is derived from the set of vertices and includes a set
of edges. Besides, special data types exist for graph vertices and graph edges.

Example 2-10 CvGraph Structure Definition

#define CV_GRAPH_FIELDS() \
CV_SET_FIELDS() \
CvSet* edges;

typedef struct _CvGraph
{

CV_GRAPH_FIELDS()
}
CvGraph;

Example 2-11 Definitions of CvGraphEdge and CvGraphVtx Structures

#define CV_GRAPH_EDGE_FIELDS() \
struct _CvGraphEdge* next[2]; \
struct _CvGraphVertex* vtx[2];

#define CV_GRAPH_VERTEX_FIELDS() \
struct _CvGraphEdge* first;

typedef struct _CvGraphEdge
{

CV_GRAPH_EDGE_FIELDS()
}
CvGraphEdge;

typedef struct _CvGraphVertex
{

CV_GRAPH_VERTEX_FIELDS()
}
CvGraphVtx;

OpenCV Reference Manual Dynamic Data Structures 2

2-33

The graph vertex has a single predefined field that assumes the value of 1 when
pointing to the first edge incident to the vertex, or 0 if the vertex is isolated. The edges
incident to a vertex make up the single linked non-cycle list. The edge structure is
more complex: and are the starting and ending vertices of the edge,
next[0] and next[1] are the next edges in the incident lists for and
respectively. In other words, each edge is included in two incident lists since any edge
is incident to both the starting and the ending vertices. For example, consider the
following oriented graph (see below for more information on non-oriented graphs).

Figure 2-6 Sample Graph

The structure can be created with the following code:

CvGraph* graph = cvCreateGraph(CV_SEQ_KIND_GRAPH |

CV_GRAPH_FLAG_ORIENTED,

sizeof(CvGraph),

sizeof(CvGraphVtx)+4,

sizeof(CvGraphEdge),

storage);

for(i = 0; i < 5; i++)

{

cvGraphAddVtx(graph, 0, 0);/* arguments like in

vtx 0[] vtx 1[]
vtx 0[] vtx 1[]

0

1

2

3

4

OpenCV Reference Manual Dynamic Data Structures 2

2-34

cvSetAdd*/

}

cvGraphAddEdge(graph, 0, 1, 0, 0); /* connect vertices 0

and 1, other two arguments like in cvSetAdd */

cvGraphAddEdge(graph, 1, 2, 0, 0);

cvGraphAddEdge(graph, 2, 0, 0, 0);

cvGraphAddEdge(graph, 2, 3, 0, 0);

The internal structure comes to be as follows:

Figure 2-7 Internal Structure for Sample Graph Shown in Figure 2-6

Undirected graphs can also be represented by the structure CvGraph. If the
non-oriented edges are substituted for the oriented ones, the internal structure remains
the same. However, the function used to find edges succeeds only when it finds the
edge from 3 to 2, as the function looks not only for edges from 3 to 2 but also from 2 to
3, and such an edge is present as well. As follows from the code, the type of the graph
is specified when the graph is created, and the user can change the behavior of the edge
searching function by specifying or omitting the flag CV_GRAPH_FLAG_ORIENTED. Two

Graph vertices

0 1 2 4 5

Graph edges

Graph vertices

0 1 2 4 5

Graph edges

Graph vertices

0 1 2 4 5

Graph edges

OpenCV Reference Manual Dynamic Data Structures 2

2-35

edges connecting the same vertices in undirected graphs may never be created because
the existence of the edge between two vertices is checked before a new edge is inserted
between them. However, internally the edge can be coded from the first vertex to the
second or vice versa. Like in sets, the user may work with either indices or pointers.
The graph implementation uses only pointers to refer to edges, but the user can choose
indices or pointers for referencing vertices.

Reference

cvCreateGraph
Creates empty graph.

CvGraph* cvCreateGraph(int graphFlags, int headerSize, int vertexSize, int
edgeSize, CvStorage* storage);

graphFlags Type of the created graph. The kind of the sequence must be graph
(CV_SEQ_KIND_GRAPH) and flag CV_GRAPH_FLAG_ORIENTED allows
the oriented graph to be created. User may choose other flags, as well
as types of graph vertices and edges.

headerSize Graph header size; may not be less than sizeof(CvGraph).

vertexSize Graph vertex size; must be greater than
sizeof(CvGraphVertex)and meet all restrictions on the set
element.

edgeSize Graph edge size; may not be less than sizeof(CvGraphEdge) and
must be divisible by 4.

storage Future location of the graph.

Discussion

The function cvCreateGraph creates an empty graph, that is, two empty sets, a set of
vertices and a set of edges, and returns it.

OpenCV Reference Manual Dynamic Data Structures 2

2-36

cvGraphAddVtx
Adds vertex to graph.

int cvGraphAddVtx(CvGraph* graph, CvGraphVtx* vtx, CvGraphVtx** insertedVtx=0
);

graph Graph.

vtx Optional input argument. Similar to the parameter elem of the
function cvSetAdd, the parameter vtx could be used to initialize
new vertices with concrete values. If vtx is not NULL, the function
copies it to a new vertex, except the first 4-byte field.

insertedVtx Optional output argument. If not NULL, the address of the new vertex
is written there.

Discussion

The function cvGraphAddVtx adds a vertex to the graph and returns the vertex index.

cvGraphRemoveVtx
Removes vertex from graph.

void cvGraphRemoveAddVtx(CvGraph* graph, int vtxIdx));

graph Graph.

vtxIdx Index of the removed vertex.

vtx Pointer to the removed vertex.

Discussion

The function cvGraphRemoveVtx removes a vertex from the graph together with all
the edges incident to it.

OpenCV Reference Manual Dynamic Data Structures 2

2-37

cvGraphRemoveVtxByPtr
Removes vertex from graph.

void cvGraphRemoveVtxByPtr(CvGraph* graph, CvGraphVtx* vtx);

graph Graph.

vtx Pointer to the removed vertex.

Discussion

The function cvGraphRemoveVtxByPtr removes a vertex from the graph together
with all the edges incident to it.

cvGraphAddEdge
Adds edge to graph.

int cvGraphAddEdge(CvGraph* graph, int startIdx, int endIdx, CvGraphEdge*
edge, CvGraphEdge** insertedEdge=0);

graph Graph.

startIdx Index of the starting vertex of the edge.

endIdx Index of the ending vertex of the edge.

edge Optional input parameter, initialization data for the edge. If not NULL,
the parameter is copied starting from the 5th 4-byte field.

insertedEdge Optional output parameter to contain the address of the inserted edge
within the edge set.

Discussion

The function cvGraphAddEdge adds the edge to the graph given the starting and the
ending vertices. The function returns the index of the inserted edge, which is the value
of the second 4-byte field of the free cell.

OpenCV Reference Manual Dynamic Data Structures 2

2-38

The function reports an error if

• the edge that connects the vertices already exists; in this case graph orientation is
taken into account;

• a pointer is NULL or indices are invalid;

• some of vertices do not exist, that is, not checked when the pointers are passed to
vertices; or

• the starting vertex is equal to the ending vertex, that is, it is impossible to create
loops from a single vertex.

cvGraphAddEdgeByPtr
Adds edge to graph.

int cvGraphAddEdgeByPtr(CvGraph* graph, CvGraphVtx* startVtx, CvGraphVtx*
endVtx, CvGraphEdge* edge, CvGraphEdge** insertedEdge=0);

graph Graph.

startVtx Pointer to the starting vertex of the edge.

endVtx Pointer to the ending vertex of the edge.

edge Optional input parameter, initialization data for the edge. If not NULL,
the parameter is copied starting from the 5th 4-byte field.

insertedEdge Optional output parameter to contain the address of the inserted edge
within the edge set.

Discussion

The function cvGraphAddEdgeByPtr adds the edge to the graph given the starting and
the ending vertices. The function returns the index of the inserted edge, which is the
value of the second 4-byte field of the free cell.

The function reports an error if

• the edge that connects the vertices already exists; in this case graph orientation is
taken into account;

OpenCV Reference Manual Dynamic Data Structures 2

2-39

• a pointer is NULL or indices are invalid;

• some of vertices do not exist, that is, not checked when the pointers are passed to
vertices; or

• the starting vertex is equal to the ending vertex, that is, it is impossible to create
loops from a single vertex.

cvGraphRemoveEdge
Removes edge from graph.

void cvGraphRemoveEdge(CvGraph* graph, int startIdx, int endIdx);

graph Graph.

startIdx Index of the starting vertex of the edge.

endIdx Index of the ending vertex of the edge.

Discussion

The function cvGraphRemoveEdge removes the edge from the graph that connects
given vertices. If the graph is oriented, the vertices must be passed in the appropriate
order. The function reports an error if any of the vertices or edges between them do not
exist.

cvGraphRemoveEdgeByPtr
Removes edge from graph.

void cvGraphRemoveEdgeByPtr(CvGraph* graph, CvGraphVtx* startVtx, CvGraphVtx*
endVtx);

graph Graph.

startVtx Pointer to the starting vertex of the edge.

OpenCV Reference Manual Dynamic Data Structures 2

2-40

endVtx Pointer to the ending vertex of the edge.

Discussion

The function cvGraphRemoveEdgeByPtr removes the edge from the graph that
connects given vertices. If the graph is oriented, the vertices must be passed in the
appropriate order. The function reports an error if any of the vertices or edges between
them do not exist.

cvFindGraphEdge
Finds edge in graph.

CvGraphEdge* cvFindGraphEdge(CvGraph* graph, int startIdx, int endIdx);

graph Graph.

startIdx Index of the starting vertex of the edge.

endIdx Index of the ending vertex of the edge.

Discussion

The function cvFindGraphEdge finds the graph edge that connects given vertices. If
the graph is oriented, the vertices must be passed in the appropriate order. Function
returns NULL if any of the vertices or edges between them do not exist.

cvFindGraphEdgeByPtr
Finds edge in graph.

CvGraphEdge* cvGraphRemoveEdgeByPtr(CvGraph* graph, CvGraphVtx* startVtx,
CvGraphVtx* endVtx);

graph Graph.

startVtx Pointer to the starting vertex of the edge.

OpenCV Reference Manual Dynamic Data Structures 2

2-41

endVtx Pointer to the ending vertex of the edge.

Discussion

The function cvFindGraphEdgeByPtr finds the graph edge that connects given
vertices. If the graph is oriented, the vertices must be passed in the appropriate order.
Function returns NULL if any of the vertices or edges between them do not exist.

cvGraphVtxDegree
Finds edge in graph.

int cvGraphVtxDegree(CvGraph* graph, int vtxIdx);

graph Graph.

vtx Pointer to the graph vertex.

Discussion

The function cvGraphVtxDegree counts the edges incident to the graph vertex, both
incoming and outcoming, and returns the result. To count the edges, the following code
is used:

CvGraphEdge* edge = vertex->first; int count = 0;

while(edge) {

edge = CV_NEXT_GRAPH_EDGE(edge, vertex);

count++;

}.

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returns the next edge after the
edge incident to the vertex.

OpenCV Reference Manual Dynamic Data Structures 2

2-42

cvGraphVtxDegreeByPtr
Finds edge in graph.

int cvGraphVtxDegreeByPtr(CvGraph* graph, CvGraphVtx* vtx);

graph Graph.

vtx Pointer to the graph vertex.

Discussion

The function cvGraphVtxDegreeByPtr counts the edges incident to the graph vertex,
both incoming and outcoming, and returns the result. To count the edges, the following
code is used:

CvGraphEdge* edge = vertex->first; int count = 0;

while(edge) {

edge = CV_NEXT_GRAPH_EDGE(edge, vertex);

count++;

}.

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returns the next edge after the
edge incident to the vertex.

cvClearGraph
Clears graph.

void cvClearGraph(CvGraph* graph);

graph Graph.

Discussion

The function cvClearGraph removes all the vertices and edges from the graph.
Similar to the function cvClearSet, this function takes O(1) time.

OpenCV Reference Manual Dynamic Data Structures 2

2-43

cvGetGraphVtx
Finds graph vertex by index.

CvGraphVtx* cvGetGraphVtx(CvGraph* graph, int vtxIdx);

graph Graph.

vtxIdx Index of the vertex.

Discussion

The function cvGetGraphVtx finds the graph vertex by index and returns the pointer
to it or, if not found, to a free cell at this index. Negative indices are supported.

cvGraphVtxIdx
Returns index of graph vertex.

int cvGraphVtxIdx(CvGraph* graph, CvGraphVtx* vtx);

graph Graph.

vtx Pointer to the graph vertex.

Discussion

The function cvGraphVtxIdx returns the index of the graph vertex by setting pointers
to it.

OpenCV Reference Manual Dynamic Data Structures 2

2-44

cvGraphEdgeIdx
Returns index of graph edge.

int cvGraphEdgeIdx(CvGraph* graph, CvGraphEdge* edge);

graph Graph.

edge Pointer to the graph edge.

Discussion

The function cvGraphEdgeIdx returns the index of the graph edge by setting pointers
to it.

3-1

3Contour Processing

This chapter describes contour processing functions.

Overview

Below follow descriptions of:

• several basic functions that retrieve contours from the binary image and store them
in the chain format;

• functions for polygonal approximation of the chains.

Basic Definitions

Most of the existing vectoring algorithms, that is, algorithms that find contours on the
raster images, deal with binary images. A binary image contains only 0-pixels, that
isthat is, pixels with the value 0, and 1-pixels, that is, pixels with the value 1. The set of
connected 0- or 1-pixels makes the 0-(1-) component. There are two common sorts of
connectivity, the 4-connectivity and 8-connectivity. Two pixels with coordinates (x’,
y’) and (x”, y”) are called 4-connected if, and only if, and
8-connected if, and only if, . Figure 3-1 shows these relations:

x ′ x″– y ′ y″–+ 1=

max x′ x″– , y ′ y″–() 1=

OpenCV Reference Manual Contour Processing 3

3-2

Figure 3-1 Pixels Connectivity Patterns

Using this relationship, the image is broken into several non-overlapped 1-(0-)
4-connected (8-connected) components. Each set consists of pixels with equal values,
that is, all pixels are either equal to 1 or 0, and any pair of pixels from the set can be
linked by a sequence of 4- or 8-connected pixels. In other words, a 4-(8-) path exists
between any two points of the set. The components shown in Figure 3-2 may have
interrelations.

Pixels, 8-connected to black one

Pixels, 4- and 8-connected to black one

OpenCV Reference Manual Contour Processing 3

3-3

Figure 3-2 Hierarchical Connected Components

1-components W1, W2, and W3 are inside the frame (0-component B1), that is,
directly surrounded by B1.

0-components B2 and B3 are inside W1.

1-components W5 and W6 are inside B4, that is inside W3, so these 1-components
are inside W3 indirectly. However, neitherW5 nor W6 enclose one another, which
means they are on the same level.

In order to avoid a topological contradiction 0-pixels must be regarded as 8-(4-)
connected pixels in case 1-pixels are dealt with as 4-(8-) connected. Throughout this
document 8-connectivity is assumed to be used with 1-pixels and 4-connectivity with
0-pixels.

Since 0-components are complementary to 1-components, and separate 1-components
are either nested to each other or their internals do not intersect, the library considers
1-components only and only their topological structure is studied, 0-pixels making up
the background. A 0-component directly surrounded by a 1-component is called the
hole of the 1-component. The border point of a 1-component could be any pixel that
belongs to the component and has a 4-connected 0-pixel. A connected set of border
points is called the border.

OpenCV Reference Manual Contour Processing 3

3-4

Each 1-component has a single outer border that separates it from the surrounding
0-component and zero or more hole borders that separate the 1-component from the
0-components it surrounds. It is obvious that the outer border and hole borders give a
full description of the component. Therefore all the borders, also referred to as
contours, of all components stored with information about the hierarchy make up a
compressed representation of the source binary image. See Reference for description
of the functions cvFindContours, cvStartFindContours, and
cvFindNextContour that build such a contour representation of binary images.

Contour Representation

The library uses two methods to represent contours. The first method is called the
Freeman method or the chain code. For any pixel all its neighbors with numbers from 0
to 7 can be enumerated:

Figure 3-3 Contour Representation in Freeman Method

The 0-neighbor denotes the pixel on the right side, etc. As a sequence of 8-connected
points, the border can be stored as the coordinates of the initial point, followed by
codes (from 0 to 7) that specify the location of the next point relative to the current one
(see Figure 3-4).

0

123

4

5 6 7

OpenCV Reference Manual Contour Processing 3

3-5

Figure 3-4 Freeman Coding of Connected Components

The chain code is a compact representation of digital curves and an output format of
the contour retrieving algorithms described below.

Polygonal representation is a different option in which the curve is coded as a
sequence of points, vertices of a polyline. This alternative is often a better choice for
manipulating and analyzing contours over the chain codes; however, this
representation is rather hard to get directly without much redundancy. Instead,
algorithms that approximate the chain codes with polylines could be used.

Contour Retrieving Algorithm

Four variations of algorithms described in [Suzuki85] are used in the library to retrieve
borders. The first algorithm finds only the extreme outer contours in the image and
returns them linked to the list. Figure 3-2 shows these external boundaries of W1,W2,
and W3 domains. The second algorithm returns all contours linked to the list.
Figure 3-2 shows the total of 8 such contours. The third algorithm finds all connected
components by building a two-level hierarchical structure: on the top are the external
boundaries of 1-domains and every external boundary contains a link to the list of
holes of the corresponding component. The third algorithm returns all the connected
components as a two-level hierarchical structure: on the top are the external
boundaries of 1-domains and every external boundary contour header contains a link
to the list of holes in the corresponding component. The list can be accessed via v_next
field of the external contour header.

Initial point

Chain code for the curve: 34445670007654443

OpenCV Reference Manual Contour Processing 3

3-6

Figure 3-2 shows that W2, W5, and W6 domains have no holes; consequently, their
boundary contour headers refer to empty lists of hole contours. W1 domain has two
holes - the external boundary contour of W1 refers to a list of two hole contours.
Finally, W3 external boundary contour refers to a list of the single hole contour.

The fourth algorithm returns the complete hierarchical tree where all the contours
contain a list of contours surrounded by the contour directly, that is, the hole contour of
W3 domain has two children: external boundary contours of W5 and W6 domains.

All algorithms make a single pass through the image; there are, however, rare
instances when some contours need to be scanned more than once. The algorithms do
line-by-line scanning.

Whenever an algorithm finds a point that belongs to a new border the border following
procedure is applied to retrieve and store the border in the chain format. During the
border following procedure the algorithms mark the visited pixels with special positive
or negative values. If the right neighbor of the considered border point is a 0-pixel and,
at the same time, the 0-pixel is located in the right hand part of the border, the border
point is marked with a negative value. Otherwise, the point is marked with the same
magnitude but of positive value, if the point has not been visited yet. This can be easily
determined since the border can cross itself or tangent other borders. The first and
second algorithms mark all the contours with the same value and the third and fourth
algorithms try to use a unique ID for each contour, which can be used to detect the
parent of any newly met border.

Polygonal Approximation

As soon as all the borders have been retrieved from the image, the shape representation
can be further compressed. Several algorithms are available for the purpose, including
RLE coding of chain codes, higher order codes (see Figure 3-5), polygonal
approximation, etc.

OpenCV Reference Manual Contour Processing 3

3-7

Figure 3-5 Higher Order Freeman Codes

Polygonal approximation is the best method in terms of the output data simplicity for
further processing. Below follow descriptions of two polygonal approximation
algorithms. The main idea behind them is to find and keep only the dominant points,
that is, points where the local maximums of curvature absolute value are located on the
digital curve, stored in the chain code or in another direct representation format. The
first step here is the introduction of a discrete analog of curvature. In the continuous
case curvature is determined as the speed of the tangent angle changing:

.

In the discrete case different approximations are used. The simplest one, called L1
curvature, is the difference between successive chain codes:

. (3.1)

This method covers the changes from 0, that corresponds to the straight line, to 4, that
corresponds to the sharpest angle, when the direction is changed to reverse.

The following algorithm is used for getting a more complex approximation. First, for
the given point (xi, yi) the radius mi of the neighborhood to be considered is selected.
For some algorithms mi is a method parameter and has a constant value for all points;
for others it is calculated automatically for each point. The following value is
calculated for all pairs (xi-k, yi-k) and (xi+k, yi+k) (k=1...m):

,

24-point extended chain code

k x′y″ x″y ′–

x ′2 y ′2+()
3 2⁄

---------------------------------=

ci
1()

fi fi 1–– 4)mod8+(() 4–=

cik

aik bik⋅()
aik bik

----------------------- aik,bik()cos= =

OpenCV Reference Manual Contour Processing 3

3-8

where , .

The next step is finding the index hi such that . The value
is regarded as the curvature value of the ith point. The point value changes from

–1 (straight line) to 1 (sharpest angle). This approximation is called the k-cosine
curvature.

Rosenfeld-Johnston algorithm [Rosenfeld73] is one of the earliest algorithms for
determining the dominant points on the digital curves. The algorithm requires the
parameter m, the neighborhood radius that is often equal to 1/10 or 1/15 of the number
of points in the input curve. Rosenfeld-Johnston algorithm is used to calculate
curvature values for all points and remove points that satisfy the condition

; .

The remaining points are treated as dominant points. Figure 3-6 shows an example of
applying the algorithm.

Figure 3-6 Rosenfeld-Johnston Output for F-Letter Contour

Source Image Rosenfeld-Johnston Algorithm Output

The disadvantage of the algorithm is the necessity to choose the parameter m and
parameter identity for all the points, which results in either excessively rough, or
excessively precise contour approximation.

The next algorithm proposed by Teh and Chin [Teh89] includes a method for the
automatic selection of the parameter m for each point. The algorithm makes several
passes through the curve and deletes some points at each pass. At first all points with
zero curvatures are deleted (see Equation 3.1). For other points the parameter mi

aik xi k– xi,yi k–– yi–()= bik xi k+ xi,yi k–– yi–()=

cim cim 1– … cihi
cihi 1–≥< < <

cihi

j, i j– hi 2⁄≤∃ cihi
cjhj

<

ci
1()

OpenCV Reference Manual Contour Processing 3

3-9

and the curvature value are determined. After that the algorithm performs a
non-maxima suppression, same as in Rosenfeld-Johnston algorithm, deleting points
whose curvature satisfies the previous condition where for the metric hi is set to
mi. Finally, the algorithm replaces groups of two successive remaining points with a
single point and groups of three or more successive points with a pair of the first and
the last points. This algorithm does not require any parameters except for the curvature
to use. Figure 3-7 shows the algorithm results.

Figure 3-7 Teh-Chin Output for F-Letter Contour

Douglas-Peucker Approximation

Instead of applying a rather sophisticated Teh-Chin algorithm to the chain code, the
user may try another way to get a smooth contour on a little number of vertices. The
idea is to apply some very simple approximation techniques to the chain code with
polylines, such as substituting ending points for horizontal, vertical, and diagonal
segments, and then use the approximation algorithm on polylines. This preprocessing
reduces the amount of data without any accuracy loss. Teh-Chin algorithm also
involves this step, but uses removed points for calculating curvatures of the remaining
points.

The algorithm to consider is a pure geometrical algorithm by Douglas-Peucker for
approximating a polyline with another polyline with required accuracy:

ci
1()

Source picture TC89 algorithm outputSource picture Teh-Chin algorithm outputSource Picture Teh-Chin Algorithm Output

OpenCV Reference Manual Contour Processing 3

3-10

1. Two points on the given polyline are selected, thus the polyline is
approximated by the line connecting these two points. The algorithm
iteratively adds new points to this initial approximation polyline until the
required accuracy is achieved. If the polyline is not closed, two ending points
are selected. Otherwise, some initial algorithm should be applied to find two
initial points. The more extreme the points are, the better.

2. The algorithm iterates through all polyline vertices between the two initial
vertices and finds the farthest point from the line connecting two initial
vertices. If this maximum distance is less than the required error, then the
approximation has been found and the next segment, if any, is taken for
approximation. Otherwise, the new point is added to the approximation
polyline and the approximated segment is split at this point. Then the two parts
are approximated in the same way, since the algorithm is recursive. For a
closed polygon there are two polygonal segments to process.

Contours Moments

The moment of order (p; q) of an arbitrary region R is given by

. (3.2)

If , we obtain the area a of R. The moments are usually normalized by the
area a of R. These moments are called normalized moments:

. (3.3)

Thus . For normalized central moments of R are usually the ones of
interest:

(3.4)

It is an explicit method for calculation of moments of arbitrary closed polygons.
Contrary to most implementations that obtain moments from the discrete pixel data,
this approach calculates moments by using only the border of a region. Since no

νpq x
p

y
q⋅ xd yd

R
∫∫=

p q 0= =

αpq 1 a⁄() x
p

y
q⋅ xd yd

R
∫∫=

α00 1= p q 2≥+

µpq 1 a x a10–()
R
∫∫⁄

p
y a01–()q

dxdy⋅=

OpenCV Reference Manual Contour Processing 3

3-11

explicit region needs to be constructed, and because the border of a region usually
consists of significantly fewer points than the entire region, the approach is very
efficient. The well-known Green’s formula is used to calculate moments:

,

where b is the border of the region R.

It follows from the formula (3.2) that:

,

hence

.

Therefore, the moments from (3.2) can be calculated as follows:

. (3.5)

If the border b consists of n points , , , it follows that:

,

where , is defined as

.

Therefore, (3.5) can be calculated in the following manner:

(3.6)

After unnormalized moments have been transformed, (3.6) could be written as:

∂(Q ∂x ∂P ∂y⁄–()⁄ xd yd

R
∫∫ P(x Q+d y)d

b
∫=

∂Q ∂x⁄ x
p

y
q
, ∂P ∂y⁄⋅ 0= =

P x, y() 0, Q x, y() 1 p 1+()⁄ x
p 1+

y
q⋅= =

vpq 1 p 1+()x
p 1+

y
q⋅⁄() yd

b
∫=

pi xi, yi()= 0 i n≤ ≤ p0 pn=

b t() bi t()
i 1=

n

∪=

bi t() t 0 1[,]∈

bi t() tp 1 t–()pi 1–+=

vpq 1 p 1+()x
p 1+

y
q⋅⁄() yd

bj

∫
i 1=

n

∑=

OpenCV Reference Manual Contour Processing 3

3-12

Central unnormalized and normalized moments up to order 3 look like

,

,

,

,

,

,

,

vpA
1

p q 2+ +() p q 1+ +()
p q+

p 
 

xi 1– yi xiyi 1––()
k t+

t 
  p q k– t–+

q t– 
 

i 0=

q

∑
k 0=

p

∑
i 1=

n

∑× xi
k
xi 1–

p k–
yi

t
yi 1–

q t–

=

a 1 2 xi 1–

i 1=

n

∑⁄ yi xiyi 1––=

a10 1 6a() xi 1– yi xiyi 1––() xi 1– xi+()
i 1=

n

∑⁄=

a01 1 6a() xi 1– yi xiyi 1––() yi 1– yi+()
i 1=

n

∑⁄=

a20 1 12a() xi 1– yi xiyi 1––() xi 1–
2

xi 1– xi xi
2

+ +()
i 1=

n

∑⁄=

a11 1 24a() xi 1– yi xiyi 1––() 2xi 1– xi 1– yi xiyi 1– 2xiyi+ + +()
i 1=

n

∑⁄=

a02 1 12a() xi 1– yi xiyi 1––() yi 1–
2

yi 1– yi yi
2

+ +()
i 1=

n

∑⁄=

a30 1 20a() xi 1– yi xiyi 1––() xi 1–
3

xi 1–
2

xi xi
2
xi 1– xi

3
+ + +()

i 1=

n

∑⁄=

a21 1 60a() xi 1– yi xiyi 1––() xi 1–
2

3yi 1– yi+() 2xi 1– xi yi 1– yi+()

xi
2

yi 1– 3yi+()

+

+

(

),

i 1=

n

∑⁄=

OpenCV Reference Manual Contour Processing 3

3-13

,

,

,

,

,

,

.

Hierarchical Representation of Contours

Let T be the simple closed boundary of a shape with n points
and n runs: . Every run is formed by the two points

. For every pair of the neighboring runs and a triangle is
defined by the two runs and the line connecting the two far ends of the two runs
(Figure 3-8).

a12 1 60a() xi 1– yi xiyi 1––() yi 1–
2

3xi 1– xi+() 2yi 1– yi xi 1– xi+()

yi
2

xi 1– 3xi+()

+ +(

),

i 1=

n

∑⁄=

a03 1 20a() xi 1– yi xiyi 1––() yi 1–
3

yi 1–
2

yi yi
2
yi 1– yi

3
+ + +(),

i 1=

n

∑⁄=

µ20 α20 α10
2

–=

µ11 α11 α10α01–=

µ02 α02 α01
2

–=

µ30 α30 2α10
3

3α10α20–+=

µ21 α21 2α10
3 α01 2α10α11– α20α01–+=

µ12 α12 2α01
3 α10 2α01α11– α02α10–+=

µ03 α03 2α01
3

3α01α02–+=

T: p 1(), p 2(), …, p n() }{
s 1(), s 2(), …, s n() }{ s i()

p i(), p i 1+()() s i() s i 1+()

OpenCV Reference Manual Contour Processing 3

3-14

Figure 3-8 Triangles Numbering

We call triangles the neighboring triangles of
(Figure 3-9).

Figure 3-9 Location of Neighboring Triangles

)(is

)1(+is

)(it

)(ip
)1(+ip

t i 2–(), t i 1–(), t i 1+(), t i 2+() t i()

)2(−it

)1(−it

)(it

)1(+it

)2(+it

OpenCV Reference Manual Contour Processing 3

3-15

For every straight line that connects any two different vertices of a shape, the line
either cuts off a region from the original shape or fills in a region of the original shape,
or does both. The size of the region is called the interceptive area of that line
(Figure 3-10). This line is called the base line of the triangle.

A triangle made of two boundary runs is the locally minimum interceptive area
triangle (LMIAT) if the interceptive area of its base line is smaller than both its
neighboring triangles areas.

Figure 3-10 Interceptive Area

The shape-partitioning algorithm is multilevel. This procedure subsequently removes
some points from the contour; the removed points become children nodes of the tree.
On each iteration the procedure examines the triangles defined by all the pairs of the
neighboring edges along the shape boundary and finds all LMIATs. After that all
LMIATs whose areas are less than a reference value, which is the algorithm parameter,
are removed. That actually means removing their middle points. If the user wants to
get a precise representation, zero reference value could be passed. Other LMIATs are
also removed, but the corresponding middle points are stored in the tree. After that
another iteration is run. This process ends when the shape has been simplified to a
quadrangle. The algorithm then determines a diagonal line that divides this quadrangle
into two triangles in the most unbalanced way.

Base line

OpenCV Reference Manual Contour Processing 3

3-16

Thus the binary tree representation is constructed from the bottom to top levels. Every
tree node is associated with one triangle. Except the root node, every node is connected
to its parent node, and every node may have none, or single, or two child nodes. Each
newly generated node becomes the parent of the nodes for which the two sides of the
new node form the base line. The triangle that uses the left side of the parent triangle is
the left child. The triangle that uses the right side of the parent triangle is the right child
(See Figure 3-11).

Figure 3-11 Classification of Child Triangles

The root node is associated with the diagonal line of the quadrangle. This diagonal line
divides the quadrangle into two triangles. The larger triangle is the left child and the
smaller triangle is its right child.

For any tree node we record the following attributes:

• Coordinates x and y of the vertex P that do not lie on the base line of LMIAT, that
is, coordinates of the middle (removed) point;

• Area of the triangle;

• Ratio of the height of the triangle h to the length of the base line a (Figure 3-12);

R child
L child

OpenCV Reference Manual Contour Processing 3

3-17

• Ratio of the projection of the left side of the triangle on the base line b to the length
of the base line a;

• Signs “+” or “-”; the sign “+” indicates that the triangle lies outside of the new
shape due to the ‘cut’ type merge; the sign “-” indicates that the triangle lies inside
the new shape.

Figure 3-12 Triangles Properties

Figure 3-13 shows an example of the shape partitioning.

Figure 3-13 Shape Partitioning

h

a
h

b
h

h

a
h

b

E

D A

B

C

S

S

A+
B+

C+
D- E+

()

E

D A

B

C

S

S

A+
B+

C+
D- E+

()

OpenCV Reference Manual Contour Processing 3

3-18

It is necessary to note that only the first attribute is sufficient for source contour
reconstruction; all other attributes may be calculated from it. However, the other four
attributes are very helpful for efficient contour matching.

The shape matching process that compares two shapes to determine whether they are
similar or not can be effected by matching two corresponding tree representations, e.g.,
two trees can be compared from top to bottom, node by node, using the breadth-first
traversing procedure.

Let us define the corresponding node pair (CNP) of two binary tree representations TA
and TB. The corresponding node pair is called , if A(i) and B(i) are at the
same level and same position in their respective trees.

The next step is defining the node weight. The weight of N(i) denoted as is
defined as the ratio of the size of N(i) to the size of the entire shape.

Let N(i) and N(j) be two nodes with heights h(i) and h(j) and base lengths a(i)
and a(j) respectively. The projections of their left sides on their base lines are b(i)
and b(j) respectively. The node distance between N(i) and N(j) is
defined as:

In the above equation, the “+” signs are used when the signs of attributes in two nodes
are different and the “-” signs are used when the two nodes have the same sign.

For two trees TA and TB representing two shapes SA and SB and with the corresponding
node pairs the tree distance dt(TA,TB)between
TA and TB is defined as:

.

If the two trees are different in size, the smaller tree is enlarged with trivial nodes so
that the two trees can be fully compared. A trivial node is a node whose size attribute is
zero. Thus, the trivial node weight is also zero. The values of other node attributes are
trivial and not used in matching. The sum of the node distances of the first k CNPs of
TA and TB is called the cumulative tree distance dt(TA,TB,k) and is defined as:

A i(), B i()[]

W N i()[]

dn N i(), N j()[]

dn N i(), N j()[] h i) a i(⁄) W N i()[] h j() a j() W N j()[]⋅⁄+−⋅(
b i) a i(⁄) W N i()[] b j() a j() W N j()[]⋅⁄+−⋅(+

=

A 1(), B 1()[] , A 2(), B 2()[] ,…, A n(), B n()[]

dt TA, TB() dn A i(), B i()[]
i 1=

k

∑=

OpenCV Reference Manual Contour Processing 3

3-19

.

Cumulative tree distance shows the dissimilarity between the approximations of the
two shapes and exhibits the multiresolution nature of the tree representation in shape
matching.

The shape matching algorithm is quite straightforward. For two given tree
representations the two trees are traversed according to the breadth-first sequence to
find CNPs of the two trees. Next dn[A(i),B(i)] and dc(TA,TB,i)are calculated for
every i. If for some i dc(TA,TB,i)is larger than the tolerance threshold value, the
matching procedure is terminated to indicate that the two shapes are dissimilar,
otherwise it continues. If dt(TA,TB) is still less than the tolerance threshold value,
then the procedure is terminated to indicate that there is a good match between TA and
TB.

Data Structures

The Computer Vision Library functions use special data structures to represent the
contours and contour binary tree in memory, namely the structures CvSeq and
CvContourTree. Below follows the definition of the structure CvContourTree in the C
language.

Example 3-1 CvContourTree Structure Definition

typedef struct CvContourTree
{ CV_SEQUENCE_FIELDS()

CvPoint p1; /*the start point of the binary tree
root*/

CvPoint p2; /*the end point of the binary tree
root*/

} CvContourTree;

dc TA, TB, k() dn A i(), B i()[]
i 1=

k

∑=

OpenCV Reference Manual Contour Processing 3

3-20

Reference

cvFindContours
Finds contours in binary image.

int cvFindContours(IplImage* img, CvMemStorage* storage, CvSeq**
firstContour, int headerSize=sizeof(CvContour),
CvContourRetrievalMode mode=CV_RETR_LIST,CvChainApproxMethod
method=CV_CHAIN_APPROX_SIMPLE);

img Single channel image of IPL_DEPTH_8U type. Non-zero
pixels are treated as 1-pixels. The function modifies the
content of the input parameter.

storage Contour storage location.

firstContour Output parameter. Pointer to the first contour on the highest
level.

headerSize Size of the sequence header; must be equal to or greater than
sizeof(CvChain) when the method CV_CHAIN_CODE is
used, and equal to or greater than sizeof(CvContour)

otherwise.

mode Retrieval mode.

• CV_RETR_EXTERNAL retrieves only the extreme outer
contours (list);

• CV_RETR_LIST retrieves all the contours (list);

• CV_RETR_CCOMP retrieves the two-level hierarchy (list
of connected components);

• CV_RETR_TREE retrieves the complete hierarchy (tree).

method Approximation method.

• CV_CHAIN_CODE outputs contours in the Freeman chain
code.

OpenCV Reference Manual Contour Processing 3

3-21

• CV_CHAIN_APPROX_NONE translates all the points from
the chain code into points;

• CV_CHAIN_APPROX_SIMPLE compresses horizontal,
vertical, and diagonal segments, that is, it leaves only
their ending points;

• CV_CHAIN_APPROX_TC89_L1,
CV_CHAIN_APPROX_TC89_KCOS are two versions of the
Teh-Chin approximation algorithm.

Discussion

The function cvFindContours retrieves contours from the binary image and returns
the pointer to the first contour. Other contours may be accessed through the h_next
and v_next fields of the returned structure. The function returns total number of
retrieved contours.

cvStartFindContours
Initializes contour scanning process.

CvContourScanner cvStartFindContours(IplImage* img, CvMemStorage* storage, int
headerSize, CvContourRetrievalMode mode, CvChainApproxMethod method);

img Single channel image of IPL_DEPTH_8U type. Non-zero
pixels are treated as 1-pixels. The function damages the
image.

storage Contour storage location.

headerSize Must be equal to or greater than sizeof(CvChain) when
the method CV_CHAIN_CODE is used, and equal to or greater
than sizeof(CvContour) otherwise.

mode Retrieval mode.

• CV_RETR_EXTERNAL retrieves only the extreme outer
contours (list);

OpenCV Reference Manual Contour Processing 3

3-22

• CV_RETR_LIST retrieves all the contours (list);

• CV_RETR_CCOMP retrieves the two-level hierarchy (list
of connected components);

• CV_RETR_TREE retrieves the complete hierarchy (tree).

method Approximation method.

• CV_CHAIN_CODE codes the output contours in the chain
code;

• CV_CHAIN_APPROX_NONE translates all the points from
the chain code into points;

• CV_CHAIN_APPROX_SIMPLE substitutes ending points for
horizontal, vertical, and diagonal segments;

• CV_CHAIN_APPROX_TC89_L1,
CV_CHAIN_APPROX_TC89_KCOS are two versions of the
Teh-Chin approximation algorithm.

Discussion

The function cvStartFindContours initializes the contour scanner and returns the
pointer to it. The structure is internal and no description is provided.

cvFindNextContour
Finds next contour on raster.

CvSeq* cvFindNextContour(CvContourScanner scanner);

scanner Contour scanner initialized by the function cvStartFindContours.

Discussion

The function cvFindNextContour returns the next contour or 0, if the image contains
no other contours.

OpenCV Reference Manual Contour Processing 3

3-23

cvSubstituteContour
Replaces retrieved contour.

void cvSubstituteContour(CvContourScanner scanner, CvSeq* newContour);

scanner Contour scanner initialized by the function cvStartFindContours.

newContour Substituting contour.

Discussion

The function cvSubstituteContour replaces the retrieved contour, that was returned
from the preceding call of the function cvFindNextContour and stored inside the
contour scanner state, with the user-specified contour. The contour is inserted into the
resulting structure, list, two-level hierarchy, or tree, depending on the retrieval mode.
If the parameter newContour is 0, the retrieved contour is not included into the
resulting structure, nor all of its children that might be added to this structure later.

cvEndFindContours
Finishes scanning process.

CvSeq* cvEndFindContours(CvContourScanner* scanner);

scanner Pointer to the contour scanner.

Discussion

The function cvEndFindContours finishes the scanning process and returns the
pointer to the first contour on the highest level.

OpenCV Reference Manual Contour Processing 3

3-24

cvApproxChains
Approximates Freeman chain(s) with polygonal
curve.

CvSeq* cvApproxChains(CvSeq* srcSeq, CvMemStorage* storage,
CvChainApproxMethod method=CV_CHAIN_APPROX_SIMPLE,
float parameter=0,int minimalPerimeter=0,
int recursive=0);

srcSeq Pointer to the chain that can refer to other chains.

storage Storage location for the resulting polylines.

method Approximation method (see the description of the function
cvFindContours).

parameter Method parameter (not used now).

minimalPerimeter Approximates only those contours whose perimeters are not
less than minimalPerimeter. Other chains are removed
from the resulting structure.

recursive If not 0, the function approximates all chains
that can be accessed from srcSeq by h_next or v_next
links. If 0, the single chain is approximated.

Discussion

This is a stand-alone approximation routine. The function cvApproxChains works
exactly in the same way as the functions cvFindContours / cvFindNextContour

with the corresponding approximation flag. The function returns pointer to the first
resultant contour. Other contours, if any, can be accessed via v_next or h_next fields
of the returned structure.

OpenCV Reference Manual Contour Processing 3

3-25

cvStartReadChainPoints
Initializes chain reader.

void cvStartReadChainPoints(CvChain* chain, CvChainPtReader* reader);

chain Pointer to chain.

reader Chain reader state.

Discussion

The function cvStartReadChainPoints initializes the special reader (see Dynamic
Data Structures for more information on sets and sequences).

cvReadChainPoint
Gets next chain point.

CvPoint cvReadChainPoint(CvChainPtReader* reader);

reader Chain reader state.

Discussion

The function cvReadChainPoint returns the current chain point and moves to the next
point.

OpenCV Reference Manual Contour Processing 3

3-26

cvApproxPoly
Approximates polygonal contour(s) with desired
precision.

CvSeq* cvApproxPoly(CvSeq*srcSeq,intheaderSize,CvMemStorage* storage,
CvPolyApproxMethod method, float parameter,int recursive=0);

srcSeq Pointer to the contour that can refer to other chains.

headerSize Size of the header for resulting sequences.

storage Resulting contour storage location.

method Approximation method; only CV_POLY_APPROX_DP is supported, that
corresponds to Douglas-Peucker method.

parameter Method-specific parameter; a desired precision for
CV_POLY_APPROX_DP.

recursive If not 0, the function approximates all contours that can be accessed
from srcSeq by h_next or v_next links. If 0, the single contour is
approximated.

Discussion

The function cvApproxPoly approximates one or more contours and returns
pointer to the first resultant contour. Other contours, if any, can be accessed via v_next
or h_next fields of the returned structure.

cvDrawContours
Draws contours in image.

void cvDrawContours(IplImage *img, CvSeq* contour, int externalColor, int
holeColor, int maxLevel, int thickness=1);

OpenCV Reference Manual Contour Processing 3

3-27

img Image where the contours will be drawn. Like in any other
drawing function, every output is clipped with the ROI.

contour Pointer to the first contour.

externalColor Color to draw external contours with.

holeColor Color to draw holes with.

maxLevel Maximal level for drawn contours. If 0, only the contour is
drawn. If 1, the contour and all contours after it on the same
level are drawn. If 2, all contours after and all contours one
level below the contours are drawn, etc.

thickness Thickness of lines the contours are drawn with.

Discussion

The function cvDrawContours draws contour outlines in the image if the thickness
is positive or zero or fills area bounded by the contours if thickness is negative, e.g. if
thickness==CV_FILLED.

cvContoursMoments
Calculates contour moments up to order 3.

void cvContoursMoments(CvSeq* contour, CvMoments* moments);

contour Pointer to the input contour header.

moments Pointer to the output structure of contour moments; must be allocated
by the caller.

Discussion

The function cvContoursMoments calculates unnormalized spatial and central
moments of the contour up to order 3.

OpenCV Reference Manual Contour Processing 3

3-28

cvContourArea
Calculates region area inside contour or contour
section.

double cvContourSecArea(CvSeq* contour, CvSlice slice=CV_WHOLE_SEQ(seq));

contour Pointer to the input contour header.

slice Starting and ending points of the contour section of interest.

Discussion

The function cvContourArea calculates the region area within the contour consisting
of n points , , , as a spatial moment:

.

If a part of the contour is selected and the chord, connecting ending points,
intersects the contour in several places, then the sum of all subsection areas is
calculated. If the input contour has points of self-intersection, the region area within
the contour may be calculated incorrectly.

cvMatchContours
Matches two contours.

double cvMatchContours (CvSeq *contour1, CvSeq* contour2,int method, long
parameter=0);

contour1 Pointer to the first input contour header.

contour2 Pointer to the second input contour header.

parameter Method-specific parameter, currently ignored.

pi xi, yi()= 0 i n≤ ≤ p0 pn=

α00 1 2 xi 1–

i 1=

n

∑⁄ yi xiyi 1––=

OpenCV Reference Manual Contour Processing 3

3-29

method Method for the similarity measure calculation; must be any of

• CV_CONTOURS_MATCH_I1;

• CV_CONTOURS_MATCH_I2;

• CV_CONTOURS_MATCH_I3.

Discussion
The function cvMatchContours calculates one of the three similarity measures
between two contours.

Let two closed contours A and B have n and m points respectively:

. Normalized central moments of a
contour may be denoted as . M. Hu has shown that a set of the next
seven features derived from the second and third moments of contours is an invariant
to translation, rotation, and scale change [Hu62].

,

,

,

,

,

From these seven invariant features the three similarity measures I1, I2, and I3 may be
calculated:

,

,

A xi, yi(), 1 i n }≤ ≤{= B ui, vi(), 1 i m }≤ ≤{=

ηpq, 0 p q 3≤+≤

h1 η20 η02+=

h2 η(20 η02)2
– 4η11

2
+=

h3 η(30 3η12)2
– 3η21 η03–()2

+=

h4 η(30 η12)2 η21 η03+()2
+ +=

h5 η(30 3η12) η30 η12+() η30 η12+()2[– 3 η21 η03+()2]–

3η21 η03–() η21 η03+() 3 η30 η12+()2 η21 η03+()2] ,–[+

=

h6 η(20 η02) η30 η12+()2 η21 η03+()2]– 4η11 η30 η12+() η21 η03+()+[–=

h7 3η21 η03–() η(
30

η12) η30 η12+()2[3 η21 η03+()2]–

η30 3η12–() η21 η03+()– 3 η30 η12+()2 η21 η03+()2]
·

.–

+

+

=

I1 A, B() 1 mi
A

1 mi
B⁄+⁄–

i 1=

7

∑=

I2 A, B() m– i
A

mi
B

+

i 1=

7

∑=

OpenCV Reference Manual Contour Processing 3

3-30

,

where .

cvCreateContourTree
Creates binary tree representation for input
contour.

CvContourTree* cvCreateContourTree(CvSeq *contour, CvMemStorage* storage,
double threshold);

contour Pointer to the input contour header.

storage Pointer to the storage block.

threshold Value of the threshold.

Discussion

The function cvCreateContourTree creates binary tree representation for the input
contour contour and returns the pointer to its root. If the parameter threshold is less
than or equal to 0, the function creates full binary tree representation. If the threshold is
more than 0, the function creates representation with the precision threshold: if the
vertices with the interceptive area of its base line are less than threshold, the tree
should not be built any further. The function returns created tree.

cvContourFromContourTree
Restores contour from binary tree representation.

CvSeq* cvContourFromContourTree (CvContourTree *tree, CvMemStorage* storage,
CvTermCriteria criteria);

I3 A, B() max mi
A

mi
B

–() mi
A⁄

i
=

mi
A

hi
A() hi

A

10
,logsgn= mi

B
hi

B() hi
B

10
logsgn=

OpenCV Reference Manual Contour Processing 3

3-31

tree Pointer to the input tree.

storage Pointer to the storage block.

criteria Criteria for the definition of the threshold value
for contour reconstruction (level of precision).

Discussion

The function cvContourFromContourTree restores the contour from its binary tree
representation. The parameter criterion defines the threshold, that is, level of
precision for the contour restoring. If criterion.type = CV_TERMCRIT_ITER, the
function restores criterion. maxIter tree levels. If criterion.type =

CV_TERMCRIT_EPS, the function restores the contour as long as tri_area >
criterion. epsilon *contour_area, where contour_area is the magnitude of the
contour area and tri_area is the magnitude of the current triangle area. If
criterion.type = CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, the function restores
the contour as long as one of these conditions is true. The function returns
reconstructed contour.

cvMatchContourTrees
Compares two binary tree representations.

double cvMatchContourTrees (CvContourTree *tree1, CvContourTree *tree2,
CvTreeMatchMethod method, double threshold);

tree1 Pointer to the first input tree.

tree2 Pointer to the second input tree.

method Method for calculation of the similarity measure; now must be only
CV_CONTOUR_TREES_MATCH_I1.

threshold Value of the compared threshold.

OpenCV Reference Manual Contour Processing 3

3-32

Discussion

The function cvMatchContourTrees calculates the value of the matching measure for
two contour trees. The similarity measure is calculated level by level from the binary
tree roots. If the total calculating value of the similarity for levels from 0 to the
specified one is more than the parameter threshold, the function stops calculations
and value of the total similarity measure is returned as result. If the total calculating
value of the similarity for levels from 0 to the specified one is less than or equal to
threshold, the function continues calculation on the next tree level and returns the
value of the total similarity measure for the binary trees.

4-1

4Geometry

This chapter describes functions from computational geometry field.

Overview

Ellipse Fitting

Fitting of primitive models to the image data is a basic task in pattern recognition and
computer vision. A successful solution of this task results in reduction and
simplification of the data for the benefit of higher level processing stages. One of the
most commonly used models is the ellipse which, being a perspective projection of the
circle, is of great importance for many industrial applications.

The representation of general conic by the second order polynomial is
with the vectors denoted as

and .

is called the “algebraic distance between point and conic “.

Minimizing the sum of squared algebraic distances may approach the fitting
of conic.

In order to achieve ellipse-specific fitting polynomial coefficients must be constrained.
For ellipse they must satisfy .

Moreover, the equality constraint can imposed in order to incorporate
coefficients scaling into constraint.

This constraint may be written as a matrix .

Finally, the problem could be formulated as minimizing with constraint
, where is the nx6 matrix .

F a, (x) a
T
, x a= x

2
bxy cy

2
dx ey f+ + + + + 0= =

a a, b, c, d, e, f[] T
= x x

2
, xy, y

2
, x, y, 1[]

T
=

F a, x() x0, y0() F a, x()

F x0()
2

i 1=

n

∑

b
2

4ac 0<–

4ac b
2

– 1=

a
T
Ca 1=

Da
2

a
T
Ca 1= D x1, x2,…, xn[]

T

OpenCV Reference Manual Geometry 4

4-2

Introducing the Lagrange multiplier results in the system

, which can be re-written as

The system solution is described in [Fitzgibbon95].

After the system is solved, ellipse center and axis can be extracted.

Line Fitting

M-estimators are used for approximating a set of points with geometrical primitives
e.g., conic section, in cases when the classical least squares method fails. For example,
the image of a line from the camera contains noisy data with many outliers, that is, the
points that lie far from the main group, and the least squares method fails if applied.

The least squares method searches for a parameter set that minimizes the sum of
squared distances:

,

where is the distance from the ith point to the primitive. The distance type is
specified as the function input parameter. If even a few points have a large , then the
perturbation in the primitive parameter values may be prohibitively big. The solution is
to minimize

,

where grows slower than . This problem can be reduced to weighted least
squares [Fitzgibbon95], which is solved by iterative finding of the minimum of

,

where k is the iteration number, is the minimizer of the sum on the previous
iteration, and . If is a linear function of parameters then
the minimization vector of the is the eigenvector of matrix that corresponds to
the smallest eigenvalue.

2D
T
Da 2λCa– 0

a
T
Ca 1

=

=

Sa 2λCa

a
T
Ca 1,

=

=

m di
2

i
∑=

di

di

m ρ di()
i
∑=

ρ di() di
2

mk W di
k 1–()di

2

i
∑=

di
k 1–

W x() 1
x
---dρ

dx
------= di pj di– Aijpj

j
∑=

mk A
T∗ A

OpenCV Reference Manual Geometry 4

4-3

For more information see [Zhang96].

Convexity Defects

Let be a closed simple polygon, or contour, and a convex
hull. A sequence of contour points exists normally between two consecutive convex
hull vertices. This sequence forms the so-called convexity defect for which some
useful characteristics can be computed. Computer Vision Library computes only one
such characteristic, named “depth” (see Figure 4-1).

Figure 4-1 Convexity Defects

The black lines belong to the input contour. The red lines update the contour to its
convex hull.

The symbols “s” and “e” signify the start and the end points of the convexity defect.
The symbol “d” is a contour point located between “s” and “e” being the farthermost
from the line that includes the segment “se”. The symbol “h” stands for the convexity
defect depth, that is, the distance from “d” to the “se” line.

p1(, p2, …pn) h1(, h2, …hm)

OpenCV Reference Manual Geometry 4

4-4

The structure CvConvexityDefect represents the convexity defect.

Reference

cvFitEllipse
Fits ellipse to set of 2D points.

void cvFitEllipse(CvPoint* points, int n, CvBox2D32f* box);

points Pointer to the set of 2D points.

n Number of points; must be more than or equal to 6.

box Pointer to the structure for representation of the output ellipse.

Discussion

The function cvFitEllipse fills the output structure in the following way:

box->center Point of the center of the ellipse;

box->size Sizes of two ellipse axes;

box->angle Angle between the horizontal axis and the ellipse axis with the length
of box->size.width.

The output ellipse has the property of box->size.width > box->size.height.

Example 4-1 CvConvexityDefect structure definition

typedef struct
{

CvPoint* start; //start point of defect
CvPoint* end; //end point of defect
CvPoint* depth_point; //fathermost point
float depth; //depth of defect

} CvConvexityDefect;

OpenCV Reference Manual Geometry 4

4-5

cvFitLine2D
Fits 2D line to set of points on the plane.

void cvFitLine2D (CvPoint2D32f* points, int count, CvDisType disType, void*
param, float reps, float aeps float* line);

points Array of 2D points.

count Number of points.

disType Type of the distance used to fit the data to a line.

param Pointer to a user-defined function that calculates the weights for the
type CV_DIST_USER, or the pointer to a float user-defined metric
parameter c for the Fair and Welsch distance types.

reps, aeps Used for iteration stop criteria. If zero, the default value of 0.01 is
used.

line Pointer to the array of 4 floats. When the function exits, the first two
elements contain the direction vector of the line normalized to 1, the
other two contain coordinates of a point that belongs to the line.

Discussion

The function cvFitLine2D fits 2D line to a set of points on the plane. Possible
distance type values are listed below.

CV_DIST_L2 Standard least squares .

CV_DIST_L1

CV_DIST_L12

CV_DIST_FAIR c =1.3998.

CV_DIST_WELSCH ,c = 2.9846.

CV_DIST_USER Uses a user-defined function to calculate the weight. The
parameter param should point to the function.

The line equation is , where , and
.

ρ x() x
2

=

ρ x() c
2

2
----- 1

x
c
-- 
  2

– 
 exp–=

V r r0–()×[] 0= V l(ine 0[] , line 1[] , line 2[])= V 1=

r0 l(ine 3[] , line 4[] , line 5[])=

OpenCV Reference Manual Geometry 4

4-6

In this algorithm is the mean of the input vectors with weights, that is,

.

The parameters reps and aeps are iteration thresholds. If the distance of the type
CV_DIST_C between two values of calculated from two iterations is less than the
value of the parameter reps and the angle in radians between two vectors is less
than the parameter aeps, then the iteration is stopped.

The specification for the user-defined weight function is

void userWeight (float* dist, int count, float* w);

dist Pointer to the array of distance values.

count Number of elements.

w Pointer to the output array of weights.

The function should fill the weights array with values of weights calculated from the
distance values . The function has to be monotone decreasing.

cvFitLine3D
Fits 3D line to set of points in 3D space.

void cvFitLine3D (CvPoint3D32f* points, int count, CvDisType disType, void*
param, float reps, float aeps float* line);

points Array of 3D points.

count Number of points.

disType Type of the distance used to fit the data to a line.

param Pointer to a user-defined function that calculates the weights for the
type CV_DIST_USER or the pointer to a float user-defined metric
parameter c for the Fair and Welsch distance types.

r0

r0

W d ri()()ri

i
∑

W d ri()()
i
∑

---------------------------------=

r0

V

w i[] f d i[]()= f x() 1
x
---dρ

dx
------=

OpenCV Reference Manual Geometry 4

4-7

reps, aeps Used for iteration stop criteria. If zero, the default value of 0.01 is
used.

line Pointer to the array of 6 floats. When the function exits, the first
three elements contain the direction vector of the line normalized to
1, the other three contain coordinates of a point that belongs to the
line.

Discussion

The function cvFitLine3D fits 2D line to set of points on the plane. Possible distance
type values are listed below.

CV_DIST_L2 Standard least squares .

CV_DIST_L1

CV_DIST_L12

CV_DIST_FAIR c =1.3998.

CV_DIST_WELSCH ,c = 2.9846.

CV_DIST_USER Uses a user-defined function to calculate the weight. The
parameter param should point to the function.

The line equation is , where , and
.

In this algorithm is the mean of the input vectors with weights, that is,

.

The parameters reps and aeps are iteration thresholds. If the distance between two
values of calculated from two iterations is less than the value of the parameter reps,
(the distance type CV_DIST_C is used in this case) and the angle in radians between
two vectors is less than the parameter aeps, then the iteration is stopped.

The specification for the user-defined weight function is

void userWeight (float* dist, int count, float* w);

dist Pointer to the array of distance values.

ρ x() x
2

=

ρ x() c
2

2
----- 1

x
c
-- 
  2

– 
 exp–=

V r r0–()×[] 0= V l(ine 0[] , line 1[] , line 2[])= V 1=

r0 l(ine 3[] , line 4[] , line 5[])=

r0

r0

W d ri()()ri

i
∑

W d ri()()
i
∑

---------------------------------=

r0

V

OpenCV Reference Manual Geometry 4

4-8

count Number of elements.

w Pointer to the output array of weights.

The function should fill the weights array with values of weights calculated from
distance values . The function has to be monotone decreasing.

cvProject3D
Projects array of 3D points to coordinate axis.

void cvProject3D (CvPoint3D32f* points3D, int count, CvPoint2D32f* points2D,
int xindx, int yindx);

points3D Source array of 3D points.

count Number of points.

points2D Target array of 2D points.

xindx Index of the 3D coordinate from 0 to 2 that is to be used as
x-coordinate.

yindx Index of the 3D coordinate from 0 to 2 that is to be used as
y-coordinate.

Discussion

The function cvProject3D used with the function cvmPerspectiveProject is
intended to provide a general way of projecting a set of 3D points to a 2D plane. The
function copies two of the three coordinates specified by the parameters xindx and
yindx of each 3D point to a 2D points array.

w i[] f d i[]()= f x() 1
x
---dρ

dx
------=

OpenCV Reference Manual Geometry 4

4-9

cvConvexHull
Finds convex hull of points set.

void cvConvexHull(CvPoint* points, int numPoints, CvRect* boundRect, int
orientation, int* hull, int* hullsize);

points Pointer to the set of 2D points.

numPoints Number of points.

boundRect Pointer to the bounding rectangle of points set; not used.

orientation Output order of the convex hull vertices CV_CLOCKWISE or
CV_COUNTER_CLOCKWISE.

hull Indices of convex hull vertices in the input array.

hullsize Number of vertices in convex hull; output parameter.

Discussion

The function cvConvexHull takes an array of points and puts out indices of points
that are convex hull vertices. The function uses Quicksort algorithm for points sorting.

The standard, that is, bottom-left XY coordinate system, is used to define the order in
which the vertices appear in the output array.

cvContourConvexHull
Finds convex hull of points set.

CvSeq* cvContourConvexHull(CvSeq* contour, int orientation,
CvMemStorage* storage);

contour Sequence of 2D points.

orientation Output order of the convex hull vertices CV_CLOCKWISE or
CV_COUNTER_CLOCKWISE.

OpenCV Reference Manual Geometry 4

4-10

storage Memory storage where the convex hull must be allocated.

Discussion

The function cvContourConvexHull takes an array of points and puts out indices of
points that are convex hull vertices. The function uses QUICKSORT for points sorting.

The standard, that is, bottom-left XY coordinate system, defines the order in which the
vertices appear in the output array.

The function returns CvSeq that is filled with pointers to those points of the source
contour that belong to the convex hull.

cvConvexHullApprox
Finds approximate convex hull of points set.

void cvConvexHullApprox(CvPoint* points, int numPoints, CvRect* boundRect,
int bandWidth,int orientation, int* hull, int* hullsize);

points Pointer to the set of 2D points.

numPoints Number of points.

boundRect Pointer to the bounding rectangle of points set; not used.

bandWidth Width of band used by the algorithm.

orientation Output order of the convex hull vertices CV_CLOCKWISE or
CV_COUNTER_CLOCKWISE.

hull Indices of convex hull vertices in the input array.

hullsize Number of vertices in the convex hull; output parameter.

Discussion

The function cvConvexHullApprox finds approximate convex hull of points set. The
following algorithm is used: starting from the extreme left point of the input set, the
plane is divided into vertical bands with the specified width. Within every band points

OpenCV Reference Manual Geometry 4

4-11

with maximal and minimal vertical coordinates are found and all other points are
excluded. The next step is finding the exact convex hull of all remaining points (see
Figure 4-2).

Figure 4-2 Finding Approximate Convex Hull

The algorithm can be used to find the exact convex hull; the value of the parameter
bandwidth must then be equal to 1.

cvContourConvexHullApprox
Finds approximate convex hull of points set.

CvSeq* cvContourConvexHullApprox(CvSeq* contour, int bandwidth, int
orientation, CvMemStorage* storage);

contour Sequence of 2D points.

bandwidth Bandwidth used by the algorithm.

orientation Output order of the convex hull vertices CV_CLOCKWISE or
CV_COUNTER_CLOCKWISE.

storage Memory storage where the convex hull must be allocated.

OpenCV Reference Manual Geometry 4

4-12

Discussion

The function cvContourConvexHullApprox finds approximate convex hull of points
set. The following algorithm is used: starting from the extreme left point of the input
set, the plane is divided into vertical bands with the specified width (bandwidth).
Within every band points with maximal and minimal vertical coordinates are found
and all other points are excluded. The next step is finding the exact convex hull of all
remaining points (see Figure 4-2).

In case of points with integer coordinates, the algorithm can be used to find the exact
convex hull; the value of the parameter bandwidth must then be equal to 1.

The function cvContourConvexHullApprox returns CvSeq that is filled with pointers
to those points of the source contour that belong to the approximate convex hull.

cvCheckContourConvexity
Tests contour convex.

int cvCheckContourConvexity(CvSeq* contour);

contour Tested contour.

Discussion

The function cvCheckContourConvexity tests whether the input is a contour convex
or not. The function returns 1 if the contour is convex, 0 otherwise.

cvConvexityDefects
Finds defects of convexity of contour.

CvSeq* cvConvexityDefects(CvSeq* contour, CvSeq* convexhull, CvMemStorage*
storage);

contour Input contour, represented by a sequence of CvPoint structures.

OpenCV Reference Manual Geometry 4

4-13

convexhull Exact convex hull of the input contour; must be computed by the
function cvContourConvexHull.

storage Memory storage where the sequence of convexity defects must be
allocated.

Discussion

The function cvConvexityDefects finds all convexity defects of the input contour
and returns a sequence of the CvConvexityDefect structures.

cvMinAreaRect
Finds circumscribed rectangle of minimal area
for given convex contour.

void cvMinAreaRect (CvPoint* points, int n, int left, int bottom, int right,
int top, CvPoint2D32f* anchor, CvPoint2D32f* vect1, CvPoint2D32f* vect2);

points Sequence of convex polygon points.

n Number of input points.

left Index of the extreme left point.

bottom Index of the extreme bottom point.

right Index of the extreme right point.

top Index of the extreme top point.

anchor Pointer to one of the output rectangle corners.

vect1 Pointer to the vector that represents one side of the output rectangle.

vect2 Pointer to the vector that represents another side of the output
rectangle.

OpenCV Reference Manual Geometry 4

4-14

Discussion

The function cvMinAreaRect returns a circumscribed rectangle of the minimal area.
The output parameters of this function are the corner of the rectangle and two incident
edges of the rectangle (see Figure 4-3).

Figure 4-3 Minimal Area Bounding Rectangle

cvCalcPGH
Calculates pair-wise geometrical histogram for
contour.

void cvCalcPGH(CvSeq* contour, CvHistogram* hist);

contour Input contour.

hist Calculated histogram; must be two-dimensional.

Discussion

The function cvCalcPGH calculates pair-wise geometrical histogram for contour. The
algorithm considers every pair of the contour edges. The angle between the edges and
the minimum/maximum distances are determined for every pair. To do this each of the
edges in turn is taken as the base, while the function loops through all the other edges.
When the base edge and any other edge are considered, the minimum and maximum
distances from the points on the non-base edge and line of the base edge are selected.

OpenCV Reference Manual Geometry 4

4-15

The angle between the edges defines the row of the histogram in which all the bins that
correspond to the distance between the calculated minimum and maximum distances
are incremented. The histogram can be used for contour matching.

cvMinEnclosingCircle
Finds minimal enclosing circle for 2D-point set.

void cvFindMinEnclosingCircle(CvSeq* seq, CvPoint2D32f* center, float* radius
);

seq Sequence that contains the input point set. Only points with integer
coordinates (CvPoint) are supported.

center Output parameter. Center of the enclosing circle.

radius Output parameter. Radius of the enclosing circle.

Discussion

The function cvMinEnclosingCircle finds the minimal enclosing circle for the
planar point set. Enclosing means that all the points from the set are either inside or on
the boundary of the circle.Minimalmeans that there is no enclosing circle with smaller
radius.

5-1

5Features

Fixed Filters
This section describes various fixed filters, primarily derivative operators.

Overview

Sobel Derivatives

Figure 5-1 shows first x derivative Sobel operator. The grayed bottom left number
indicates the origin in a “p-q” coordinate system. The operator can be expressed as a
polynomial and decomposed into convolution primitives.

Figure 5-1 First x Derivative Sobel Operator

For example, first x derivative Sobel operator may be expressed as a polynomial
and

decomposed into convolution primitives as shown in Figure 5-1.

1

1

1

2

1

0

0

0

-1

-2

-1

2

1

0

0 1 2

q

p

1 1*
1

1
1 -1* *

(1+q) (1+q) (1+p) (1-p)

1 2q q
2

p
2

– 2p
2
q– p

2
q

2
–+ + 1 q+()2

1 p
2

–() 1 q+() 1 q+() 1 p+() 1 p–()= =

Yangtze
插入号
 下面讲的sobel算子 我看不懂

Yangtze
高亮

OpenCV Reference Manual Features 5

5-2

This may be used to express a hierarchy of first x and y derivative Sobel operators as
follows:

(5.1)

(5.2)

for .

Figure 5-2 shows the Sobel first derivative filters of equations (5.1) and (5.2) for n = 2,
4. The Sobel filter may be decomposed into simple “add-subtract” convolution
primitives.

Figure 5-2 First Derivative Sobel Operators for n=2 and n= 4

∂
∂x
------ 1 p+()n 1–

1 q+()n 1 p–()⇒

∂
∂x
------ 1 p+()n 1 q+()n 1–

1 q–()⇒

n 0>

Filter AverageDifferentiate

* 1 1
1

1
*

1

1
1 -*

01

2

1

-

0

0

-

-

0

-

1

-

0

2

-

0

1
1 1 *

-

1

n = 2 dx

dy

OpenCV Reference Manual Features 5

5-3

Filter Differentiate Average

Second derivative Sobel operators can be expressed in polynomial decomposition
similar to equations (5.1) and (5.2). The second derivative equations are:

, (5.3)

, (5.4)

(5.5)

for n = 2, 3,….

Figure 5-3 shows the filters that result for n = 2 and 4. Just as shown in Figure 5-2,
these filters can be decomposed into simple “add-subtract” separable convolution
operators as indicated by their polynomial form in the equations.

1

1
-*-12

1

4

6

2

8

1

0

0

0

4

1

8

2

0

0

-

-

-

-

-

-

-

-

-

-12

-

-

0

-

-

0

-

0

2

1

8

4

1

6

-

-

0

-

-

0

8

4

2

1

1 1 *
-

1

1 1
1

1
* * 1 1

1

1
* * 1 1**

1

1

n = 4 dx

dy

∂2

∂x2
--------- 1 p+()n 2–

1 q+()n 1 p–()2⇒

∂2

∂y2
--------- 1 p+()n 1–

1 q+()n 2–
1 q–()2⇒

∂2

∂x∂y
-------------- 1 p+()n 1–

1 q+()n 1–
1 p–() 1 q–()⇒

OpenCV Reference Manual Features 5

5-4

Figure 5-3 Sobel Operator Second Order Derivators for n = 2 and n = 4

The polynomial decomposition is shown above each operator.

Third derivative Sobel operators can also be expressed in the polynomial
decomposition form:

, (5.6)

-12 0

1

4

6

0

0

0

-2

-4

4

1

0

0

-8

-2

0

0

1

4

6

0

0

4

1

-12

0 0 0 0 0

-2 -8 -8 -2

0 0 0 0 0

1 4 6 4 1

1 4 6 4 1

-21

2

1

1

-4

-2

2

1

0

-1

1

0

0

0

1

0

-1

-2

1

1

2

-4

2

1

-2

1

0

-1

-2

0

-2

-4

0

0

0

0

2

1

4

2

0

0

2

4

1

2

0

-4

-2

-2

-1

δ2/δx2 = (1+p)2(1+q)4(1-p)2 δ2/δy2 = (1+q)2(1+p)4(1-q)2

δ2/δxδy = (1+p)3(1+q)3(1-p)(1-q)

δ2/δxδy = (1+q)(1+p)(1-q)(1-p)δ2/δy2 = (1+p)2(1-q)2δ2/δx2 = (1+q)2(1-p)2

∂3

∂x3
--------- 1 p+()n 3–

1 q+()n 1 p–()3⇒

OpenCV Reference Manual Features 5

5-5

, (5.7)

, (5.8)

(5.9)

for n =3, 4,…. The third derivative filter needs to be applied only for the cases n = 4

and general.

Optimal Filter Kernels with Floating Point Coefficients

First Derivatives

Table 5-1 gives coefficients for five increasingly accurate x derivative filters, the y

filter derivative coefficients are just column vector versions of the x derivative filters.

Table 5-1 Coefficients for Accurate First Derivative Filters

Anchor DX Mask Coefficients

0 0.74038 -0.12019

0 0.833812 -0.229945 0.0420264

0 0.88464 -0.298974 0.0949175 -0.0178608

0 0.914685 -0.346228 0.138704 -0.0453905 0.0086445

0 0.934465 -0.378736 0.173894 -0.0727275 0.0239629 -0.00459622

Five increasingly accurate separable x derivative filter coefficients. The table gives half
coefficients only. The full table can be obtained by mirroring across the central anchor
coefficient. The greater the number of coefficients used, the less distortion from the
ideal derivative filter.

∂3

∂y3
--------- 1 p+()n 1 q+()n 3–

1 q–()3⇒

∂3

∂x2∂y
---------------- 1 p–()2

1 p+()n 2–
1 q+()n 1–

1 q–()⇒

∂3

∂x∂y2
---------------- 1 p–() 1 p+()n 1–

1 q+()n 2–
1 q–()2⇒

OpenCV Reference Manual Features 5

5-6

Second Derivatives

Table 5-2 gives coefficients for five increasingly accurate x second derivative filters.
The y second derivative filter coefficients are just column vector versions of the x
second derivative filters.

Laplacian Approximation

The Laplacian operator is defined as the sum of the second derivatives x and y:

. (5.10)

Thus, any of the equations defined in the sections for second derivatives may be used
to calculate the Laplacian for an image.

Table 5-2 Coefficients for Accurate Second Derivative Filters

Anchor DX Mask Coefficients

-2.20914 1.10457

-2.71081 1.48229 -0.126882

-2.92373 1.65895 -0.224751 0.0276655

-3.03578 1.75838 -0.291985 0.0597665 -0.00827

-3.10308 1.81996 -0.338852 0.088077 -0.0206659 0.00301915

The table gives half coefficients only. The full table can be obtained by mirroring
across the central anchor coefficient. The greater the number of coefficients
used, the less distortion from the ideal derivative filter.

L ∂2

∂x2
--------- ∂2

∂y2
---------+=

OpenCV Reference Manual Features 5

5-7

Reference

cvLaplace
Calculates convolution of input image with
Laplacian operator.

void cvLaplace(IplImage* src, IplImage* dst, int apertureSize=3);

src Input image.

dst Destination image.

apertureSize Size of the Laplacian kernel.

Discussion

The function cvLaplace calculates the convolution of the input image src with the
Laplacian kernel of a specified size apertureSize and stores the result in dst.

cvSobel
Calculates convolution of input image with Sobel
operator.

void cvSobel(IplImage* src, IplImage* dst, int dx, int dy, int
apertureSize=3);

src Input image.

dst Destination image.

dx Order of the derivative x.

dy Order of the derivative y.

OpenCV Reference Manual Features 5

5-8

apertureSize Size of the extended Sobel kernel. The special value CV_SCHARR,
equal to -1, corresponds to the Scharr filter 1/16[-3,-10,-3; 0,

0, 0; 3, 10, 3]; may be transposed.

Discussion

The function cvSobel calculates the convolution of the input image src with a
specified Sobel operator kernel and stores the result in dst.

Feature Detection Functions

Overview

A set of Sobel derivative filters may be used to find edges, ridges, and blobs, especially
in a scale-space, or image pyramid, situation. Below follows a description of methods
in which the filter set could be applied.

• Dx is the first derivative in the direction x just as Dy.

• Dxx is the second derivative in the direction x just as Dyy.

• Dxy is the partial derivative with respect to x and y.

• Dxxx is the third derivative in the direction x just as Dyyy.

• Dxxy and Dxyy are the third partials in the directions x, y .

Corner Detection

Method 1

Corners may be defined as areas where level curves multiplied by the gradient
magnitude raised to the power of 3 assume a local maximum

. (5.11)

Method 2

Sobel first derivative operators are used to take the derivatives x and y of an image,
after which a small region of interest is defined to detect corners in. A 2x2 matrix of
the sums of the derivatives x and y is subsequently created as follows:

Dx
2
Dyy Dy

2
Dxx 2DxDyDxy–+

OpenCV Reference Manual Features 5

5-9

(5.12)

The eigenvalues are found by solving , where is a column vector of
the eigenvalues and I is the identity matrix. For the 2x2 matrix of the equation above,
the solutions may be written in a closed form:

. (5.13)

If , where t is some threshold, then a corner is found at that location. This can
be very useful for object or shape recognition.

Canny Edge Detector

Edges are the boundaries separating regions with different brightness or color. J.Canny
suggested in [Canny86] a very good method for detecting edges. It takes grayscale
image on input and returns bi-level image where non-zero pixels mark detected edges.
Below the 4-stage algorithm is described.

Stage 1. Image Smoothing

The image data is smoothed by a Gaussian function of width specified by the user
parameter.

Stage 2. Differentiation

The smoothed image, retrieved at Stage 1, is differentiated with respect to the
directions x and y.

From the computed gradient values x and y, the magnitude and the angle of the
gradient can be calculated using the hypotenuse and arctangen functionst.

In the OpenCV library smoothing and differentiation are joined in Sobel operator.

C
Dx

2
∑ DxDy∑
DxDy∑ Dy

2
∑

=

det C λI–() 0= λ

λ
Dx

2
Dy

2
Dx

2
Dy

2
∑+∑()

2
4 Dx

2
Dy

2
DxDy∑(–∑∑()

2


–±∑+∑

2
--=

λ1, λ2 t>

OpenCV Reference Manual Features 5

5-10

Stage 3. Non-Maximum Suppression

After the gradient has been calculated at each point of the image, the edges can be
located at the points of local maximum gradient magnitude. It is done via suppression
of non-maximums, that is points, whose gradient magnitudes are not local maximums.
However, in this case the non-maximums perpendicular to the edge direction, rather
than those in the edge direction, have to be suppressed, since the edge strength is
expected to continue along an extended contour.

The algorithm starts off by reducing the angle of gradient to one of the four sectors
shown in Figure 5-4. The algorithm passes the 3x3 neighborhood across the magnitude
array. At each point the center element of the neighborhood is compared with its two
neighbors along line of the gradient given by the sector value.

If the central value is non-maximum, that is, not greater than the neighbors, it is
suppressed.

Figure 5-4 Gradient Sectors

OpenCV Reference Manual Features 5

5-11

Stage 4. Edge Thresholding

The Canny operator uses the so-called “hysteresis” thresholding. Most thresholders
use a single threshold limit, which means that if the edge values fluctuate above and
below this value, the line appears broken. This phenomenon is commonly referred to
as “streaking”. Hysteresis counters streaking by setting an upper and lower edge value
limit. Considering a line segment, if a value lies above the upper threshold limit it is
immediately accepted. If the value lies below the low threshold it is immediately
rejected. Points which lie between the two limits are accepted if they are connected to
pixels which exhibit strong response. The likelihood of streaking is reduced drastically
since the line segment points must fluctuate above the upper limit and below the lower
limit for streaking to occur. J. Canny recommends in [Canny86] the ratio of high to
low limit to be in the range of two or three to one, based on predicted signal-to-noise
ratios.

Reference

cvCanny
Implements Canny algorithm for edge detection.

void cvCanny(IplImage* img, IplImage* edges, double lowThresh, double
highThresh, int apertureSize=3);

img Input image.

edges Image to store the edges found by the function.

apertureSize Size of the Sobel operator to be used in the algorithm.

lowThresh Low threshold used for edge searching.

highThresh High threshold used for edge searching.

Discussion

The function cvCanny finds the edges in the input image img and puts them into the
output image edges using the Canny algorithm described above.

OpenCV Reference Manual Features 5

5-12

cvPreCornerDetect
Calculates two constraint images for corner
detection.

void cvPreCornerDetect(IplImage* img, IplImage* corners, Int apertureSize);

img Input image.

corners Image to store the results.

apertureSize Size of the Sobel operator to be used in the algorithm.

Discussion

The function cvPreCornerDetect finds the corners on the input image img and stores
them into the output image corners in accordance with Method 1 for corner detection.

cvCornerEigenValsAndVecs
Calculates eigenvalues and eigenvectors of
image blocks for corner detection.

void cvCornerEigenValsAndVecs(IplImage* img, IplImage* eigenvv, int
blockSize, int apertureSize=3);

img Input image.

eigenvv Image to store the results.

blockSize Linear size of the square block over which derivatives averaging is
done.

apertureSize Derivative operator aperture size in the case of byte source format. In
the case of floating-point input format this parameter is the number
of the fixed float filter used for differencing.

OpenCV Reference Manual Features 5

5-13

Discussion

For every raster pixel the function cvCornerEigenValsAndVecs takes a block of
pixels with the top-left corner, or top-bottom corner for

bottom-origin images, at the pixel, computes first derivatives Dx and Dy within the
block and then computes eigenvalues and eigenvectors of the matrix:

, where summations are performed over the whole block.

The format of the frame eigenvv is the following: for every pixel of the input image
the frame contains 6 float values ().

are eigenvalues of the above matrix, not sorted by value.

are coordinates of the normalized eigenvector that corresponds to .

are coordinates of the normalized eigenvector that corresponds to .

In case of a singular matrix or if one of the eigenvalues is much less than another, all
six values are set to 0. The Sobel operator with aperture width aperureSize is used for
differentiation.

cvCornerMinEigenVal
Calculates minimal eigenvalues of image blocks
for corner detection.

void cvCornerMinEigenVal(IplImage* img, IplImage* eigenv, int blockSize, int
apertureSize=3);

img Input image.

eigenvv Image to store the results.

blockSize Linear size of the square block over which derivatives averaging is
done.

blockSize blockSize×

C
Dx

2
∑ DxDy∑
DxDy∑ Dy

2
∑

=

λ1, λ2, x1, y1, x2, y2

λ1, λ2

x1, y1 λ1

x2, y2 λ2

OpenCV Reference Manual Features 5

5-14

apertureSize Derivative operator aperture size in the case of byte source format. In
the case of floating-point input format this parameter is the number
of the fixed float filter used for differencing.

Discussion

For every raster pixel the function cvCornerMinEigenVal takes a block of
pixels with the top-left corner, or top-bottom corner for

bottom-origin images, at the pixel, computes first derivatives Dx and Dy within the
block and then computes eigenvalues and eigenvectors of the matrix:

, where summations are made over the block.

In case of a singular matrix the minimal eigenvalue is set to 0. The Sobel operator
with aperture width aperureSize is used for differentiation.

cvFindCornerSubPix
Refines corner locations.

void cvFindCornerSubPix(IplImage* img, CvPoint2D32f* corners, int count,
CvSize win, CvSize zeroZone, CvTermCriteria criteria);

img Input raster image.

corners Initial coordinates of the input corners and refined coordinates on
output.

count Number of corners.

win Half sizes of the search window. For example, if win = (5,5), then
pixel window to be used.

zeroZone Half size of the dead region in the middle of the search zone to avoid
possible singularities of the autocorrelation matrix. The value of
(-1,-1)indicates that there is no such zone.

blockSize blockSize×

C
Dx

2
∑ DxDy∑
DxDy∑ Dy

2
∑

=

5∗ 2 1 5∗ 2 1+×+ 11 11×=

OpenCV Reference Manual Features 5

5-15

criteria Criteria for termination of the iterative process of corner refinement.
Iterations may specify a stop when either required precision is
achieved or the maximal number of iterations done.

Discussion.

The function cvFindCornerSubPix iterates to find the accurate sub-pixel location of a
corner, or “radial saddle point”, as shown in Figure 5-5.

Figure 5-5 Sub-Pixel Accurate Corner

The core idea of this algorithm is based on the observation that every vector from the
center q to a point p located within a neighborhood of q is orthogonal to the image
gradient at p subject to image and measurement noise. Thus:

,

where is the image gradient at the one of the points p in a neighborhood of q. The
value of q is to be found such that is minimized. A system of equations may be set
up with ‘s set to zero:

,

where the gradients are summed within a neighborhood (“search window”) of q.
Calling the first gradient term G and the second gradient term b gives:

εi Ipi
T∇ q pi)–(⋅=

Ipi
∇

εi
εi

Ipi
∇

i

∑ Ipi
T∇⋅

 
 
 

q• Ipi
∇

i

∑ Ipi
T∇ pi⋅ ⋅

 
 
 

0=–

OpenCV Reference Manual Features 5

5-16

.

The algorithm sets the center of the neighborhood window at this new center q and
then iterates until the center keeps within a set threshold.

cvGoodFeaturesToTrack
Determines strong corners on image.

void cvGoodFeaturesToTrack(IplImage* image, IplImage* eigImage, IplImage*
tempImage, CvPoint2D32f* corners, int* cornerCount, double qualityLevel,
double minDistance);

image Source image; should be byte, signed byte, or floating-point depth
single channel.

eigImage Temporary image for minimal eigenvalues for pixels; must be
floating-point, single channel.

tempImage Another temporary image; must be floating-point, single channel.

corners Output parameter. Detected corners.

cornerCount Output parameter. Number of detected corners.

qualityLevel Multiplier for the maxmin eigenvalue; specifies minimal accepted
quality of image corners.

minDistance Limit, specifying minimum possible distance between returned
corners; Euclidian distance is used.

Discussion

The function cvGoodFeaturesToTrack finds corners with big eigenvalues in the
image. The function first calculates the minimal eigenvalue for every pixel of the
source image and then performs non-maxima suppression (only local maxima in 3x3
neighborhood remain). The next step is rejecting the corners with the minimal
eigenvalue less than quality_level*<max_of_min_eigen_vals>. Finally, the

q G
1–
b⋅=

OpenCV Reference Manual Features 5

5-17

function ensures that all the corners found are distanced enough from one another by
getting two strongest features and checking that the distance between the points is
satisfactory. If not, the point is rejected.

Hough Transform

Overview

The Hough Transform (HT) is a popular method of extracting geometric primitives
from raster images. The simplest version of the algorithm just detects lines, but it is
easily generalized to find more complex features. There are several classes of HT that
differ by the image information available. If the image is arbitrary, the Standard Hough
Transform (SHT, [Trucco98]) should be used.

SHT, like all HT algorithms, considers a discrete set of single primitive parameters. If
lines should be detected, then the parameters are and , such that the line equation is

.

Here is the distance from the origin to the line, and is the angle between the axis x

and the perpendicular to the line vector that points from the origin to the line. Every
pixel in the image may belong to many lines described by a set of parameters. In other
words, the “accumulator” is defined which is an integer array A(,) containing only
zeroes initially. For each non-zero pixel in the image all accumulator elements
corresponding to lines that contain the pixel are incremented by 1. Then a threshold is
applied to distinguish lines and noise features, that is select all pairs (,) for which
A(,) is greater than the threshold value. All such pairs characterize detected lines.

Multidimensional Hough Transform (MHT) is a modification of SHT. It performs
precalculation of SHT on rough resolution in parameter space and detects the regions
of parameter values that possibly have strong support, that is, correspond to lines in the
source image. MHT should be applied to images with few lines and without noise.

[Matas98] presents advanced algorithm for detecting multiple primitives, Progressive
Probabilistic Hough Transform (PPHT). The idea is to consider random pixels one by
one. Every time the accumulator is changed, the highest peak is tested for threshold
exceeding. If the test succeeds, points that belong to the corridor specified by the peak
are removed. If the number of points exceeds the predefined value, that is, minimum

ρ θ
ρ x θ() y θ()sin+cos=

ρ θ

ρ θ

ρ θ
ρ θ

OpenCV Reference Manual Features 5

5-18

line length, then the feature is considered a line, otherwise it is considered a noise.
Then the process repeats from the very beginning until no pixel remains in the image.
The algorithm improves the result every step, so it can be stopped any time. [Matas98]
claims that PPHT is easily generalized in almost all cases where SHT could be
generalized. The disadvantage of this method is that, unlike SHT, it does not process
some features, for instance, crossed lines, correctly.

For more information see [Matas98] and [Trucco98].

Reference

cvHoughLines
Finds lines in binary image, SHT algorithm.

void cvHoughLines (IplImage* src, double rho, double theta, int threshold,
float* lines, int linesNumber);

src Source image.

rho Radius resolution.

theta Angle resolution.

threshold Threshold parameter.

lines Pointer to the array of output lines parameters. The array should have
2*linesNumber elements.

linesNumber Maximum number of lines.

Discussion

The function cvHoughLines implements Standard Hough Transform (SHT) and
demonstrates average performance on arbitrary images. The function returns number
of detected lines. Every line is characterized by pair (,), where is distance from
line to point (0,0) and is the angle between the line and horizontal axis.

ρ θ ρ
θ

OpenCV Reference Manual Features 5

5-19

cvHoughLinesSDiv
Finds lines in binary image, MHT algorithm.

int cvHoughLinesSDiv (IplImage* src, double rho, int srn, double theta, int
stn, int threshold, float* lines, int linesNumber);

src Source image.

rho Rough radius resolution.

srn Radius accuracy coefficient, rho/srn is accurate rho resolution.

theta Rough angle resolution.

stn Angle accuracy coefficient, theta/stn is accurate angle resolution.

threshold Threshold parameter.

lines Pointer to array of the detected lines parameters. The array should
have 2*linesNumber elements.

linesNumber Maximum number of lines.

Discussion

The function cvHoughLinesSDiv implements coarse-to-fine variant of SHT and is
significantly faster than the latter on images without noise and with a small number of
lines. The output of the function has the same format as the output of the function
cvHoughLines.

cvHoughLinesP
Finds line segments in binary image, PPHT
algorithm.

int cvHoughLinesP(IplImage* src, double rho, double theta, int threshold,
int lineLength, int lineGap, int* lines, int linesNumber);

src Source image.

OpenCV Reference Manual Features 5

5-20

rho Rough radius resolution.

theta Rough angle resolution.

threshold Threshold parameter.

lineLength Minimum accepted line length.

lineGap Maximum length of accepted line gap.

lines Pointer to array of the detected line segments' ending coordinates.
The array should have linesNumber*4 elements.

linesNumber Maximum number of line segments.

Discussion

The function cvHoughLinesP implements Progressive Probabilistic Standard Hough
Transform. It retrieves no more than linesNumber line segments; each of those must
be not shorter than lineLength pixels. The method is significantly faster than SHT on
noisy images, containing several long lines. The function returns number of detected
segments. Every line segment is characterized by the coordinates of its
ends(x1,y1,x2,y2).

6-1

6Image Statistics

This chapter describes a set of functions that compute different information about
images, considering their pixels as independent observations of a stochastic variable.

Overview
The computed values have statistical character and most of them depend on values of
the pixels rather than on their relative positions. These statistical characteristics
represent integral information about a whole image or its regions.

The first part of the chapter describes the characteristics that are typical for any
stochastic variable or deterministic set of numbers, such as mean value, standard
deviation, min and max values.

The second part describes the function for calculating the most widely used norms for
a single image or a pair of images. The latter is often used to compare images.

The third part describes moments functions for calculating integral geometric
characteristics of a 2D object, represented by grayscale or bi-level raster image, such
as mass center, orientation, size, and rough shape description. As opposite to simple
moments, that are used for characterization of any stochastic variable or other data, Hu
invariants, described in the last function discussion, are unique for image processing
because they are specifically designed for 2D shape characterization. They are
invariant to several common geometric transformations.

OpenCV Reference Manual Image Statistics 6

6-2

Reference

cvCountNonZero
Counts non-zero pixels in image.

int cvCountNonZero (IplImage* image);

image Pointer to the source image.

Discussion

The function cvCountNonZero returns number of non-zero pixels in the whole image
or selected image ROI.

cvSumPixels
Summarizes pixel values in image.

double cvSumPixels(IplImage* image);

image Pointer to the source image.

Discussion

The function cvSumPixels returns sum of pixel values in the whole image or selected
image ROI.

OpenCV Reference Manual Image Statistics 6

6-3

cvMean
Calculates mean value in image region.

double cvMean(IplImage* image, IplImage* mask=0);

image Pointer to the source image.

mask Mask image.

Discussion

The function cvMean calculates the mean of pixel values in the whole image, selected
ROI or, if mask is not NULL,in an image region of arbitrary shape.

cvMean_StdDev
Calculates mean and standard deviation in image
region.

void cvMean_StdDev(IplImage* image, double* mean, double* stddev,
IplImage* mask=0);

image Pointer to the source image.

mean Pointer to returned mean.

stddev Pointer to returned standard deviation.

mask Pointer to the single-channel mask image.

Discussion

The function cvMean_StdDev calculates mean and standard deviation of pixel values
in the whole image, selected ROI or, if mask is not NULL,in an image region of arbitrary
shape. If the image has more than one channel, the COI must be selected.

OpenCV Reference Manual Image Statistics 6

6-4

cvMinMaxLoc
Finds global minimum and maximum in image
region.

void cvMinMaxLoc(IplImage* image, double* minVal, double* maxVal,
CvPoint* minLoc, CvPoint* maxLoc, IplImage* mask=0);

image Pointer to the source image.

minVal Pointer to returned minimum value.

maxVal Pointer to returned maximum value.

minLoc Pointer to returned minimum location.

maxLoc Pointer to returned maximum location.

mask Pointer to the single-channel mask image.

Discussion

The function cvMinMaxLoc finds minimum and maximum pixel values and their
positions. The extremums are searched over the whole image, selected ROI or, if mask
is not NULL,oner an image region of arbitrary shape. If the image has more than one
channel, the COI must be selected.

cvNorm
Calculates image norm, difference norm or
relative difference norm.

double cvNorm(IplImage* imgA, IplImage* imgB, int normType, IplImage* mask=0
);

imgA Pointer to the first source image.

imgA Pointer to the second source image if any, NULL otherwise.

normType Type of norm.

OpenCV Reference Manual Image Statistics 6

6-5

mask Pointer to the single-channel mask image.

Discussion

The function cvNorm calculates images norms defined below. If imgB = NULL, the
following three norm types of image A are calculated:

NormType = CV_C: ,

NormType = CV_L1: ,

NormType = CV_L2: .

If NULL, the difference or relative difference norms are calculated:

NormType = CV_C: ,

NormType = CV_L1: ,

NormType = CV_L2: ,

NormType = CV_RELATIVEC: ,

NormType = CV_RELATIVEL1 : ,

A C max Aij()=

A L1
Aij

j 1=

Ny

∑
i 1=

Nx

∑=

A L2
Aij

2

j 1=

Ny

∑
i 1=

Nx

∑=

imgB ≠

A B– C max Ai Bi–()=

A B– L1
Aij Bij–

j 1=

Ny

∑
i 1=

Nx

∑=

A B– L2
A(ij Bij)2

–

j 1=

Ny

∑
i 1=

Nx

∑=

A B– C B C⁄
max Aij Bij–)(

max Bij()
--=

A B– L1
B L1

⁄

Aij Bij–

j 1=

Ny

∑
i 1=

Nx

∑

Bij
j 1=

Ny

∑
i 1=

Nx

∑

---=

OpenCV Reference Manual Image Statistics 6

6-6

NormType = CV_RELATIVEL2: .

The function cvNorm returns calculated norm.

cvMoments
Calculates all moments up to third order of image
plane and fills moment state structure.

void cvMoments(IplImage* image, CvMoments* moments, int isBinary=0);

image Pointer to the image or to top-left corner of its ROI.

moments Pointer to returned moment state structure.

isBinary If the flag is non-zero, all the zero pixel values are treated as zeroes,
all the others are treated as ones.

Discussion

The function cvMoments calculates moments up to the third order and writes the
result to the moment state structure. This structure is used then to retrieve a certain
spatial, central, or normalized moment or to calculate Hu moments.

A B– L2
B L2

⁄

A(ij Bij)2
–

j 1=

Ny

∑
i 1=

Nx

∑

B(ij)2

j 1=

Ny

∑
i 1=

Nx

∑

---=

OpenCV Reference Manual Image Statistics 6

6-7

cvGetSpatialMoment
Retrieves spatial moment from moment state
structure.

double cvGetSpatialMoment(CvMoments* moments, int x_order, int y_order);

moments Pointer to the moment state structure.

x_order Order x of required moment.

y_order Order y of required moment

(0<= x_order, y_order; x_order + y_order <= 3).

Discussion

The function cvGetSpatialMoment retrieves the spatial moment, which is defined as:

, where

is the intensity of the pixel (x,y).

cvGetCentralMoment
Retrieves central moment from moment state
structure.

double cvGetCentralMoment(CvMoments* moments, int x_order, int y_order);

moments Pointer to the moment state structure.

x_order Order x of required moment.

y_order Order y of required moment

(0<= x_order, y_order; x_order + y_order <= 3).

Mx_order y_order, I x y,()xx_order
y
y_order

x y,
∑=

I x y,()

OpenCV Reference Manual Image Statistics 6

6-8

Discussion

The function cvGetCentralMoment retrieves the central moment, which is defined as:

, where

is the intensity of pixel (x,y), is the coordinate x of the mass center, is the
coordinate y of the mass center:

, .

cvGetNormalizedCentralMoment
Retrieves normalized central moment from
moment state structure.

double cvGetNormalizedCentralMoment(CvMoments* moments, int x_order, int
y_order);

moments Pointer to the moment state structure.

x_order Order x of required moment.

y_order Order y of required moment

(0<= x_order, y_order; x_order + y_order <= 3).

Discussion

The function cvGetNormalizedCentralMoment retrieves the normalized central
moment, which is defined as:

.

µx_order y_order, I x y,() x x–()x_order
y y–()y_order

x y,
∑=

I x y,() x y

x
M1 0,
M0 0,
----------= y

M0 1,
M0 0,
----------=

ηx_order y_order,
µx_order y_order,

M0 0,
x_order y_order+() 2 1+⁄()

---=

OpenCV Reference Manual Image Statistics 6

6-9

cvGetHuMoments
Calculates seven moment invariants from
moment state structure.

void cvGetHuMoments(CvMoments* moments, CvHuMoments* HuMoments);

moments Pointer to the moment state structure.

HuMoments Pointer to Hu moments structure.

Discussion

The function cvGetHuMoments calculates seven Hu invariants using the following
formulas:

,

,

,

,

,

,

These values are proved to be invariants to the image scale, rotation, and reflection
except the first one, whose sign is changed by reflection.

h1 η20 η02+=

h2 η(20 η02)2
– 4η11

2
+=

h3 η(30 3η12)2
– 3η21 η03–()2

+=

h4 η(30 η12)2 η21 η03+()2
+ +=

h5 η(30 3η12) η30 η12+() η30 η12+()2
3 η21 η03+()2

–[]–

3η21 η03–() η21 η03+() 3 η30 η12+()2 η21 η03+()2
–[]+

=

h6 η(20 η02) η30 η12+()2[– η21 η03+()2]– 4η11 η30 η12+() η21 η03+()+=

h7 3η21 η03–() η21 η03+() 3 η30 η12+()2 η21 η03+()2
–[]

η(30 3η12) η21 η03+() 3 η30 η12+()2 η21 η03+()2
–[]––

=

OpenCV Reference Manual Image Statistics 6

6-10

7-1

7Pyramids

This chapter describes functions that support generation and reconstruction of
Gaussian and Laplacian Pyramids.

Overview
Figure 7-1 shows the basics of creating Gaussian or Laplacian pyramids. The original
image G0 is convolved with a Gaussian, then down-sampled to get the reduced image
G1. This process can be continued as far as desired or until the image size is one pixel.

The Laplacian pyramid can be built from a Gaussian pyramid as follows: Laplacian
level “k” can be built by up-sampling the lower level image Gk+1. Convolving the
image with a Gaussian kernel “g” interpolates the pixels “missing” after up-sampling.
The resulting image is subtracted from the image Gk. To rebuild the original image, the
process is reversed as Figure 7-1 shows.

OpenCV Reference Manual Pyramids 7

7-2

Figure 7-1 A Three-Level Gaussian and Laplacian Pyramid.

The Gaussian image pyramid on the left is used to create the Laplacian pyramid in the
center, which is used to reconstruct the Gaussian pyramid and the original image on
the right. In the figure, I is the original image, G is the Gaussian image, L is the
Laplacian image. Subscripts denote level of the pyramid. A Gaussian kernel g is used
to convolve the image before down-sampling or after up-sampling.

G2

G1

I = G0

g

L0 G0 = I

L1 G1

G2

g g

g g

g

OpenCV Reference Manual Pyramids 7

7-3

Image Segmentation by Pyramid

Computer vision uses pyramid based image processing techniques on a wide scale
now. The pyramid provides a hierarchical smoothing, segmentation, and hierarchical
computing structure that supports fast analysis and search algorithms.

P. J. Burt suggested a pyramid-linking algorithm as an effective implementation of a
combined segmentation and feature computation algorithm [Burt81]. This algorithm,
described also in [Jahne97], finds connected components without preliminary
threshold, that is, it works on grayscale image. It is an iterative algorithm.

Burt’s algorithm includes the following steps:

1. Computation of the Gaussian pyramid.

2. Segmentation by pyramid-linking.

3. Averaging of linked pixels.

Steps 2 and 3 are repeated iteratively until a stable segmentation result is reached.

After computation of the Gaussian pyramid a son-father relationship is defined
between nodes (pixels) in adjacent levels. The following attributes may be defined for
every node (i,j) on the level l of the pyramid:

c[i,j,l][t] is the value of the local image property, e.g., intensity;

a[i,j,l][t] is the area over which the property has been computed;

p[[i,j,l][t] is pointer to the node’s father, which is at level l+1;

s[i,j,l][t] is the segment property, the average value for the entire segment
containing the node.

The letter t stands for the iteration number . For , .

For every node (i,j) at level l there are 16 candidate son nodes at level l-1
(i’,j’), where

, . (7.1)

For every node (i,j) at level l there are 4 candidate father nodes at level l+1
(i’’,j’’), (see Figure 7-2), where

, . (7.2)

t 0≥() t 0= c i j l, ,[] 0[] Gi j,
l

=

i' 2i 1 2i 2i 1 2i 2+,+,,–{ }∈ j' 2j 1 2j 2j 1 2j 2+,+,,–{ }∈

i'' i(1) 2⁄ i 1) 2⁄+,–{ }∈ j'' j(1) 2⁄ j 1) 2⁄+,–{ }∈

OpenCV Reference Manual Pyramids 7

7-4

Son-father links are established for all nodes below the top of pyramid for every
iteration t. Let d[n][t] be the absolute difference between the c value of the node
(i,j)at level l and its nth candidate father, then

(7.3)

Figure 7-2 Connections between Adjacent Pyramid Levels

After the son-father relationship is defined, the t, c, and a values are computed from
bottom to the top for the as

, , ,

where sum is calculated over all (i,j)node sons, as indicated by the links p in (7.3).

If then , but if
, the node has no sons, is set to the value of one of its

candidate sons selected at random. No segment values are calculated in the top down
order. The value of the initial level L is an input parameter of the algorithm. At the
level L the segment value of each node is set equal to its local property value:

.

p i j l, ,[] t[] min d n[] t[]
1 n 4≤ ≤

arg=

],,[lji]1,","[+lji

0 l n≤ ≤

a i j 0, ,[] t[] 1= c i j 0, ,[] t[] c i j 0, ,[] 0[]= i j l, ,] t[] a i' j' l 1–, ,[] [∑=

a i j l, ,[] t[] 0> j l,] t[] i' j' l' 1–, ,[] t[] c i' j' l 1–, ,[] t[]⋅() a i j, ,[⁄∑=

a i j 0, ,[] t[] 0= c i j 0, ,[] t[]

s i j L, ,[] t[] c i j L, ,[] t[]=

OpenCV Reference Manual Pyramids 7

7-5

For lower levels each node value is just that of its father
.

Here node (i’’,j’’) is the father of (i,j), as established in Equation (7.3).

After this the current iteration t finishes and the next iteration begins. Any
changes in pointers in the next iteration result in changes in the values of local image
properties.

The iterative process is continued until no changes occur between two successive
iterations.

The choice of L only determines the maximum possible number of segments. If the
number of segments less than the numbers of nodes at the level L, the values of

are clustered into a number of groups equal to the desired number of
segments. The group average value is computed from the c values of its members,
weighted by their areas a, and replaces the value c for each node in the group.

Data Structures

The pyramid functions use the data structure IplImage for image representation and
the data structure CvSeq for the sequence of the connected components representation.
Every element of this sequence is the data structure CvConnectedComp for the single
connected component representation in memory.

The C language definition for the CvConnectedComp structure is given below.

Example 7-1 CvConnectedComp Structure Definition

typedef struct CvConnectedComp
{

double area; /* area of the segmented
component */

float value; /* gray scale value of the
segmented component */

CvRect rect; /* ROI of the segmented component
*/

} CvConnectedComp;

l L<
s i j l, ,[] t[] c i'' j'' l 1+, ,[] t[]=

t 1+

c i j L, ,[] t[]

OpenCV Reference Manual Pyramids 7

7-6

Reference

cvPyrDown
Downsamples image.

void cvPyrDown(IplImage* src, IplImage* dst, IplFilter
filter=IPL_GAUSSIAN_5x5);

src Pointer to the source image.

dst Pointer to the destination image.

filter Type of the filter used for convolution; only IPL_GAUSSIAN_5x5 is
currently supported.

Discussion

The function cvPyrDown performs downsampling step of Gaussian pyramid
decomposition. First it convolves source image with the specified filter and then
downsamples the image by rejecting even rows and columns. So the destination image
is four times smaller than the source image.

cvPyrUp
Upsamples image.

void cvPyrUp(IplImage* src, IplImage* dst, IplFilter filter=IPL_GAUSSIAN_5x5);

src Pointer to the source image.

dst Pointer to the destination image.

filter Type of the filter used for convolution; only IPL_GAUSSIAN_5x5 is
currently supported.

OpenCV Reference Manual Pyramids 7

7-7

Discussion

The function cvPyrUp performs upsampling step of Gaussian pyramid
decomposition. First it upsamples the source image by injecting even zero rows and
columns and then convolves result with the specified filter multiplied by 4 for
interpolation. So the destination image is four times larger than the source image.

cvPyrSegmentation
Implements image segmentation by pyramids.

void cvPyrSegmentation(IplImage* srcImage, IplImage* dstImage, CvMemStorage*
storage, CvSeq** comp, int level, double threshold1, double threshold2);

srcImage Pointer to the input image data.

dstImage Pointer to the output segmented data.

storage Storage; stores the resulting sequence of connected components.

comp Pointer to the output sequence of the segmented components.

level Maximum level of the pyramid for the segmentation.

threshold1 Error threshold for establishing the links.

threshold2 Error threshold for the segments clustering.

Discussion

The function cvPyrSegmentation implements image segmentation by pyramids. The
pyramid builds up to the level level. The links between any pixel a on level i and its
candidate father pixel b on the adjacent level are established if

. After the connected components are defined, they are
joined into several clusters. Any two segments A and B belong to the same cluster, if

. The input image has only one channel, then
. If the input image has three channels (red, green and blue), then

. There may be more than one
connected component per a cluster.

ρ c a) c b(,()() threshold1<

ρ c A) c B(,()() threshold2<
ρ c

1
c

2,() c
1

c
2

–=

ρ c
1
c

2,() 0,3 cr
1

cr
2

–() 0,59 cg
1

cg
2

–() 0,11 cb
1

cb
2

–()⋅+⋅+⋅=

OpenCV Reference Manual Pyramids 7

7-8

Input srcImage and output dstImage should have the identical IPL_DEPTH_8U depth
and identical number of channels (1 or 3).

8-1

8Morphology

This chapter describes an expanded set of morphological operators that can be used for
noise filtering, merging or splitting image regions, as well as for region boundary
detection.

Overview
Mathematical Morphology is a set-theory method of image analysis first developed by
Matheron and Serra at the Ecole des Mines, Paris [Serra82]. The two basic
morphological operations are erosion, or thinning, and dilation, or thickening. All
operations involve an image A, called the object of interest, and a kernel element B,
called the structuring element. The image and structuring element could be in any
number of dimensions, but the most common use is with a 2D binary image, or with a
3D gray scale image. The element B is most often a square or a circle, but could be any
shape. Just like in convolution, B is a kernel or template with an anchor point.
Figure 8-1 shows dilation and erosion of object A by B. The element B is rectangular
with an anchor point at upper left shown as a dark square.

OpenCV Reference Manual Morphology 8

8-2

Figure 8-1 Dilation and Erosion of A by B.

If is the translation of B around the image, then dilation of object A by structuring
element B is

.

It means every pixel is in the set, if the intersection is not null. That is, a pixel under
the anchor point of B is marked “on”, if at least one pixel of B is inside of A.

indicates the dilation is done n times.

Erosion of object A by structuring element B is

.

That is, a pixel under the anchor of B is marked “on”, if B is entirely within A.

indicates the erosion is done n times and can be useful in finding , the
boundary of A:

.

Opening of A by B is

. (8.1)

Closing of A by B is

B

A

Dilation by B

Erosion by B

Bt

A B⊕ t:Bt A 0≠∩
 
 
 

=

A nB⊕

AΘB t:Bt A⊆{ }=

AΘnB ∂A

∂A A AΘnB()–=

A °B AΘnB() nB⊕=

OpenCV Reference Manual Morphology 8

8-3

, (8.2)

where n > 0.

Flat Structuring Elements for Gray Scale

Erosion and dilation can be done in 3D, that is, with gray levels. 3D structuring
elements can be used, but the simplest and the best way is to use a flat structuring
element B as shown in Figure 8-2. In the figure, B has an anchor slightly to the right of
the center as shown by the dark mark on B. Figure 8-2 shows 1D cross-section of both
dilation and erosion of a gray level image A by a flat structuring element B.

A B• A nB⊕()ΘnB=

OpenCV Reference Manual Morphology 8

8-4

Figure 8-2 Dilation and Erosion of Gray Scale Image.

In Figure 8-2, dilation is mathematically

,

and erosion is

.

B A

Dilation of A by B

Erosion of A by B

sup A
y Bt∈

inf A
y Bt∈

OpenCV Reference Manual Morphology 8

8-5

Open and Close Gray Level with Flat Structuring Element

The typical position of the anchor of the structuring element B for opening and closing
is in the center. Subsequent opening and closing could be done in the same manner as
in the Opening (8.1) and Closing (8.2) equations above to smooth off jagged objects as
opening tends to cut off peaks and closing tends to fill in valleys.

Morphological Gradient Function

A morphological gradient may be taken with the flat gray scale structuring elements as
follows:

.

Top Hat and Black Hat

Top Hat (TH) is a function that isolates bumps and ridges from gray scale objects. In
other words, it can detect areas that are lighter than the surrounding neighborhood of A
and smaller compared to the structuring element. The function subtracts the opened
version of A from the gray scale object A:

.

Black Hat (THd) is the dual function of Top Hat in that it isolates valleys and “cracks
off” ridges of a gray scale object A, that is, the function detects dark and thin areas by
subtracting A from the closed image A:

.

Thresholding often follows both Top Hat and Black Hat operations.

grad A()
A Bflat⊕() AΘBflat()–

2
---=

THB A() A A °nBflat()–=

THB
d
A() A nBflat•() A–=

OpenCV Reference Manual Morphology 8

8-6

Reference

cvCreateStructuringElementEx
Creates structuring element.

IplConvKernel* cvCreateStructuringElementEx(int nCols, int nRows, int anchorX,
int anchorY, CvElementShape shape, int* values);

nCols Number of columns in the structuring element.

nRows Number of rows in the structuring element.

anchorX Relative horizontal offset of the anchor point.

anchorY Relative vertical offset of the anchor point.

shape Shape of the structuring element; may have the following values:

• CV_SHAPE_RECT, a rectangular element;

• CV_SHAPE_CROSS, a cross-shaped element;

• CV_SHAPE_ELLIPSE, an elliptic element;

• CV_SHAPE_CUSTOM, a user-defined element. In this case the
parameter values specifies the mask, that is, which neighbors of
the pixel must be considered.

values Pointer to the structuring element data, a plane array, representing
row-by-row scanning of the element matrix. Non-zero values
indicate points that belong to the element. If the pointer is NULL, then
all values are considered non-zero, that is, the element is of a
rectangular shape. This parameter is considered only if the shape is
CV_SHAPE_CUSTOM.

Discussion

The function cvCreateStructuringElementEx allocates and fills the structure
IplConvKernel, which can be used as a structuring element in the morphological
operations.

OpenCV Reference Manual Morphology 8

8-7

cvReleaseStructuringElement
Deletes structuring element.

void cvReleaseStructuringElement(IplConvKernel** ppElement);

ppElement Pointer to the deleted structuring element.

Discussion

The function cvReleaseStructuringElement releases the structure IplConvKernel
that is no longer needed. If *ppElement is NULL, the function has no effect. The
function returns created structuring element.

cvErode
Erodes image by using arbitrary structuring
element.

void cvErode(IplImage* src, IplImage* dst, IplConvKernel* B, int iterations);

src Source image.

dst Destination image.

B Structuring element used for erosion. If NULL, a 3x3 rectangular
structuring element is used.

iterations Number of times erosion is applied.

Discussion

The function cvErode erodes the source image. The function takes the pointer to the
structuring element, consisting of “zeros” and “minus ones”; the minus ones determine
neighbors of each pixel from which the minimum is taken and put to the corresponding
destination pixel. The function supports the in-place mode when the source and

OpenCV Reference Manual Morphology 8

8-8

destination pointers are the same. Erosion can be applied several times (iterations
parameter). Erosion on a color image means independent transformation of all
channels.

cvDilate
Dilates image by using arbitrary structuring
element.

void cvDilate(IplImage* pSrc, IplImage* pDst, IplConvKernel* B, int
iterations);

pSrc Source image.

pDst Destination image.

B Structuring element used for dilation. If NULL, a 3x3 rectangular
structuring element is used.

iterations Number of times dilation is applied.

Discussion

The function cvDilate performs dilation of the source image. It takes pointer to the
structuring element that consists of “zeros” and “minus ones”; the minus ones
determine neighbors of each pixel from which the maximum is taken and put to the
corresponding destination pixel. Function supports in-place mode. Dilation can be
applied several times (iterations parameter). Dilation of color image means
independent transformation of all channels.

OpenCV Reference Manual Morphology 8

8-9

cvMorphologyEx
Performs advanced morphological
transformations.

void cvMorphologyEx(IplImage* src, IplImage* dst, IplImage* temp,
IplConvKernel* B, CvMorphOp op, int iterations);

src Source image.

dst Destination image.

temp Temporary image, required in some cases.

B Structuring element.

op Type of morphological operation:

• CV_MOP_OPEN, opening;

• CV_MOP_CLOSE, closing;

• CV_MOP_GRADIENT, morphological gradient;

• CV_MOP_TOPHAT, top hat;

• CV_MOP_BLACKHAT, black hat.

(See Overview for description of these operations).

iterations Number of times erosion and dilation are applied during the complex
operation.

Discussion

The function cvMorphologyEx performs advanced morphological transformations.
The function uses cvErode and cvDilate to perform more complex operations. The
parameter temp must be non-NULL and point to the image of the same size and same
format as src and dst when op is CV_MOP_GRADIENT, or when op is CV_MOP_TOPHAT or
op is CV_MOP_BLACKHAT and src is equal to dst (in-place operation).

OpenCV Reference Manual Morphology 8

8-10

9-1

9Background Subtraction

The chapter describes basic functions that enable building statistical model of
background for its further subtraction.

Overview
In this chapter the term "background" stands for a set of motionless image pixels, that
is, pixels that do not belong to any object, moving in front of the camera. This
definition can vary if considered in other techniques of object extraction. For example,
if a depth map of the scene is obtained, background can be determined as parts of scene
that are located far enough from the camera.

The simplest background model assumes that every background pixel brightness
varies independently, according to normal distribution.The background characteristics
can be calculated by accumulating several dozens of frames, as well as their squares.
That means finding a sum of pixel values in the location S(x,y) and a sum of squares of
the values Sq(x,y) for every pixel location.

Then mean is calculated as , where N is the number of the frames
collected, and

standard deviation as .

After that the pixel in certain pixel location in certain frame is regarded as belonging to
a moving object if condition is met, where C is a certain
constant. If C is equal to 3, it is the well-known "three sigmas" rule. To obtain that
background model, one should put any objects away from camera for a few seconds,
so that a whole image from camera represents subsequent background observation.

m x y),(
S x y),(

N
--------------=

σ x y,() sqrt
Sq x y,()

N

S x(y),
N

-------------- 
 

2


–

=

abs m x y),(p x y),() Cσ x y),(>–(

OpenCV Reference Manual Background Subtraction 9

9-2

There can be improvement of the simplest technique that was just described. First, it is
reasonable to provide adaptation of background differencing model to changes of
lighting conditions and background scenes, e.g., when camera moves or some object is
passing behind the front object. The simple accumulation in order to calculate mean
brightness can be replaced with running average. Also, several techniques can be used
to identify moving parts of the scene and exclude them in the course of background
information accumulation. The techniques include change detection, e.g., via
cvAbsDiff with cvThreshold, optical flow and, probably, others.

The functions from the chapter are simply the basic functions for background
information accumulation and they can not make up the complete background
differencing module alone.

Reference

cvAcc
Adds frame to accumulator.

void cvAcc(IplImage* img, IplImage* sum, IplImage* mask=0);

img Input image.

sum Accumulating image.

mask Mask image.

Discussion

The function cvAcc adds a new image img to the accumulating sum sum. If mask is
not NULL, it specifies what accumulator pixels are affected.

OpenCV Reference Manual Background Subtraction 9

9-3

cvSquareAcc
Calculates square of source image and adds it to
destination image.

void cvSquareAcc(IplImage* img, IplImage* sqSum, IplImage* mask=0);

img Input image.

sqSum Accumulating image.

mask Mask image.

Discussion

The function cvSquareAcc adds the square of the new image img to the accumulating
sum sqSum of image squares. If mask is not NULL, it specifies what accumulator pixels
are affected.

cvMultiplyAcc
Calculates product of two input images and adds
it to destination image.

void cvMultiplyAcc(IplImage* imgA, IplImage* imgB, IplImage* acc, IplImage*
mask=0);

imgA First input image.

imgB Second input image.

acc Accumulating image.

mask Mask image.

OpenCV Reference Manual Background Subtraction 9

9-4

Discussion

The function cvMultiplyAcc multiplies input imgA by imgB and adds the result to the
accumulating sum acc of the image products. If mask is not NULL, it specifies what
accumulator pixels are affected.

cvRunningAvg
Calculates weighted sum of two images.

void cvRunningAvg(IplImage* imgY, IplImage* imgU, double alpha,
IplImage* mask=0)

imgY Input image.

imgU Destination image.

alpha Weight of input image.

mask Mask image.

Discussion

The function cvRunningAvg calculates weighted sum of two images. Once a
statistical model is available, there is often a need to update the value slowly to account
for slowly changing lighting, etc. This can be done by using a simple adaptive filter:

,

where (imgU) is the updated value, is an averaging constant, typically set to
a small value such as 0.05, and y (imgY) is a new observation at time t. When the
function is applied to a frame sequence, the result is called “the running average of the
sequence”.

If mask is not NULL, it specifies what accumulator pixels are affected.

µt αy 1 α–()µt 1–+=

µ 0 α 1≤ ≤

10-1

10Distance Transform

This chapter describes the distance transform functions group.

Overview
Distance transform is used for calculating the distance to an object. The input is an
image with feature and non-feature pixels. The function labels every non-feature pixel
in the output image with a distance to the closest feature pixel. Feature pixels are
marked with zero. Distance transform is used for a wide variety of subjects including
skeleton finding and shape analysis. The [Borgefors86] two-pass algorithm is
implemented.

Reference

cvDistTransform
Calculates distance to closest zero pixel for all
non-zero pixels of source image.

void cvDistTransform (IplImage* src, IplImage* dst, CvDisType disType,
CvDisMaskType maskType, float* mask);

src Source image.

dst Output image with calculated distances.

disType Type of distance; can be CV_DIST_L1, CV_DIST_L2, CV_DIST_C or
CV_DIST_USER.

OpenCV Reference Manual Distance Transform 10

10-2

maskType Size of distance transform mask; can be CV_DIST_MASK_3x3 or
CV_DIST_MASK_5x5.

mask Pointer to the user-defined mask used with the distance type
CV_DIST_USER.

Discussion

The function cvDistTransform approximates the actual distance from the closest
zero pixel with a sum of fixed distance values: two for 3x3 mask and three for 5x5
mask. Figure 10-1 shows the result of the distance transform of a 7x7 image with a
zero central pixel.

Figure 10-1 3x3 Mask

This example corresponds to a 3x3 mask; in case of user-defined distance type the user
sets the distance between two pixels, that share the edge, and the distance between the
pixels, that share the corner only. For this case the values are 1 and 1.5
correspondingly. Figure 10-2 shows the distance transform for the same image, but for
a 5x5 mask. For the 5x5 mask the user sets the additional distance that is the distance

4.5 4 3.5 3 3.5 4 4.5

4 3 2.5 2 2.5 3 4

3.5 2.5 1.5 1 1.5 2.5 3.5

3 2 1 0 1 2 3

3.5 2.5 1.5 1 1.5 2.5 3.5

4 3 2.5 2 2.5 3 4

4.5 4 3.5 3 3.5 4 4.5

OpenCV Reference Manual Distance Transform 10

10-3

between pixels corresponding to the chess knight move. In this example the additional
distance is equal to 2. For CV_DIST_L1, CV_DIST_L2, and CV_DIST_C the optimal
precalculated distance values are used.

Figure 10-2 5x5 Mask

4.5 3.5 3 3 3 3.5 4

3.5 3 2 2 2 3 3.5

3 2 1.5 1 1.5 2 3

3 2 1 0 1 2 3

3 2 1.5 1 1.5 2 3

3.5 3 2 2 2 3 3.5

4 3.5 3 3 3 3.5 4

OpenCV Reference Manual Distance Transform 10

10-4

11-1

11Threshold Functions

This chapter describes threshold functions group.

Overview
Thresholding functions are used mainly for two purposes:

— masking out some pixels that do not belong to a certain range, for example, to
extract blobs of certain brightness or color from the image;

— converting grayscale image to bi-level or black-and-white image.

Usually, the resultant image is used as a mask or as a source for extracting higher-level
topological information, e.g., contours (see Active Contours), skeletons (see Distance
Transform), lines (see Hough Transform functions), etc.

Generally, threshold is a determined function t(x,y) on the image:

The predicate function f(x,y,p(x,y)) is typically represented as g(x,y) < p(x,y)

< h(x,y), where g and h are some functions of pixel value and in most cases they are
simply constants.

There are two basic types of thresholding operations. The first type uses a predicate
function, independent from location, that is, g(x,y) and h(x,y)are constants over the
image. However, for concrete image some optimal, in a sense, values for the constants
can be calculated using image histograms (see Histogram) or other statistical criteria

t x y,()
A p x y,()(), f x y p x y,(), ,() true=

B p x y,()(), f x y p x y,(), ,() false=



=

OpenCV Reference Manual Threshold Functions 11

11-2

(see Image Statistics). The second type of the functions chooses g(x,y) and
h(x,y)depending on the pixel neigborhood in order to extract regions of varying
brightness and contrast.

The functions, described in this chapter, implement both these approaches. They
support single-channel images with depth IPL_DEPTH_8U, IPL_DEPTH_8S or
IPL_DEPTH_32F and can work in-place.

Reference

cvAdaptiveThreshold
Provides adaptive thresholding binary image.

void cvAdaptiveThreshold(IplImage* src, IplImage* dst, double max,
CvAdaptiveThreshMethod method, CvThreshType type, double* parameters);

src Source image.

dst Destination image.

max Max parameter, used with the types CV_THRESH_BINARY and
CV_THRESH_BINARY_INV only.

method Method for the adaptive threshold definition; now
CV_STDDEF_ADAPTIVE_THRESH only.

type Thresholding type; must be one of

• CV_THRESH_BINARY, ;

• CV_THRESH_BINARY_INV, ;

• CV_THRESH_TOZERO, ;

• CV_THRESH_TOZERO_INV, .

parameters Pointer to the list of method-specific input parameters. For the
method CV_STDDEF_ADAPTIVE_THRESH the value parameters[0] is
the size of the neighborhood: 1-(3x3), 2-(5x5), or 3-(7x7), and
parameters[1] is the value of the minimum variance.

val val Thresh?MAX:0>()=

val val Thresh?0:MAX>()=

val val Thresh?val:0>()=

val val Thresh?0:val>()=

OpenCV Reference Manual Threshold Functions 11

11-3

Discussion

The function cvAdaptiveThreshold calculates the adaptive threshold for every input
image pixel and segments image. The algorithm is as follows.

Let be the input image. For every pixel the mean and
variance are calculated as follows:

, ,

where is the neighborhood.

Local threshold for pixel is for , and for
, where is the minimum variance value. If , then ,
, where and for .

Output segmented image is calculated as in the function cvThreshold.

cvThreshold
Thresholds binary image.

void cvThreshold(IplImage* src, IplImage* dst, float thresh, float maxvalue,
CvThreshType type);

src Source image.

dst Destination image; can be the same as the parameter src.

thresh Threshold parameter.

maxvalue Maximum value; parameter, used with threshold types
CV_THRESH_BINARY, CV_THRESH_BINARY_INV, and
CV_THRESH_TRUNC.

type Thresholding type; must be one of

• CV_THRESH_BINARY, ;

fij{ } 1 i l 1 j J≤ ≤,≤ ≤, i j, mij
vij

mij 1 2⁄ p fi s j t+,+

t p–=

p

∑
s p–=

p

∑⋅= vij 1 2⁄ p fi s j t+,+ mij–

t p–=

p

∑
s p–=

p

∑⋅=

p p×

i j, tij mij vij+= vij vmin> tij tij 1–=

vij vmin≤ vmin j 1= tij ti 1 j,–=

t11 ti0j0
= vi0j0

vmin> vij vmin≤ i i0<() i((∨ i0) j j0))<(∧=

val val thresh maxvalue:0>()=

OpenCV Reference Manual Threshold Functions 11

11-4

• CV_THRESH_BINARY_INV, ;

• CV_THRESH_TRUNC, ;

• CV_THRESH_TOZERO, ;

• CV_THRESH_TOZERO_INV, .

Discussion

The function cvThreshold applies fixed-level thresholding to grayscale image. The
result is either a grayscale image or a bi-level image. The former variant is typically
used to remove noise from the image, while the latter one is used to represent a
grayscale image as composition of connected components and after that build contours
on the components via the function cvFindContours. Figure 11-1 illustrates meanings
of different threshold types:

val val thresh 0:maxvalue>()=

val val thresh?thresh:maxvalue>()=

val val thresh val:0>()=

val val thresh 0:val>()=

OpenCV Reference Manual Threshold Functions 11

11-5

Figure 11-1 Meanings of Threshold Types

OpenCV Reference Manual Threshold Functions 11

11-6

12-1

12Flood Fill

This chapter describes the function performing flood filling of a connected domain.

Overview
Flood filling means that a group of connected pixels with close values is filled with, or
is set to, a certain value. The flood filling process starts with some point, called “seed”,
that is specified by function caller and then it propagates until it reaches the image ROI
boundary or cannot find any new pixels to fill due to a large difference in pixel values.
For every pixel that is just filled the function analyses:

• 4 neighbors, that is, excluding the diagonal neighbors; this kind of connectivity is
called 4-connectivity, or

• 8 neighbors, that is, including the diagonal neighbors; this kind of connectivity is
called 8-connectivity.

The parameter connectivity of the function specifies the type of connectivity.

The function can be used for:

• segmenting a grayscale image into a set of uni-color areas,

• marking each connected component with individual color for bi-level images.

The function supports single-channel images with the depth IPL_DEPTH_8U or
IPL_DEPTH_32F.

OpenCV Reference Manual Flood Fill 12

12-2

Reference

cvFloodFill
Makes flood filling of image connected domain.

void cvFloodFill(IplImage* img, CvPoint seedPoint, double newVal, double
loDiff, double upDiff, CvConnectedComp* comp, int connectivity=4);

img Input image; repainted by the function.

seedPoint Coordinates of the seed point inside the image ROI.

newVal New value of repainted domain pixels.

loDiff Maximal lower difference between the values of pixel belonging to
the repainted domain and one of the neighboring pixels to identify
the latter as belonging to the same domain.

upDiff Maximal upper difference between the values of pixel belonging to
the repainted domain and one of the neighboring pixels to identify
the latter as belonging to the same domain.

comp Pointer to structure the function fills with the information about the
repainted domain.

connectivity Type of connectivity used within the function. If it is 4, which is
default value, the function tries out four neighbors of the current
pixel, otherwise the function tries out all the 8 neighbors.

Discussion

The function cvFloodFill fills the seed pixel neighbrhoods inside which all pixel
values are close to each other. The pixel is considered to belong to the repainted
domain if its value v meets the following conditions:

,v0 dlw v v0 dup+≤ ≤–

OpenCV Reference Manual Flood Fill 12

12-3

where is the value of at least one of the current pixel neighbors, which already
belongs to the repainted domain. The function checks 4-connected neighbrhoods of
each pixel, that is, its side neighbors.

v0

OpenCV Reference Manual Flood Fill 12

12-4

13-1

13Camera Calibration

This chapter describes camera calibration and undistortion functions.

Overview

Camera Parameters

Camera calibration functions are used for calculating intrinsic and extrinsic camera
parameters.

Camera parameters are the numbers describing a particular camera configuration. The
intrinsic camera parameters are those that specify the camera characteristics proper;
these parameters include the focal length, that is, the distance between the camera lens
and the image plane, the location of the image center in pixel coordinates, the effective
pixel size, and the radial distortion coefficient of the lens. The extrinsic camera
parameters describe the spatial relationship between the camera and the world; they
are the rotation matrix and translation vector specifying the transformation between
the camera and world reference frames.

A camera is modeled by the usual pinhole: the relationship between a 3D point and
its image projection is given by the formula

,

where is the camera intrinsic matrix:

,

where are coordinates of the principal point;

M

m

m A Rt[]M=

A

A

fx 0 cx

0 fy cy

0 0 1

=

cx cy,()

OpenCV Reference Manual Camera Calibration 13

13-2

are the focal lengths by the axes x and y;

are extrinsic parameters, the rotation matrix and translate vector that relates
the world coordinate system to the camera coordinate system:

, .

Camera usually exhibits significant lens distortion, especially radial distortion. The
distortion has 4 coefficients: k1, k2, k3, k4.

Use the function cvUnDistortInit to correct the camera lens distortion (see
Figure 13-2).

The following algorithm was used for camera calibration:

1. Find homography for all points on series of images.

2. Initialize intrinsic parameters; distortion is set to 0.

3. Find extrinsic parameters for each image of pattern.

4. Make main optimization by minimizing error of projection points with all
parameters.

Homography

is the matrix of homography.

Without any loss of generality, the model plane may be assumed to be on of the
world coordinate system. If denotes the ith column of the rotation matrix , then:

.

fx fy,()

R t,() R t

R

r11 r12 r13

r21 r22 r23

r31 r32 r33

= t

t1

t2

t3

=

H

h11 h12 h13

h21 h22 h23

h31 h32 h33

=

Z 0=

ri R

s
u

v

l

A r1 r2 r3 t[]

X

Y

0

1

A r1 r2 t[]
X

Y

1

= = =

OpenCV Reference Manual Camera Calibration 13

13-3

By abuse of notation, is still used to denote a point on the model plane, but
, since Z is always equal to 0. In its turn, . Therefore, a model

point M and its image m are related by the homography :

with .

As is clear, the 3x3 matrix is defined without specifying a scalar factor.

Pattern

Calibration may be made using pattern (see Figure 13-1). Pattern has black and white
squares on white background. The geometry of pattern must be known. The pattern
may be printed using a high-quality printer and put on a glass substrate.

Figure 13-1 Pattern

Lens Distortion

Any camera usually exhibits significant lens distortion, especially radial distortion.
The distortion is described by 4 coefficients: two radial distortion coefficients k1, k2,
and two tangential ones p1, p2.

Let be true pixel image coordinates, that is, coordinates with ideal projection,
and be corresponding real observed (distorted) image coordinates. Similarly,

are ideal (distortion-free) and are real (distorted) image physical
coordinates. Taking into account two expansion terms gives the following:

M

M X Y,[]T= M̃ X Y 1, ,[]T=

H

sm̃ HM̃= H A r1 r2 t[]=

H

u v,()
ũ ṽ,()

x y,() x̃ ỹ,()

OpenCV Reference Manual Camera Calibration 13

13-4

where r2 = x2 + y2. Second addends in the above relations describe radial distortion
and the third ones - tangential. The center of the radial distortion is the same as the
principal point. If and , where cx, cy, fx, and fy are components
of the camera intrinsic matrix, then:

The latter relations are the basic ones for the group of undistortion functions.

This group consists of three functions: cvUnDistortOnce, cvUnDistortInit, and
cvUnDistort. If only a single image is required to be corrected, cvUnDistortOnce
function may be used. When dealing with a number of images possessing similar
parameters, e.g., a sequence of video frames, it is better to use the other two functions.
In this case the following sequence of actions must take place. First allocate data array
in the main function; length of this array must be N or 3N elements, where
— full number of pixels (see Discussion after cvUnDistortInit description). Then
call the function cvUnDistortInit that fills the data array. After that call the
cvUnDistortInit function for each frame inside the cycle.

x̃ x x k1r
2

k2r
4] 2p1xy p2 r

2
2x

2)+(+[]++[+=

ỹ y y k1r
2

k2r
4] 2p2xy p2 r

2
2y

2)+(+[] ,++[+=

ũ u0 α x̃+= ṽ v0 βỹ+=

ũ u u cx–() k1r
2

k2r
4

2p1y p2
r

2

x
------ 2x+ 
 + + ++=

ṽ v v cy–() k1r
2

k2r
4

2p2x p1
r

2

y
------ 2y+ 
 + + + .+=

N Nx Ny⋅=

OpenCV Reference Manual Camera Calibration 13

13-5

Figure 13-2 Correcting Lens Distortion

Rotation Matrix and Rotation Vector

Rodrigues conversion function cvRodrigues is a method to convert rotation vector to
rotation matrix or vice versa.

Reference

cvCalibrateCamera
Calibrates camera with single precision.

void cvCalibrateCamera(int numImages, int* numPoints, CvSize imageSize,
CvPoint2D32f* imagePoints32f, CvPoint3D32f* objectPoints32f, CvVect32f
distortion32f, CvMatr32f cameraMatrix32f, CvVect32f transVects32f,
CvMatr32f rotMatrs32f, int useIntrinsicGuess);

numImages Number of images.

numPoints Array of the number of points in each image.

imageSize Size of image.

Image with Lens Distortion Image with Corrected Lens Distortion

OpenCV Reference Manual Camera Calibration 13

13-6

imagePoints32f Pointer to the images.

objectPoints32f Pointer to the pattern.

distortion32f Array of four distortion coefficients found.

cameraMatrix32f Camera matrix found.

transVects32f Array of translate vectors for each pattern position in the
image.

rotMatrs32f Array of the rotation matrix for each pattern position in the
image.

useIntrinsicGuess Intrinsic guess. If equal to 1, intrinsic guess is needed.

Discussion

The function cvCalibrateCamera calculates the camera parameters using
information points on the pattern object and pattern object images.

cvCalibrateCamera_64d
Calibrates camera with double precision.

void cvCalibrateCamera_64d(int numImages, int* numPoints, CvSize imageSize,
CvPoint2D64d* imagePoints, CvPoint3D64d* objectPoints, CvVect64d
distortion, CvMatr64d cameraMatrix, CvVect64d transVects, CvMatr64d
rotMatrs, int useIntrinsicGuess);

numImages Number of images.

numPoints Array of the number of points in each image.

imageSize Size of the image.

imagePoints Pointer to the images.

objectPoints Pointer to the pattern.

distortion Distortion coefficients found.

cameraMatrix Camera matrix found.

OpenCV Reference Manual Camera Calibration 13

13-7

transVects Array of translate vectors for each pattern position on the
image.

rotMatrs Array of the rotation matrix for each pattern position on the
image.

useIntrinsicGuess Intrinsic guess. If equal to 1, intrinsic guess is needed.

Discussion

The function cvCalibrateCamera_64d is basically the same as the function
cvCalibrateCamera, but uses double precision.

cvFindExtrinsicCameraParams
Finds extrinsic camera parameters for pattern.

void cvFindExtrinsicCameraParams(int numPoints, CvSize imageSize,
CvPoint2D32f* imagePoints32f, CvPoint3D32f* objectPoints32f, CvVect32f
focalLength32f, CvPoint2D32f principalPoint32f, CvVect32f distortion32f,
CvVect32f rotVect32f, CvVect32f transVect32f);

NumPoints Number of points.

ImageSize Size of image.

imagePoints32f Pointer to the image.

objectPoints32f Pointer to the pattern.

focalLength32f Focal length.

principalPoint32f Principal point.

distortion32f Distortion.

rotVect32f Rotation vector.

transVect32f Translate vector.

OpenCV Reference Manual Camera Calibration 13

13-8

Discussion

The function cvFindExtrinsicCameraParams finds the extrinsic parameters for
pattern.

cvFindExtrinsicCameraParams_64d
Finds extrinsic camera parameters for pattern
with double precision.

void cvFindExtrinsicCameraParams_64d(int numPoints, CvSize imageSize,
CvPoint2D64d* imagePoints, CvPoint3D64d* objectPoints, CvVect64d
focalLength, CvPoint2D64d principalPoint, CvVect64d distortion, CvVect64d
rotVect, CvVect64d transVect);

NumPoints Number of points.

ImageSize Size of image.

imagePoints Pointer to the image.

objectPoints Pointer to the pattern.

focalLength Focal length.

principalPoint Principal point.

distortion Distortion.

rotVect Rotation vector.

transVect Translate vector.

Discussion

The function cvFindExtrinsicCameraParams_64d finds the extrinsic parameters for
pattern with double precision.

OpenCV Reference Manual Camera Calibration 13

13-9

cvRodrigues
Converts rotation matrix to rotation vector and
vice versa with single precision.

void cvRodrigues(CvMatr32f rotMatr32f, CvVect32f rotVect32f, CvMatr32f
Jacobian32f, CvRodriguesType convType);

rotMatr32f Rotation matrix.

rotVect32f Rotation vector.

Jacobian32f Jacobian matrix 3 X 9.

ConvType Type of conversion; must be CV_RODRIGUES_M2V for converting the
matrix to the vector or CV_RODRIGUES_V2M for converting the vector
to the matrix.

Discussion

The function cvRodrigues converts the rotation matrix to the rotation vector or vice
versa.

cvRodrigues_64d
Converts rotation matrix to rotation vector and
vice versa with double precision.

void cvRodrigues_64d(CvMatr64d rotMatr, CvVect64d rotVect, CvMatr64d
Jacobian, CvRodriguesType convType);

rotMatr Rotation matrix.

rotVect Rotation vector.

Jacobian Jacobian matrix 3 X 9.

OpenCV Reference Manual Camera Calibration 13

13-10

ConvType Type of conversion must be CV_RODRIGUES_M2V for converting the
matrix to the vector or CV_RODRIGUES_V2M for converting the vector
to the matrix.

Discussion

The function cvRodrigues_64d converts the rotation matrix to the rotation vector or
vice versa with double precision.

cvUnDistortOnce
Corrects camera lens distortion.

void cvUnDistortOnce (IplImage* srcImage, IplImage* dstImage, float*
intrMatrix, float* distCoeffs, int interpolate=1);

srcImage Source (distorted) image.

dstImage Destination (corrected) image.

intrMatrix Matrix of the camera intrinsic parameters.

distCoeffs Vector of the 4 distortion coefficients k1, k2, p1 and p2 .

interpolate Interpolation toggle (optional).

Discussion

The function cvUnDistortOnce corrects camera lens distortion using known matrix
of the camera intrinsic parameters and distortion coefficients. It is used if a single
image is to be corrected.

Preliminarily, the function cvCalibrateCamera calculates matrix of the camera
intrinsic parameters and distortion coefficients k1, k2, p1 and p2 .

If interpolate = 0, inter-pixel interpolation is disabled; otherwise default bilinear
interpolation is used.

OpenCV Reference Manual Camera Calibration 13

13-11

cvUnDistortInit
Calculates arrays of distorted points indices and
interpolation coefficients.

void cvUnDistortInit (IplImage* srcImage, float* IntrMatrix, float*
distCoeffs, int* data, int interpolate=1);

srcImage Source (distorted) image.

intrMatrix Matrix of the camera intrinsic parameters.

distCoeffs Vector of the 4 distortion coefficients k1, k2, p1 and p2 .

data Distortion data array.

interpolate Interpolation toggle (optional).

Discussion

The function cvUnDistortInit calculates arrays of distorted points indices and
interpolation coefficients using known matrix of the camera intrinsic parameters and
distortion coefficients. It must be used before calling the function cvUnDistort.

Preliminarily, the function cvCalibrateCamera calculates matrix of the camera
intrinsic parameters and distortion coefficients k1, k2, p1 and p2 .

The data array must be allocated in the main function before use of the function
cvUnDistortInit. If interpolate = 0, its length must be size.width*size.height
elements; otherwise 3*size.width*size.height elements.

If interpolate = 0, inter-pixel interpolation is disabled; otherwise default bilinear
interpolation is used.

OpenCV Reference Manual Camera Calibration 13

13-12

cvUnDistort
Corrects camera lens distortion.

void cvUnDistort (IplImage* srcImage, IplImage* dstImage, int* data, int
interpolate=1);

srcImage Source (distorted) image.

dstImage Destination (corrected) image.

data Distortion data array.

interpolate Interpolation toggle (optional).

Discussion

The function cvUnDistort corrects camera lens distortion using previously
calculated arrays of distorted points indices and undistortion coefficients. It is used if a
sequence of frames must be corrected.

Preliminarily, the function cvUnDistortInit calculates the array data .

If interpolate = 0, then inter-pixel interpolation is disabled; otherwise bilinear
interpolation is used. In the latter case the function acts slower, but quality of the
corrected image increases.

cvFindChessBoardCornerGuesses
Finds approximate positions of internal corners
of the chessboard.

int cvFindChessBoardCornerGuesses(IplImage* img, IplImage* thresh, CvSize
etalonSize, CvPoint2D32f* corners, int *cornerCount);

img Source chessboard view; must have depth of IPL_DEPTH_8U.

thresh Temporary image of the same size and format as the source image.

OpenCV Reference Manual Camera Calibration 13

13-13

etalonSize Number of inner corners per chessboard row and column. Width
(number of columns) must be less or equal to height (number of
rows). For chessboard see Figure 13-1.

corners Pointer to the corner array found.

cornerCount Signed value whose absolute value is a number of corners found. A
positive number means that a whole chessboard has been found and a
negative number means that not all the corners have been found.

Discussion

The function cvFindChessBoardCornerGuesses attempts to determine whether the
input image is a chessboard pattern and locate internal chessboard corners. The
function returns non-zero value if all the corners have been found and they have been
placed in a certain order (row by row, left to right in every row), otherwise, if the
function fails to find all corners or reorder them, the function returns 0. For example, a
simple chessboard has 8x8 squares and 7x7 internal corners, that is, points, where the
squares are tangent. The word “approximate” in the above description means that the
corner coordinates found may differ from the actual coordinates by a couple of pixels.
To get more precise coordinates, the user may use the function cvFindCornerSubPix.

OpenCV Reference Manual Camera Calibration 13

13-14

14-1

14View Morphing

This chapter describes functions for morphing views from two cameras.

Overview
The View Morphing technique is used to get image from a virtual camera that can be
placed between two real cameras. The input for View Morphing algorithms are two
images from real cameras and information about correspondence between regions in
the two images. The output of the algorithms is a synthesized image - "view from
virtual camera".

This section addresses the problem of synthesizing images of real scenes under
three-dimensional transformation in viewpoint and appearance. Solving this problem
enables interactive viewing of remote scenes on a computer, in which a user can move
the virtual camera through the environment. The point to make here is that a
three-dimensional scene transformation can be rendered on a video display device by
applying simple transformation to a set of basis images of the scene. The virtue of
these transformations is that they operate directly on the image and recover only the
scene information that is required to accomplish the desired effect. Consequently, the
transformations are applicable in a situation when accurate three-dimensional models
are difficult or impossible to obtain.

A central topic is the problem of view synthesis, that is, rendering images of a real
scene from different camera viewpoints by processing a set of basis images.

Algorithm
1. Find fundamental matrix, for example, using correspondence points in images.

2. Find scanlines for each image.

3. Warp images across scanlines.

OpenCV Reference Manual View Morphing 14

14-2

4. Find correspondence of warped images.

5. Morph warped images across position of virtual camera.

6. Unwarp image.

7. Delete moire from resulting image.

Figure 14-1 Original Images

Figure 14-2 Correspondence Points

Original Image from Left Camera Original Image from Right Camera

Correspondence Points on Left Image Correspondence Points on Right Image

OpenCV Reference Manual View Morphing 14

14-3

Figure 14-3 Scan Lines

Figure 14-4 Moire in Morphed Image

Some Scanlines on Left Iimage Some Scanlines on Right Image

OpenCV Reference Manual View Morphing 14

14-4

Figure 14-5 Resulting Morphed Image

Morphed Image from Virtual Camera with Deleted Moire.

Using Functions for View Morphing Algorithm
1. Find the fundamental matrix using the correspondence points in the two

images of cameras by calling the function cvFindFundamentalMatrix.

2. Find the number of scanlines in the images for the given fundamental matrix
by calling the function cvFindFundamentalMatrix with null pointers to the
scanlines.

3. Allocate enough memory for:

— scanlines in the first image, scanlines in the second image, scanlines in the
virtual image (for each numscan*2*4*sizeof(int));

— lengths of scanlines in the first image, lengths of scanlines in the second
image, lengths of scanlines in the virtual image (for each
numscan*2*4*sizeof(int));

— buffer for the prewarp first image, the second image, the virtual image (for
each width*height*2*sizeof(int));

— data runs for the first image and the second image (for each
width*height*4*sizeof(int));

— correspondence data for the first image and the second image (for each
width*height*2*sizeof(int));

OpenCV Reference Manual View Morphing 14

14-5

— numbers of lines for the first and second images (for each
width*height*4*sizeof(int)).

4. Find scanlines coordinates by calling the function
cvFindFundamentalMatrix.

5. Prewarp the first and second images using scanlines data by calling the
function cvPreWarpImage.

6. Find runs on the first and second images scanlines by calling the function
cvFindRuns.

7. Find correspondence information by calling the function
cvDynamicCorrespondMulti.

8. Find coordinates of scanlines in the virtual image for the virtual camera
position alpha by calling the function cvMakeAlphaScanlines.

9. Morph the prewarp virtual image from the first and second images using
correspondence information by calling the function cvMorphEpilinesMulti.

10. Postwarp the virtual image by calling the function cvPostWarpImage.

11. Delete moire from the resulting virtual image by calling the function
cvDeleteMoire.

Reference

cvFindFundamentalMatrix
Finds fundamental matrix from correspondence
pair points in two images.

void cvFindFundamentalMatrix(int* points1, int* points2, int numpoints, int
method, CvMatrix3* matrix);

points1 Pointer to the array of correspondence points in the first image.

points2 Pointer to the array of correspondence points in the second image.

numpoints Number of point pairs.

OpenCV Reference Manual View Morphing 14

14-6

method Method for finding the fundamental matrix; currently not used, must
be zero.

matrix Resulting fundamental matrix.

Discussion

The function cvFindFundamentalMatrix finds the fundamental matrix from
correspondence pair points in two images. If the number of points is too small or the
point positions are not good, that is, they lie very close or on the same planar surface,
the matrix is not found correctly.

cvMakeScanlines
Calculates scanlines coordinates for two cameras
by fundamental matrix.

void cvMakeScanlines(CvMatrix3* matrix, CvSize imgSize, int* scanlines_1,
int* scanlines_2, int* lens_1, int* lens_2, int* numlines);

matrix Fundamental matrix.

imgSize Size of the image.

scanlines_1 Pointer to the array of calculated scanlines of the first image.

scanlines_2 Pointer to the array of calculated scanlines of the second image.

lens_1 Pointer to the array of calculated lengths (in pixels) of the first image
scanlines.

lens_2 Pointer to the array of calculated lengths (in pixels) of the second
image scanlines.

numlines Pointer to the variable that stores the number of scanlines.

Discussion

The function cvMakeScanlines finds coordinates of scanlines for two images.

OpenCV Reference Manual View Morphing 14

14-7

This function returns the number of scanlines. The function does nothing except
calculating the number of scanlines if the pointers scanlines_1 or scanlines_2 are
equal to zero.

Memory for all arrays must be allocated before calling this function. Let numscan be
the number of scanlines. Memory must be allocated for:

1. Scanlines in the first image, scanlines in the second image, and scanlines in the
virtual image (for each numscan*2*4*sizeof(int)).

2. Lengths of scanlines in the first image, lengths of scanlines in the second
image, and lengths of scanlines in the virtual image (for each
numscan*2*4*sizeof(int)).

3. Buffer for the prewarp of first image, second image, and virtual image (for
each width*height*2*sizeof(int)).

4. Data runs for the first and second images (for each
width*height*4*sizeof(int)).

5. Correspondence data for the first image and the second image (for each
width*height*2*sizeof(int)).

cvPreWarpImage
Finds prewarp of given image.

void cvPreWarpImage(int numLines, IplImage* img, uchar* dst, int* dstNums,
int* scanlines);

numLines Number of scanlines for the image.

img Image to prewarp.

dst Data to store for the prewarp image.

dstNums Pointer to the array of lengths of scanlines.

scanlines Pointer to the array of coordinates of scanlines.

OpenCV Reference Manual View Morphing 14

14-8

Discussion

The function cvPreWarpImage finds prewarp of the given image across scanlines.
Memory must be allocated before calling this function. Memory size is
max(width,height)*numscanlines*size(char)*3.

cvFindRuns
Finds runs in two prewarp images.

void cvFindRuns(int numLines, uchar* prewarp_1, uchar* prewarp_2, int*
lineLens_1, int* lineLens_2, int* runs_1, int* runs_2, int* numRuns_1,
int* numRuns_2);

numLines Number of scanlines.

prewarp_1 Prewarp data of the first image.

prewarp_2 Prewarp data of the second image.

lineLens_1 Array of lengths of scanlines in the first image.

lineLens_2 Array of lengths of scanlines in the second image.

runs_1 Array of runs in each scanline in the first image.

runs_2 Array of runs in each scanline in the second image.

numRuns_1 Array of numbers of runs in each scanline in the first image.

numRuns_2 Array of numbers of runs in each scanline in the second image.

Discussion

The function cvFindRuns finds runs in the two prewarp images. Memory must be
allocated before calling this function. Memory size for one array of runs is
max(width,height)*numscanlines*3*sizeof(int).

OpenCV Reference Manual View Morphing 14

14-9

cvDynamicCorrespondMulti
Finds correspondence between two sets of runs of
two warped images.

void cvDynamicCorrespondMulti(int lines, int* first, int* firstRuns, int*
second, int* secondRuns, int* firstCorr, int* secondCorr);

lines Number of scanlines.

first Array of runs of the first image.

firstRuns Array of numbers of runs in each scanline of the first image.

second Array of runs of the second image.

secondRuns Array of numbers of runs in each scanline of the second image.

firstCorr Array of find correspondence information for the first image.

secondCorr Array of find correspondence information for the second image.

Discussion

The function cvDynamicCorrespondMulti finds correspondence between two sets of
runs of two images. The function finds runs in the two prewarp images. Memory must
be allocated before calling this function. Memory size for one array of correspondence
information is max(width,height)*numscanlines*3*sizeof(int).

cvMakeAlphaScanlines
Finds coordinates of scanlines for image for
virtual camera position.

void cvMakeAlphaScanlines(int* scanlines_1, int* scanlines_2, int*
scanlinesA, int* lens, int numlines, float alpha);

scanlines_1 Pointer to the array of the first scanlines.

scanlines_2 Pointer to the array of the second scanlines.

OpenCV Reference Manual View Morphing 14

14-10

scanlinesA Pointer to the array of the scanlines found in the virtual image.

lens Pointer to the array of lengths of the scanlines found in the virtual
image.

numlines Number of scanlines.

alpha Position of virtual camera (0.0 - 1.0).

Discussion

The function cvMakeAlphaScanlines finds coordinates of scanlines for the virtual
camera with the given camera position.

Memory must be allocated before calling this function. Memory size for the array of
correspondence runs is numscanlines*2*4*sizeof(int)). Memory size for the array
of the scanline lengths is numscanlines*2*4*sizeof(int).

cvMorphEpilinesMulti
Morphs two prewarp images using
corresponding information.

void cvMorphEpilinesMulti(int lines, uchar* firstPix, int* firstNum, uchar*
secondPix, int* secondNum, uchar* dstPix, int* dstNum, float alpha, int*
first, int* firstRuns, int* second, int* secondRuns, int* firstCorr, int*
secondCorr);

lines Number of scanlines in the prewarp image.

firstPix Pointer to the first prewarp image.

firstNum Pointer to the array of numbers of points in each scanline in the first
image.

secondPix Pointer to the second prewarp image.

secondNum Pointer to the array of numbers of points in each scanline in the
second image.

dstPix Pointer to the resulting morphed warped image.

dstNum Pointer to the array of numbers of points in each line.

OpenCV Reference Manual View Morphing 14

14-11

alpha Virtual camera position (0.0 - 1.0).

first First sequence of runs.

firstRuns Pointer to the number of runs in each scanline in the first image.

second Second sequence of runs.

secondRuns Pointer to the number of runs in each scanline in the second image.

firstCorr Pointer to the array of correspondence information found for the first
runs.

secondCorr Pointer to the array of correspondence information found for the
second runs

Discussion

The function cvMorphEpilinesMulti morphs two prewarp images using
corresponding information.

cvPostWarpImage
Finds postwarp for given image data.

void cvPostWarpImage(int numLines, uchar* src, int* srcNums, IplImage* img,
int* scanlines);

numLines Number of scanlines.

src Pointer to the prewarp image virtual image.

srcNums Number of scanlines in the image.

img Resulting unwarp image.

scanlines Pointer to the array of scanlines data.

Discussion

The function cvPostWarpImage finds postwarp for the given image data.

OpenCV Reference Manual View Morphing 14

14-12

cvDeleteMoire
Deletes moire in given image.

void cvDeleteMoire(IplImage* img);

img Image.

Discussion

The function cvDeleteMoire deletes moire from the given image. The
post-morphing post-warped image has black points: the postwarped image is created
by lines, which means that every point may not be filled. The function deletes moire
(black points) from the given image by the color of neighbor points. If all scanlines are
horizontal, this function may be omitted.

15-1

15Motion Templates

This chapter describes Motion Templates functions.

Overview
The functions described in this section are designed to generate motion template
images that can be used to rapidly determine where a motion occurred, how it
occurred, and in which direction it occurred. The algorithms are based on papers by
Davis and Bobick [Davis97] and Bradski and Davis [Bradsky00]. These functions
operate on images that are the output of frame or background differencing, or other
image segmentation operations; thus the input and output image types are all
grayscale, that is, one color channel.

Motion Representation and Normal Optical Flow Method

Motion Representation

Figure 15-1 (left) shows capturing a foreground silhouette of the moving object or
person. Obtaining a clear silhouette is achieved through application of some of
background subtraction techniques briefly described in Overview of the chapter on
Background Subtraction. As the person or object moves, copying the most recent
foreground silhouette as the highest values in the motion history image creates a
“layered history” of the resulting motion; typically this “highest value” is just a
floating point timestamp of time elapsing since the code was run in milliseconds.
Figure 15-1 (right) shows the result that may be called theMotion History Image
(MHI). A pixel level or a time delta threshold, as appropriate, is set such that pixel
values in the MHI image that fall below that threshold are set to zero.

OpenCV Reference Manual Motion Templates 15

15-2

Figure 15-1 Motion History Image from Moving Silhouette

The most recent motion has the highest value, earlier motions have decreasing values
subject to a threshold below which the value is set to zero. Different stages of creating
and processing motion templates are described below.

A) Updating MHI Images

Generally, we work with floating point images since we read system time differences
in milliseconds from application launch time, convert the time differences into a
floating point number and use that number as the value of our most recent silhouette.
We write this current silhouette over the past silhouettes and threshold away pixels that
are too old (beyond a maximum mhiDuration) to create the Motion History Image
(MHI).

B) Making Motion Gradient Image
1. Start with the MHI image as shown in Figure 15-1(left).

2. Apply 3x3 Sobel operators X and Y to the image.

OpenCV Reference Manual Motion Templates 15

15-3

3. If the resulting response at a pixel location (X,Y) is to the Sobel operator
X and to the operator Y, then the orientation of the gradient is calculated
as:

,

and the magnitude of the gradient is:

.

4. The equations are applied to the image yielding direction or angle of flow
image superimposed (just for reference) over the MHI image as shown in
Figure 15-2.

Figure 15-2 Direction of Flow Image

Sx x y,()
Sy x y,()

A x y,() arc Sy x y,() Sx x y,()⁄()tan=

M x y,() Sx
2

x y,() S+ y
2

x y,()=

OpenCV Reference Manual Motion Templates 15

15-4

5. The boundary pixels of the MH region may give incorrect motion angles and
magnitudes, as Figure 15-2 shows. Thresholding away magnitudes that are
either too large or too small can be a remedy in this case. Figure 15-3 shows
the ultimate results.

Figure 15-3 Resulting Normal Motion Directions.

C) Finding Regional Orientation or Normal Optical Flow

Figure 15-4 shows the output of the motion gradient function described in the section
above together with the marked direction of motion flow.

OpenCV Reference Manual Motion Templates 15

15-5

Figure 15-4 MHI Image of Kneeling Person

The current silhouette is in bright blue with past motions in dimmer and dimmer blue.
Red lines show where valid normal flow gradients were found. The white line shows
computed direction of global motion weighted towards the most recent direction of
motion.

To determine the most recent, salient global motion:

1. Calculate a histogram of the motions resulting from processing (see
Figure 15-3).

2. Find the average orientation of a circular function: angle in degrees.

a. Find the maximal peak in the orientation histogram.

b. Find the average of minimum differences from this base angle. The more
recent movements are taken with lager weights.

OpenCV Reference Manual Motion Templates 15

15-6

Motion Segmentation

Usually, it is not necessary to calculate the motion orientation for the whole image. So
certain motion regions, produced by the movement of parts or the whole of the object
of interest, may be grouped. Using then a downward stepping floodfill to label motion
regions connected to the current silhouette helps identify areas of motion directly
attached to parts of the object of interest.

OnceMHI image is constructed, the most recent silhouette acquires the maximal
values, e.g., most recent timestamp, in that image. The image is scanned until this
value is found, and then walking along the silhouette’s contour helps find attached
areas of motion.The algorithm for creating masks to segment motion region is as
follows:

1. Scan the MHI until finding a pixel of the current timestamp (most recent
silhouette), mark that region by a floodfill (see Figure 15-5 (a));

2. Walk around the boundary of the current silhouette region looking outside for
recent (within a threshold) unmarked motion history “steps”. When a suitable
step is found, mark it with a downward floodfill. If the size of the fill is not big
enough, zero out the area (see Figure 15-5 (b)).

3. [Optional]:

— Record locations of minimums (or record locations of predetermined values)
within each downfill (see Figure 15-5 (c));

— Perform separate floodfills up from each detected location (see Figure 15-5
(d));

— Combine separately (by logical AND) each upfill with downfill it belonged to.

4. Store the detected segmented motion regions into the mask.

5. Continue the boundary “walk” until the silhouette has been circumnavigated.

6. [Optional] Go to 1 until all current silhouette regions are found.

OpenCV Reference Manual Motion Templates 15

15-7

Figure 15-5 Creating Masks to Segment Motion Region

The functions that do all of the above are described below.

OpenCV Reference Manual Motion Templates 15

15-8

Reference

cvUpdateMotionHistory
Updates motion history image.

void cvUpdateMotionHistory (IplImage* silhouette, IplImage* mhi, double
timestamp, double mhiDuration);

silhouette Silhouette image that has non-zero pixels where the motion occurs.

mhi Motion history image, both an input and output parameter.

timestamp Floating point current time in milliseconds.

mhiDuration Maximal duration of motion track in milliseconds.

Discussion

The function cvUpdateMotionHistory updates the motion history image with
silhouette of floating point current system time, assigning the current timestamp value
to those mhi pixels that have corresponding non-zero silhouette pixels. The function
also clears mhi pixels older than timestamp – mhiDuration if the corresponding
silhouette values are 0.

cvCalcMotionGradient
Calculates gradient orientation of motion history
image.

void cvCalcMotionGradient(IplImage* mhi, IplImage* mask, IplImage*
orientation, double maxTDelta, double minTDelta, int apertureSize=3);

mhi Motion history image.

mask Mask image; marks pixels where motion gradient data is correct.
Output parameter.

OpenCV Reference Manual Motion Templates 15

15-9

orientation Motion gradient orientation image; contains angles from 0 to ~360
degrees.

apertureSize Size of aperture used to calculate derivatives. Value should be odd,
e.g., 3, 5, etc.

maxTDelta Upper threshold. The function considers the gradient orientation
valid if the difference between the maximum and minimum mhi

values within a pixel neighborhood is lower than this threshold.

minTDelta Lower threshold. The function considers the gradient orientation
valid if the difference between the maximum and minimum mhi

values within a pixel neighborhood is greater than this threshold.

Discussion

The function cvCalcMotionGradient calculates the derivatives Dx and Dy for the
image mhi and then calculates orientation of the gradient using the formula

Finally, the function masks off pixels with a very small (less than minTDelta) or very
large (greater than maxTDelta) difference between the minimum and maximum mhi

values in their neighborhood. The neighborhood for determining the minimum and
maximum has the same size as aperture for derivative kernels - apertureSize x

apertureSize pixels.

cvCalcGlobalOrientation
Calculates global motion orientation of some
selected region.

void cvCalcGlobalOrientation(IplImage* orientation, IplImage* mask, IplImage*
mhi, double curr_mhi_timestamp, double mhiDuration);

ϕ
0 x, 0 y, o= =

arc y x⁄()elsetan



=

OpenCV Reference Manual Motion Templates 15

15-10

orientation Motion gradient orientation image; calculated by the
function cvCalcMotionGradient.

mask Mask image. It is a conjunction of valid gradient mask,
calculated by the function cvCalcMotionGradient and
mask of the region, whose direction needs to be calculated.

mhi Motion history image.

curr_mhiTimestamp Current time in milliseconds.

mhiDuration Maximal duration of motion track in milliseconds.

Discussion

The function cvCalcGlobalOrientation calculates the general motion direction in
the selected region.

At first the function builds the orientation histogram and finds the basic orientation as
a coordinate of the histogram maximum. After that the function calculates the shift
relative to the basic orientation as a weighted sum of all orientation vectors (the more
recent is the motion, the greater is the weight). The resultant angle is <basic
orientation> + <shift>.

cvSegmentMotion
Segments whole motion into separate moving
parts.

void cvSegmentMotion(IplImage* mhi, IplImage* segMask, CvMemStorage* storage,
CvSeq** components, double timestamp, double segThresh);

mhi Motion history image.

segMask Image where the mask found should be stored.

Storage Pointer to the memory storage, where the sequence of components
should be saved.

components Sequence of components found by the function.

timestamp Floating point current time in milliseconds.

OpenCV Reference Manual Motion Templates 15

15-11

segThresh Segmentation threshold; recommended to be equal to the interval
between motion history “steps” or greater.

Discussion

The function cvSegmentMotion finds all the motion segments, starting from
connected components in the image mhi that have value of the current timestamp. Each
of the resulting segments is marked with an individual value (1,2 ...).

The function stores information about each resulting motion segment in the structure
CvConnectedComp. The function returns a sequence of such structures.

OpenCV Reference Manual Motion Templates 15

15-12

16-1

16CamShift

This chapter describes CamShift algorithm realization functions.

Overview
CamShift stands for the “Continuously Adaptive Mean-SHIFT” algorithm.
Figure 16-1 summarizes the CamShift algorithm. For each video frame, the raw image
is converted to a color probability distribution image via a color histogram model of
the color being tracked (flesh for face tracking). The center and size of the color object
are found via the CamShift algorithm operating on the color probability image. The
current size and location of the tracked object are reported and used to set the size and
location of the search window in the next video image. The process is then repeated for
continuous tracking. The algorithm is a generalization of the Mean Shift algorithm,
highlighted in gray in Figure 16-1.

OpenCV Reference Manual CamShift 16

16-2

Figure 16-1 Block Diagram of CamShift Algorithm

CamShift operates on a 2D color probability distribution image produced from
histogram back-projection (see Histogram, this document). The core part of the
CamShift algorithm is the Mean Shift algorithm.

The Mean Shift part of the algorithm (gray area in Figure 16-1) is as follows:

1. Choose the search window size.

2. Choose the initial location of the search window.

3. Compute the mean location in the search window.

4. Center the search window at the mean location computed in Step 3.

Choose initial
search window

size and location
HSV Image

Set calculation
region at search
window center
but larger in
size than the
search window

Color histogram look-
up in calculation

region

Color probability distribution

image

Find center of mass
within the search

window

Center search window
at the center of mass
and find area under it

Converged?YES NOReport X,
Y, Z, and

Roll

Use (X,Y) to set
search window
center, 2*area1/2

to set size.

OpenCV Reference Manual CamShift 16

16-3

5. Repeat Steps 3 and 4 until the search window center converges, i.e., until it has
moved for a distance less than the preset threshold.

Mass Center Calculation for 2D Probability Distribution

For discrete 2D image probability distributions, the mean location (the centroid) within
the search window (Steps 3 and 4 above) is found as follows:

Find the zeroth moment

.

Find the first moment for x and y

; .

Mean search window location (the centroid) then is found as

; ,

where I(x,y) is the pixel (probability) value in the position (x,y) in the image, and x

and y range over the search window.

Unlike the Mean Shift algorithm, which is designed for static distributions, CamShift
is designed for dynamically changing distributions. These occur when objects in video
sequences are being tracked and the object moves so that the size and location of the
probability distribution changes in time. The CamShift algorithm adjusts the search
window size in the course of its operation. Initial window size can be set at any
reasonable value. For discrete distributions (digital data), the minimum window length
or width is three. Instead of a set, or externally adapted window size, CamShift relies
on the zeroth moment information, extracted as part of the internal workings of the
algorithm, to continuously adapt its window size within or over each video frame.

CamShift Algorithm
1. Set the calculation region of the probability distribution to the whole image.

2. Choose the initial location of the 2D mean shift search window.

M00 I x y,()
y

∑
x

∑=

M10 xI x y,()
y

∑
x

∑= M01 yI x y,()
y

∑
x

∑=

xc
M10

M00
--------= yc

M01

M00
--------=

OpenCV Reference Manual CamShift 16

16-4

3. Calculate the color probability distribution in the 2D region centered at the
search window location in an ROI slightly larger than the mean shift window
size.

4. Run mean shift algorithm to find the search window center. Store the zeroth

moment (area or size) and center location.

5. For the next video frame, center the search window at the mean location stored
in Step 4 and set the window size to a function of the zeroth moment found
there. Go to Step 3.

Figure 16-2 shows CamShift finding the face center on a 1D slice through a face and
hand flesh hue distribution. Figure 16-3 shows the next frame when the face and hand
flesh hue distribution has moved, and convergence is reached in two iterations.

OpenCV Reference Manual CamShift 16

16-5

Figure 16-2 Cross Section of Flesh Hue Distribution

Rectangular CamShift window is shown behind the hue distribution, while triangle in
front marks the window center. CamShift is shown iterating to convergence down the
left then right columns.

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 1
1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 2

1 3 5 7 9

11 13 15 17 19 21 23

0

50

100

150

200

250

Step 3

1 3 5 7 9

11 13 15 17 19 21 23

0

50

100

150

200

250

Step 4

1 3 5 7 9

11 13 15 17 19 21 23

0

50

100

150

200

250

Step 5

1 3 5 7 9

11 13 15 17 19 21 23
0

50

100

150

200

250

Step 6

OpenCV Reference Manual CamShift 16

16-6

Figure 16-3 Flesh Hue Distribution (Next Frame)

Starting from the converged search location in Figure 16-2 bottom right, CamShift
converges on new center of distribution in two iterations.

Calculation of 2D Orientation

The 2D orientation of the probability distribution is also easy to obtain by using the
second moments in the course of CamShift operation, where (x,y) range over the
search window, and I(x,y) is the pixel (probability) value at (x,y).

Second moments are

, .

Then the object orientation (major axis) is

.

The first two eigenvalues (major length and width) of the probability distribution
“blob” found by CamShift may be calculated in closed form as follows. Let

, , and .

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 1

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 2

M20 x
2
I x y,()

y

∑
x

∑= M02 x
2
I x y,()

y

∑
x

∑=

θ

arc

2
M11

M00
-------- xcyc– 
 

M20

M00
-------- xc

2
– 

  M02

M00
-------- yc

2
– 

 –

 
 
 
 
 
 

tan

2
---=

a
M20

M00
-------- xc

2
–= b 2

M11

M00
-------- xcyc– 
 = c

M02

M00
-------- yc

2
–=

OpenCV Reference Manual CamShift 16

16-7

Then length l and width w from the distribution centroid are

,

.

When used in face tracking, the above equations give head roll, length, and width as
marked in the source video image in Figure 16-4.

Figure 16-4 Orientation of Flesh Probability Distribution

Reference

cvCamShift
Finds object center, size, and orientation.

intcvCamShift(IplImage*imgProb,CvRectwindowIn,CvTermCriteriacriteria,
CvConnectedComp* out, CvBox2D* box=0);

imgProb 2D object probability distribution.

windowIn Initial search window.

criteria Criteria applied to determine when the window search should be
finished.

l a c+() b
2

a c–()2
++

2
--=

w a c+() b
2

a c–()2
+–

2
---=

OpenCV Reference Manual CamShift 16

16-8

out Resultant structure that contains converged search window
coordinates (rect field) and sum of all pixels inside the window
(area field).

box Circumscribed box for the object. If not NULL, contains object size
and orientation.

Discussion

The function cvCamShift finds an object center using the Mean Shift algorithm and,
after that, calculates the object size and orientation. The function returns number of
iterations made within the Mean Shift algorithm.

cvMeanShift
Iterates to find object center.

intcvMeanShift(IplImage*imgProb,CvRectwindowIn,CvTermCriteriacriteria,
CvConnectedComp* out);

imgProb 2D object probability distribution.

windowIn Initial search window.

criteria Criteria applied to determine when the window search should be
finished.

out Resultant structure that contains converged search window
coordinates (rect field) and sum of all pixels inside the window
(area field).

Discussion

The function cvMeanShift iterates to find the object center given its 2D color
probability distribution image. The iterations are made until the search window center
moves by less than the given value and/or until the function has done the maximum
number of iterations. The function returns the number of iterations made.

17-1

17Active Contours

This chapter describes a function for working with active contours (snakes).

Overview
The snake was presented in [Kass88] as an energy-minimizing parametric closed curve
guided by external forces. Energy function associated with the snake ,

where is the internal energy formed by the snake configuration, is the external
energy formed by external forces affecting the snake. The aim of the snake is to find a
location that can minimize the energy.

Let be a discrete representation of a snake, that is, a sequence of points on an
image plane.

In OpenCV the internal energy function is the sum of the contour continuity energy
and the contour curvature energy, as follows:

, where

is the contour continuity energy. This energy is ,
where is the average distance between all pairs .
Minimizing over all the snake points , causes the snake
points become more equidistant.

is the contour curvature energy. The smoother the contour is, the less
is the curvature energy. .

In [Kass88] external energy was represented as , where

– image energy and - energy of additional constraints.

Two variants of image energy are proposed:

E Eint Eext+=

Eint Eext

p1 … pn, ,

Eint Econt Ecurv+=

Econt Econt d pi pi 1–––=

d pi pi 1––()
Econt p1 … pn, ,

Ecurv

Ecurv pi 1– 2pi– pi 1++
2

=

Eext Eimg Econ+=

Eimg Econ

OpenCV Reference Manual Active Contours 17

17-2

1. ,

where I is the image intensity. In this case the snake is attracted to the bright lines of
image.

2. . The snake is attracted to image edges.

A variant of external constraint is described in [Kass88]. Imagine the snake points
connected by springs with certain points on the image. Spring force k (x – x) will
produce the energy .

This force pulls snake points to fixed positions, which can be useful when snake points
need to be fixed.

OpenCV does not support this opportunity now.

Summary energy at every point can be written as

, (17.1)

where are the weights of every kind of energy. The full snake energy is the sum
of over all the points.

The meanings of are as follows:

is responsible for contour continuity, that is, a big makes snake points more
evenly spaced.

is responsible for snake corners, that is, a big for a certain point makes the angle
between snake edges more obtuse.

is responsible for making the snake point more sensitive to the image energy, rather
than to continuity or curvature.

Only relative values of in the snake point are relevant.

The following way of working with snakes is proposed:

• create a snake with initial configuration;

• define weights at every point;

• allow the snake to minimize its energy;

• evaluate the snake position. If required, adjust , and possibly image data, and
repeat the previous step.

Eimg I–=

Eimg grad I()–=

kx
2

2

Ei α iEcont i, βiEcurv i, γiEimg i,+ +=

α β γ, ,
Ei

α β γ, ,

α α

β β

γ

α β γ, ,

α β γ, ,

α β γ, ,

OpenCV Reference Manual Active Contours 17

17-3

There are three well-known algorithms for minimizing snake energy. In [Kass88] the
minimization is based on variational calculus. In [Yuille89] dynamic programming is
used. The greedy algorithm is proposed in [Williams92].

The latter algorithm is the most efficient and yields quite good results. The scheme of
this algorithm for each snake point is as follows:

• Use Equation (17.1) to compute E for every location from point neighborhood.
Before computing E, each energy term must be normalized using
formula , where max and min are maximal and
minimal energy in scanned neighborhood.

• Choose location with minimum energy.

• Move snakes point to this location.

• Repeat all the steps until convergence is reached.

Criteria of convergence are as follows:

• maximum number of iterations is achieved;

• number of points, moved at last iteration, is less than given threshold.

In [Wiiliams92] the authors proposed a way, called high-level feedback, to adjust b
coefficient for corner estimation during minimization process. Although this feature is
not available in the implementation, the user may build it, if needed.

Reference

cvSnakeImage
Changes contour position to minimize its energy.

void cvSnakeImage(IplImage* image, CvPoint* points, int length,
float* alpha, float* beta, float* gamma, int coeffUsage,CvSize win,
CvTermCriteria criteria, int calcGradient=1);

image Pointer to the source image.

points Points of the contour.

Econt Ecurv Eimg, ,
Enormalized Eimg min–() max min–()⁄=

OpenCV Reference Manual Active Contours 17

17-4

length Number of points in the contour.

alpha Weight of continuity energy.

beta Weight of curvature energy.

gamma Weight of image energy.

coeffUsage Variant of usage of the previous three parameters:

• CV_VALUE indicates that each of alpha, beta, gamma is pointer to
a single value to be used for all points;

• CV_ARRAY indicates that each of alpha, beta, gamma is pointer to
an array of coefficients different for all the points of the snake.
All the arrays must have the size equal to the snake size.

win Size of neighborhood of every point used to search the minimum;
must be odd.

criteria Termination criteria.

calcGradient Gradient flag. If not 0, the function counts source image gradient
magnitude as external energy, otherwise the image intensity is
considered.

Discussion

The function cvSnakeImage uses image intensity as image energy.

The parameter criteria.epsilon is used to define the minimal number of points that
must be moved during any iteration to keep the iteration process running.

If the number of moved points is less than criteria.epsilon or the function
performed criteria.maxIter iterations, the function terminates.

18-1

18Optical Flow

This chapter describes functions used for culculation of optical flow implementing
Lucas & Kanade, Horn & Schunck, and Block Matching techniques.

Overview
Most papers devoted to motion estimation use the term “optical flow”. Optical flow is
defined as an apparent motion of image brightness. If I(x,y,t) is the image
brightness that changes in time to provide an image sequence, then two main
assumptions can be made:

1. Brightness I(x,y,t) depends on coordinates x, y in greater part of the image.

2. Brightness of every point of a moving or static object does not change in time.

Let some object in the image, or some point of an object, move and after time dt the
object displacement is (dx, dy). Using Taylor series for brightness I(x,y,t) gives
the following:

, (18.1)

where “…” are higher order terms.

Next, according to Assumption 2:

, (18.2)

and

. (18.3)

Dividing (18.3) by dt and defining

, (18.4)

gives an equation

I x dx y dy t dt+,+,+() I x y t, ,() ∂I
∂x
------dx

∂I
∂y
------dy

∂I
∂t
------dt …+ + + +=

I x dx y dy t dt+,+,+() I x y t, ,()=

∂I
∂x
------dx

∂I
∂y
------dy

∂I
∂t
------dt …+ + + 0=

dx
dt
------- u= dy

dt
------- v=

OpenCV Reference Manual Optical Flow 18

18-2

, (18.5)

usually called optical flow constraint equation, where u and v are components of
optical flow field in x and y coordinates respectively. Since Equation (18.5) has more
than one solution, more constraints are required.

Some variants of further steps may be chosen. Below follows a brief overview of the
options available.

Lucas & Kanade Technique

Using the optical flow equation for group of adjacent pixels and assuming that all of
them have the same velocity, we can make a system of linear equations.

In a non-singular system for two pixels we can compute a velocity vector to solve the
system. However, combining equations for more than two pixels is more effective. We
might get a system that has no solution; yet we can solve it roughly, using the least
square method. We will use weighted combination of equations. This method involves
the solution of 2x2 linear system.

,

,

where W(x,y) is the Gaussian window. The Gaussian window may be represented as a
composition of two separable kernels with binomial coefficients. Iterating through the
system can yield even better results. That is, retrieved offset is used to determine a new
window in the second image from which the window in the first image is subtracted
while It is calculated.

Horn & Schunck Technique

Horn and Schunck propose a technique that assumes the smoothness of the estimated
optical flow field. This constraint can be formulated as

. (18.6)

∂i
∂t
------–

∂I
∂x
------u

∂I
∂y
------v+=

W x y,()IxIyu W x y,()Iy
2
v

x y,
∑+

x y,
∑ W x y,()IyIt

x y,
∑–=

W x y,()Ix
2
u W x y,()IxIyv

x y,
∑+

x y,
∑ W x y,()IxIt

x y,
∑–=

S
∂u
∂x
------ 
  2 ∂u

∂y
------ 
  2 ∂v

∂x
------ 
  2 ∂v

∂y
------ 
  2

+ + + xd() y
image

d∫∫=

OpenCV Reference Manual Optical Flow 18

18-3

This optical flow solution can deviate from the optical flow constraint. To express this
deviation the following integral can be used:

. (18.7)

The value , where is a parameter, called Lagrangian multiplier, is to be
minimized. Typically, a smaller must be taken for a noisy image and a larger one for
a quite accurate image.

To minimize , a system of two second-order differential equations for the whole
image must be solved:

(18.8)

Iterative method could be applied for the purpose when a number of iterations are
made for each pixel. This technique for two consecutive images seems to be
computationally expensive because of iterations, but for a long sequence of images
only an iteration for two images must be done, if the result of the previous iteration is
chosen as initial approximation.

Block Matching

This technique does not use an optical flow equation directly. If, for example, an image
tiled with small, possibly overlapping blocks is considered, then for every block in the
first image the algorithm tries to find a block of the same size in the second image that
is most similar to the block in the first image. The function searches in the
neighborhood of some given point in the second image. So we assume that all the
points in the block move by the same offset and find that offset, just like in Lucas &
Kanade method. Different metrics can be used to measure similarity or difference
between blocks - cross correlation, squared difference, etc.

C
∂I

∂ximage

------------------u
∂I
∂y
------v ∂I

∂t
------+ + 

  2
xd yd∫∫=

S λC+ λ
λ

S λC+

∂2
u

∂x2
--------- ∂2

u

∂y2
---------+ λ ∂I

∂x
------u

∂I
∂y
------v ∂I

∂t
------+ + 

  ∂I
∂x
------,=

∂2
v

∂x2
--------- ∂2

v

∂y2
---------+ λ ∂I

∂x
------u

∂I
∂y
------v ∂I

∂t
------+ + 

  ∂I
∂x
------.=

OpenCV Reference Manual Optical Flow 18

18-4

Reference

cvCalcOpticalFlowHS
Calculates optical flow for two images.

void cvCalcOpticalFlowHS(IplImage* srcA, IplImage* srcB, int usePrevious,
IplImage* velx, IplImage* vely, double lambda, CvTermCriteria criteria);

imgA First image.

imgB Second image.

usePrevious Uses previous (input) velocity field.

velx Horizontal component of the optical flow.

vely Vertical component of the optical flow.

lambda Lagrangian multiplier.

criteria Criteria of termination of velocity computing.

Discussion

The function cvCalcOpticalFlowHS computes flow for every pixel, thus output
images must have the same size as input. Horn & Schunck technique is implemented.

cvCalcOpticalFlowLK
Calculates optical flow for two images.

void cvCalcOpticalFlowLK(IplImage* srcA, IplImage* srcB, CvSize winSize,
IplImage* velx, IplImage* vely);

imgA First image.

imgB Second image.

winSize Size of the averaging window used for grouping pixels.

OpenCV Reference Manual Optical Flow 18

18-5

velx Horizontal component of the optical flow.

vely Vertical component of the optical flow.

Discussion

The function cvCalcOpticalFlowLK computes flow for every pixel, thus output
images must have the same size as input. Lucas & Kanade technique is implemented.

cvCalcOpticalFlowBM
Calculates optical flow for two images by block
matching method.

void cvCalcOpticalFlowBM(IplImage* srcA, IplImage* srcB, CvSize blockSize,
CvSize shiftSize, CvSize maxRange, int usePrevious, IplImage* velx,
IplImage* vely);

imgA First image.

imgB Second image.

blockSize Size of basic blocks that are compared.

shiftSize Block coordinate increments.

maxRange Size of the scanned neighborhood in pixels around block.

usePrevious Uses previous (input) velocity field.

velx Horizontal component of the optical flow.

vely Vertical component of the optical flow.

Discussion

The function cvCalcOpticalFlowBM calculates optical flow for two images using the
Block Matching algorithm. Velocity is computed for every block (not every pixel), so
velocity image pixels correspond to input image blocks and the velocity image must
have the following size:

OpenCV Reference Manual Optical Flow 18

18-6

cvCalcOpticalFlowPyrLK
Calculates optical flow for two images using
iterative Lucas-Kanade method in pyramids.

void cvCalcOpticalFlowPyrLK(IplImage* imgA, IplImage* imgB, IplImage* pyrA,
IplImage* pyrB, CvPoint2D32f* featuresA, CvPoint2D32f* featuresB, int
count, CvSize winSize, int level, char* status, float* error,
CvTermCriteria criteria, int flags);

imgA First frame (time t).

imgB Second frame (time t+dt).

pyrA Buffer for the pyramid for the first frame. If the pointer is not NULL,
the buffer must have a sufficient size to store the pyramid from
level 1 to level #<level> ; the total size of
(imgSize.width+8)*imgSize.height/3 bytes is sufficient.

pyrB Similar to pyrA, applies to the second frame.

featuresA Array of points for which the flow needs to be found.

featuresB Array of 2D points containing calculated new positions of input
features in the second image.

count Number of feature points.

winSize Size of the search window of each pyramid level.

level Maximal pyramid level number. If 0, pyramids are not used (single
level), if 1, two levels are used, etc.

status Array. Every element of the array is set to 1 if the flow for the
corresponding feature has been found, 0 otherwise.

error Array of double numbers containing difference between patches
around the original and moved points. Optional parameter; can be
NULL.

velocityFrameSize.width
imageSize.width
blockSize.width
-- ,=

velocityFrameSize.height
imageSize.height
blockSize.height
-- .=

OpenCV Reference Manual Optical Flow 18

18-7

criteria Specifies when the iteration process of finding the flow for each
point on each pyramid level should be stopped.

flags Miscellaneous flags:

• CV_LKFLOW_PYR_A_READY, pyramid for the first frame is
precalculated before the call;

• CV_LKFLOW_PYR_B_READY, pyramid for the second frame is
precalculated before the call;

• CV_LKFLOW_INITIAL_GUESSES, features B array holds initial
guesses about new feature locations before the function call.

Discussion

The function cvCalcOpticalFlowPyrLK calculates the optical flow between two
images for the given set of points. The function finds the flow with sup-pixel accuracy.

Both parameters pyrA and pyrB comply with the following rules: if the image pointer
is 0, the function allocates the buffer internally, calculates the pyramid, and releases
the buffer after processing. Otherwise, if the image is large enough, the function
calculates the pyramid and stores it in the buffer unless the flag
CV_LKFLOW_PYR_A[B]_READY is set. After the function call both pyramids are
calculated and the ready flag for the corresponding image can be set in the next call.

OpenCV Reference Manual Optical Flow 18

18-8

19-1

19Estimators

This chapter describes group of functions for estimating stochastic models state.

Overview

Definitions and Motivation

State estimation programs implement a model and an estimator. A model is analogous
to a data structure representing relevant information about the visual scene. An
estimator is analogous to the software engine that manipulates this data structure to
compute beliefs about the world. The OpenCV routines provide two estimators:
standard Kalman and condensation.

Models

Many computer vision applications involve repeated estimating, that is, tracking, of
the system quantities that change over time. These dynamic quantities are called the
system state. The system in question can be anything that happens to be of interest to a
particular vision task.

To estimate the state of a system, reasonably accurate knowledge of the system model
and parametersmay be assumed. Parameters are the quantities that describe the model
configuration but change at a rate much slower than the state. Parameters are often
assumed known and static.

In OpenCV a state is represented with a vector. In addition to this output of the state
estimate routines, there is another vector representing measurements that are input to
the routines from the sensor data.

OpenCV Reference Manual Estimators 19

19-2

For the model, two main parts need to be represented. The first describes the dynamics
of how the state is expected to change from one time step to the next. The other thing
that needs to be represented is the model of how a measurement vector is obtained
from the state.

Estimators

Most estimators have the same general form with repeated propagation and update
phases that modify the state's uncertainty as illustrated in Figure 19-1.

Figure 19-1 Ongoing Discrete Kalman Filter Cycle

The time update projects the current state estimate ahead in time. The measurement
update adjusts the projected estimate using an actual measurement at that time.

A common, desirable property of an estimator is being unbiased when the probability
density of estimate errors has an expected value of 0. There exists an optimal
propagation and update formulation that is the best, linear, unbiased estimator (BLUE)
for any given model of the form. This formulation is known as the discrete Kalman
estimator, whose standard form is implemented in OpenCV.

Kalman Filtering

The Kalman filter addresses the general problem of trying to estimate the state x of a
discrete-time process that is governed by the linear stochastic difference equation

(19.1)

zt

xk 1+ Axk wk+=

OpenCV Reference Manual Estimators 19

19-3

with a measurement z, that is

(19.2)

The random variables wk and vk respectively represent the process and measurement
noise. They are assumed to be independent of each other, white, and with normal
probability distributions

, (19.3)

. (19.4)

The N x N matrix A in the difference equation (19.1) relates the state at time step k

to the state at step k+1, in the absence of process noise. The M x N matrix H in the
measurement equation (19.2) relates the state to the measurement zk.

If the "super minus" is defined as a priori state estimate at step k provided the
process prior to step k is known, and Xk is a posteriori state estimate at step k provided
measurement zk is known, then a priori and a posteriori estimate errors can be defined

as . The a priori estimate error covariance is then and the a

posteriori estimate error covariance is .

The Kalman filter estimates the process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of noisy
measurements. As such, the equations for the Kalman filter fall into two groups: time
update equations and measurement update equations. The time update equations are
responsible for projecting forward in time the current state and error covariance
estimates to obtain the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback, that is, for incorporating a new
measurement into the a priori estimate to obtain an improved a posteriori estimate. The
time update equations can also be viewed as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed, the
final estimation algorithm resembles that of a predictor-corrector algorithm for solving
numerical problems as shown in Figure 19-1. The specific equations for the time and
measurement updates are presented below.

Time Update Equations

,

zk Hxk vk+=

p w() N 0 Q,()=

p w() N 0 R,()=

X
k

e
k

xk X
k

–=

ek xk Xk–=
Pk E ekek

T–[]=

Pk E ekek
T[]=

X
k 1+ AkXk=

OpenCV Reference Manual Estimators 19

19-4

.

Measurement Update Equations:

,

,

,

where K is the so-called Kalman gain matrix and I is the identity operator.

Reference

cvCreateKalman
Allocates Kalman filter structure.

CvKalman* cvCreateKalman(int DynamParams, int MeasureParams);

DynamParams Dimension of the state vector.

MeasureParams Dimension of the measurement vector.

Example 19-1 CvKalman Structure Definition

typedef struct CvKalman
{
int MP; //Dimension of measurement vector
int DP; // Dimension of state vector
float* PosterState; // Vector of State of the System in k-th step
float* PriorState; // Vector of State of the System in (k-1)-th step
float* DynamMatr; // Matrix of the linear Dynamics system
float* MeasurementMatr; // Matrix of linear measurement
float* MNCovariance; // Matrix of measurement noice covariance
float* PNCovariance; // Matrix of process noice covariance
float* KalmGainMatr; // Kalman Gain Matrix
float* PriorErrorCovariance; //Prior Error Covariance matrix
float* PosterErrorCovariance;//Poster Error Covariance matrix
float* Temp1; // Temporary Matrixes
float* Temp2;
}CvKalman;

P
k 1+ AkPkAk

T
Qk+=

Kk P
k
Hk
T
HkPkHk

T
Rk+()

1–
=

Xk Xk Kk zk HkXk–()+=

Pk I KkHk–()P
k

=

OpenCV Reference Manual Estimators 19

19-5

Discussion

The function cvCreateKalman creates CvKalman structure and returns pointer to the
structure.

cvReleaseKalman
Deallocates Kalman filter structure.

void cvReleaseKalman(CvKalman** Kalman);

Kalman Double pointer to the structure to be released.

Discussion

The function cvReleaseKalman releases the structure CvKalman (see Example) and
frees the memory previously allocated for the structure.

cvKalmanUpdateByTime
Estimates subsequent model state.

void cvKalmanUpdateByTime (CvKalman* Kalman);

Kalman Pointer to the structure to be updated.

Discussion

The function cvKalmanUpdateByTime estimates the subsequent stochastic model
state by its current state.

OpenCV Reference Manual Estimators 19

19-6

cvKalmanUpdateByMeasurement
Adjusts model state.

void cvKalmanUpdateByMeasurement (CvKalman* Kalman,CvMat* Measurement);

Kalman Pointer to the structure to be updated.

Measurement Pointer to the structure CvMat containing the measurement vector.

Discussion

The function cvKalmanUpdateByMeasurement adjusts stochastic model state on basis
of the true measurements of the model state.

ConDensation Algorithm

This section describes the ConDensation (conditional density propagation) algorithm,
based on factored sampling. The main idea of the algorithm is using the set of
randomly generated samples for probability density approximation. For simplicity,
general principles of ConDensation algorithm are described below for linear stochastic
dynamical system:

(19.5)

with a measurement Z.

For the algorithm to start a set of samples Xn must be generated. The samples are
randomly generated vectors of states. The function cvInitSampleSet does it in
OpenCV implementation.

During the first phase of the condensation algorithm every sample in the set is updated
according to Equation (19.5).

Further, when the vector of measurement Z is obtained, the algorithm estimates
conditional probability densities of every sample . The OpenCV
implementation of the condensation algorithm enables the user to define various
probability density functions. There is no such special function in the library. After the
probabilities are calculated, the user may evaluate, for example, moments of tracked
process at the current time step.

xk 1+ Axk wk+=

P X
n
Z()

OpenCV Reference Manual Estimators 19

19-7

Implementation of Nonlinear Models

If dynamics or measurement of the stochastic system is non-linear, the user may
update the dynamics (A) or measurement (H) matrices, using their Taylor series at each
time step.

Reference

cvCreateConDensation
Allocates ConDensation filter structure.

CvConDensation* cvCreateConDensation(int DP, int MP, int SamplesNum);

DynamParams Dimension of the state vector.

MeasureParams Dimension of the state vector.

SamplesNum Number of samples.

Discussion

The function cvCreateConDensation creates cvConDensation structure and returns
pointer to the structure.

Example 19-2 CvConDensation Structure Definition

typedef struct
{
int MP; //Dimension of measurement vector
int DP; // Dimension of state vector
float* DynamMatr; // Matrix of the linear Dynamics system
float* State; // Vector of State
int SamplesNum; // Number of the Samples
float** flSamples; // array of the Sample Vectors
float** flNewSamples; // temporary array of the Sample Vectors
float* flConfidence; // Confidence for each Sample
float* flCumulative; // Cumulative confidence
float* Temp; // Temporary vector
float* RandomSample; // RandomVector to update sample set
CvRandState* RandS; // Array of structures to generate random vectors
}CvConDensation;

OpenCV Reference Manual Estimators 19

19-8

cvReleaseConDensation
Deallocates ConDensation filter structure.

void cvReleaseConDensation(CvConDensation** ConDens);

ConDens Pointer to the pointer to the structure to be released.

Discussion

The function cvReleaseConDensation releases the structure CvConDensation (see
Example) and frees all memory previously allocated for the structure.

cvConDensInitSampleSet
Initializes sample set for condensation algorithm.

void cvConDensInitSampleSet(CvConDensation* ConDens, CvMat* lowerBound CvMat*
upperBound);

ConDens Pointer to a structure to be initialized.

lowerBound Vector of the lower boundary for each dimension.

upperBound Vector of the upper boundary for each dimension.

Discussion

The function cvConDensInitSampleSet fills the samples arrays in the structure
CvConDensation (see Example) with values within specified ranges.

OpenCV Reference Manual Estimators 19

19-9

cvConDensUpdatebyTime
Estimates subsequent model state.

void cvConDensUpdateByTime(CvConDensation* ConDens);

ConDens Pointer to the structure to be updated.

Discussion

The function cvConDensUpdatebyTime estimates the subsequent stochastic model
state from its current state.

OpenCV Reference Manual Estimators 19

19-10

20-1

20POSIT

This chapter describes functions that together perform POSIT algorithm.

Overview
The POSIT algorithm determines the six degree-of-freedom pose of a known tracked
3D rigid object. Given the projected image coordinates of uniquely identified points on
the object, the algorithm refines an initial pose estimate by iterating with a weak
perspective camera model to construct new image points; the algorithm terminates
when it reaches a converged image, the pose of which is the solution.

Background

Camera parameters

Camera parameters are the numbers describing a particular camera configuration. The
intrinsic camera parameters are those that specify the camera itself; they include the
focal length, that is, the distance between the camera lens and the image plane, the
location of the image center in pixel coordinates, the effective pixel size, and the radial
distortion coefficient of the lens. To simplify pose recovery, the focal length is the only
intrinsic parameter considered as it is the only one contributing to the geometric image
formation model. The extrinsic camera parameters describe the spatial relationship
between the camera and the world; they are the rotation matrix and translation vector
specifying the transformation between the camera and world reference frames. In the
case of pose recovery of a rigid object, the six degree-of-freedom extrinsic parameters
are exactly the pose being sought.

OpenCV Reference Manual POSIT 20

20-2

Geometric Image Formation

The link between world points and their corresponding image points is the projection
from world space to image space. Figure 20-1 depicts the perspective (or pinhole)
model, which is the most common projection model because of its generality and
usefulness.

The points in the world are projected onto the image plane according to their distance
from the center of projection. Using similar triangles, the relationship between the
coordinates of an image point and its world point can be
determined as

, . (20.1)

Figure 20-1 Perspective Geometry Projection

The weak-perspective projection model simplifies the projection equation by replacing
all with a representative so that is a constant scale for all points. The
projection equations are then

, . (20.2)

pi xi yi,()= Pi Xi Yi Zi, ,()=

xi
f
Zi
------Xi= yi

f
Zi
------Yi=

Focal
Length

Optical Axis

Center of
Projection

Image Plane

ĵ

k̂

î

),,(iiii ZYXP =),,(fyxp iii =

Zi Z̃ s f Z̃⁄=

xi sXi= yi sYi=

OpenCV Reference Manual POSIT 20

20-3

Because this situation can be modeled as an orthographic projection (,
) followed by isotropic scaling, weak-perspective projection is sometimes

called scaled orthographic projection. Weak-perspective is a valid assumption only
when the distances between any are much smaller than the distance between the
and the center of projection; in other words, the world points are clustered and far
enough from the camera. Possible include any or the average over all .

More detailed explanations of this material can be found in [Trucco98].

Pose Approximation Method

Using weak-perspective projection, a method for determining approximate pose,
termed Pose from Orthography and Scaling (POS) in [DeMenthon92], can be derived.
First, a reference point in the world is chosen from which all other world points can
be described as vectors: (see Figure 20-2).

Figure 20-2 Scaling of Vectors in Weak-Perspective Projection

Similarly, the projection of this point, namely , is a reference point for the image
points: . Proceeding from the weak-perspective assumption, the x
component of is a scaled-down form of the x component of :

. (20.3)

xi Xi=

yi Yi=

Zi Zi

Z̃ Zi Zi

P0

P Pi P0–=

Image Object

0p 0P

ip

iP

Center of
Projection

p0

pi pi p0–=

pi Pi

xi x0– s Xi X0–() s P0 î⋅()= =

OpenCV Reference Manual POSIT 20

20-4

This is also true for their y components. If and are defined as scaled-up versions
of the unit vectors and (and), then

and (20.4)

as two equations for each point for which and are unknown. These equations,
collected over all the points, can be put into matrix form as

and , (20.5)

where is a vector of x components, is a vector of y components, and is a
matrix whose rows are the vectors. These two sets of equations can be further
joined to construct a single set of linear equations:

, (20.6)

where is a matrix whose rows are . Now that we have an overconstrained system
of linear equations, we can solve for and in a least-squares sense as

, (20.7)

where is the pseudo-inverse of .

Now that we have and , we construct the pose estimate as follows. First, and
are estimated as and normalized, that is, scaled to unit length. By construction,
these are the first two rows of the rotation matrix, and their cross-product is the third
row:

. (20.8)

The average of the magnitudes of and is an estimate of the weak-perspective scale
. From the weak-perspective equations, the world point in camera coordinates is

the image point in camera coordinates scaled by s:

, (20.9)

which is precisely the translation vector being sought.

I J

î ĵ I sî= J sĵ=

xi x0– Pi I⋅= yi y0– Pi J⋅=

I J

x MI= y MJ=

x pi y pi M

Pi

x y[] M I J[] p
i
C⇒ M I J[]= =

p
i

pi
I J

I J[] M
+
p
i

=

M
+

M

I J î ĵ

I J

R

î
T

ĵ
T

î ĵ×()
T

=

I J

s P0

p0

P0 p0 s⁄ x0 y0 f[] s⁄= =

OpenCV Reference Manual POSIT 20

20-5

Algorithm

The POSIT algorithm was first presented in the paper by DeMenthon and Davis
[DeMenthon92]. In this paper, the authors first describe their POS (Pose from
Orthography and Scaling) algorithm. By approximating perspective projection with
weak-perspective projection POS produces a pose estimate from a given image. POS
can be repeatedly used by constructing a new weak perspective image from each pose
estimate and feeding it into the next iteration. The calculated images are estimates of
the initial perspective image with successively smaller amounts of “perspective
distortion” so that the final image contains no such distortion. The authors term this
iterative use of POS as POSIT (POS with ITerations).

POSIT requires three pieces of known information. First, the object model consists of
N points, each with unique 3D coordinates. N must be greater than 3, and the points
must be non-degenerate (non-coplanar) to avoid algorithmic difficulties. Better results
are achieved by using more points and by choosing points as far from coplanarity as
possible. The object model is an N x 3 matrix. Second, the object image is the set of 2D
points resulting from a camera projection of the model points onto an image plane; it is
a function of the object current pose. The object image is an N x 2 matrix. Finally, the
focal length of the camera must be known.

Given the object model and the object image, the algorithm proceeds as follows. First,
the object image is assumed to be a weak perspective image of the object, from which
a least-squares pose approximation is calculated via the object model pseudoinverse.
From this approximate pose the object model is projected onto the image plane to
construct a new weak perspective image. From this image a new approximate pose is
found using least-squares, which in turn determines another weak perspective image,
and so on. For well-behaved inputs, this procedure converges to an unchanging weak
perspective image, whose corresponding pose is the final calculated object pose.

Example 20-1 POSIT Algorithm in Pseudo-Code

POSIT (imagePoints, objectPoints, focalLength) {
count = converged = 0;
modelVectors = modelPoints – modelPoints(0);
oldWeakImagePoints = imagePoints;
while (!converged) {

if (count == 0)
imageVectors = imagePoints – imagePoints(0);

else {
weakImagePoints = imagePoints .*

OpenCV Reference Manual POSIT 20

20-6

As the first step assumes, the object image is a weak perspective image of the object. It
is a valid assumption only for an object that is far enough from the camera so that
“perspective distortions” are insignificant. For such objects the correct pose is
recovered immediately and convergence occurs at the second iteration. For less ideal
situations, the pose is quickly recovered after several iterations. However, convergence
is not guaranteed when perspective distortions are significant, for example, when an
object is close to the camera with pronounced foreshortening. DeMenthon and Davis
state that “convergence seems to be guaranteed if the image features are at a distance
from the image center shorter than the focal length.”[DeMenthon92] Fortunately, this
occurs for most realistic camera and object configurations.

((1 + modelVectors*row3/translation(3)) * [1
1]);

imageDifference = sum(sum(abs(round(weakImagePoints) –
round(oldWeakImagePoints))));

oldWeakImagePoints = weakImagePoints;
imageVectors = weakImagePoints – weakImagePoints(0);

}
[I J] = pseudoinverse(modelVectors) * imageVectors;
row1 = I / norm(I);
row2 = J / norm(J);
row3 = crossproduct(row1, row2);
rotation = [row1; row2; row3];
scale = (norm(I) + norm(J)) / 2;
translation = [imagePoints(1,1); imagePoints(1,2); focalLength] /

scale;
converged = (count > 0) && (diff < 1);
count = count + 1;

}
return {rotation, translation};

}

Example 20-1 POSIT Algorithm in Pseudo-Code (continued)

OpenCV Reference Manual POSIT 20

20-7

Reference

cvCreatePOSITObject
Initializes structure containing object
information.

CvPOSITObject* cvCreatePOSITObject(CvPoint3D32f* points, int numPoints);

points Pointer to the points of the 3D object model.

numPoints Number of object points.

Discussion

The function cvCreatePOSITObject allocates memory for the object structure and
computes the object inverse matrix.

This data is stored in the structure CvPOSITObject, internal for OpenCV, which means
that the user cannot directly access the structure data. The user may only create this
structure and pass its pointer to the function.

Object is defined as a set of points given in a coordinate system. The function
cvPOSIT computes a vector that begins at a camera-related coordinate system center
and ends at the points[0] of the object.

Once the work with a given object is finished, the function cvReleasePOSITObject

must be called to free memory.

cvPOSIT
Implements POSIT algorithm.

void cvPOSIT(CvPoint2D32f* imagePoints, CvPOSITObject* pObject, double
focalLength, CvTermCriteria criteria, CvMatrix3* rotation, CvPoint3D32f*
translation);

OpenCV Reference Manual POSIT 20

20-8

imagePoints Pointer to the object points projections on the 2D image plane.

pObject Pointer to the object structure.

focalLength Focal length of the camera used.

criteria Termination criteria of the iterative POSIT algorithm.

rotation Matrix of rotations.

translation Translation vector.

Discussion

The function cvPOSIT implements POSIT algorithm. Image coordinates are given in a
camera-related coordinate system. Camera calibration functions must define the focal
length of the camera. At every iteration of the algorithm new perspective projection of
estimated pose is computed.

Difference norm between two projections is the maximal distance between
correspondent points. The parameter criteria.epsilon serves to stop the algorithm
if the difference is small.

cvReleasePOSITObject
Deallocates 3D object structure.

void cvReleasePOSITObject(CvPOSITObject** ppObject);

ppObject Address of the pointer to the object structure.

Discussion

The function cvReleasePOSITObject is used to release memory previously allocated
by the function cvCreatePOSITObject.

21-1

21Histogram

This chapter describes functions that operate on multi-dimensional histograms.

Overview
Histogram is a discrete approximation of stochastic variable probability distribution.
The variable can be both a scalar value and a vector. Histograms are widely used in
image processing and computer vision. For example, one-dimensional histograms can
be used for:

• grayscale image enhancement,

• determining optimal threshold levels (see Threshold Functions),

• selecting color objects via hue histograms back projection (see CamShift), and
other operations.

Two-dimensional histograms can be used, for example, for:

• analyzing and segmenting color images, normalized to brightness (e.g. red-green
or hue-saturation images),

• analyzing and segmenting motion fields (x-y or magnitude-angle histograms),

• analyzing shapes (see cvCalcPGH in Geometry chapter) or textures.

Multi dimensional histograms can be used for:

• content based retrieval (see the function cvCalcEMD),

• bayesian-based object recognition (see [Schiele2000]).

OpenCV Reference Manual Histogram 21

21-2

To store all the types of histograms (1D, 2D, nD), OpenCV introduces special
structure CvHistogram described in Example 21-1.

It is possible to store any histogram either in a dense form (as a multi-dimensional
array) or in a sparse form (now a balanced tree is used), however, it is reasonable to
store 4D (or even 3D) histograms and higher dimensional histograms in a sparse form
and 1D or 2D histograms in a dense form.

The type of histogram representation is passed into histogram creation function and
then it is stored in type field of CvHistogram. It is possible to use histogram
processing functions from this chapter on histograms created by the user. Use the
function cvMakeHistHeaderForArray .

Histograms and Signatures

Histograms represent a simple statistical description of an object, e.g., an image. The
object characteristics are measured during iterating through that object: for example,
color histograms for an image are built from pixel values in one of the color spaces.

Example 21-1 CvHistogram Structure Definition

typedef struct CvHistogram
{

int header_size; /* header's size */
CvHistType type; /* type of histogram */
int flags; /* histogram’s flags */
int c_dims; /* histogram’s dimension */
int dims[CV_HIST_MAX_DIM];

/* every dimension size */
int mdims[CV_HIST_MAX_DIM];

/* coefficients for fast
access to element */

/* &m[a,b,c] = m + a*mdims[0] +
b*mdims[1] + c*mdims[2] */

float* thresh[CV_HIST_MAX_DIM];
/* bin boundaries arrays for every

dimension */
float* array; /* all the histogram data, expanded into

the single row */
struct CvNode* root; /* tree – histogram data */
CvSet* set; /* pointer to memory storage

(for tree data) */
int* chdims[CV_HIST_MAX_DIM];

/* cache data for fast calculating */
} CvHistogram;

OpenCV Reference Manual Histogram 21

21-3

We quantize all the possible values of that multi-dimensional characteristic on each
coordinate. If the quantized characteristic can take different k1 values on the first
coordinate, k2 values on second, and kn on the last one, the resulting histogram has

the size .

The histogram can be viewed as a multi-dimensional array. Each dimension
corresponds to a certain object feature. An array element with coordinates [i1, i2 …
in], otherwise called a histogram bin, contains a number of measurements done for the
object with quantized value equal to i1 on first coordinate, i2 on the second
coordinate, and so on. We can compare objects using their histograms:

, or

.

But these methods suffer from several disadvantages. sometimes gives too small
difference when there is no exact correspondence between histogram bins, that is, if
the bins of one histogram are slightly shifted. On the other hand, gives too large
difference due to cumulative property.

Another drawback of pure histograms is large space required, especially for
higher-dimensional characteristics. The solution is to store not all histogram bins, but
only the ones that are non-zero, or just the ones with the highest score. Generalization
of histograms is termed signature and defined in the following way:

1. Characteristic values with rather fine quantization are gathered.

2. Only non-zero bins are dynamically stored.

This can be implemented using hash-tables, balanced trees, or other “sparse”
structures. After processing, a set of “clusters” is obtained. Each of them is
characterized by the coordinates and weight, that is, a number of measurements in the
neighborhood. Removing clusters with small weight can further reduce the signature
size. Although these structures cannot be compared using formulas written above,
there exists a robust comparison method described in [RubnerJan98] called Earth
Mover Distance.

size ki
i 1=

n

∏=

DL1
H K,() hi ki–

i

∑=

D H K,() h k–()TA h k–()=

DL1

DL2

OpenCV Reference Manual Histogram 21

21-4

Earth Mover Distance (EMD)

Physically, two signatures can be viewed as two systems - earth masses, spread into
several localized pieces. Each piece, or cluster, has some coordinates in space and
weight, that is, the earth mass it contains. The distance between two systems can be
measured then as a minimal work needed to get the second configuration from the first
or vice versa. To get metric, invariant to scale, the result is to be divided by the total
mass of the system.

Mathematically, it can be formulated as follows.

Consider m suppliers and n consumers. Let the capacity of ith supplier be xi and the
capacity of jth consumer be yj. Also, let the ground distance between ith supplier and
jth consumer be cij. The following restrictions must be met:

,

,

.

Then the task is to find the flow matrix , where is the amount of earth,
transferred from ith supplier to jth consumer. This flow must satisfy the restrictions
below:

,

,

and minimize the overall cost:

.

If is the optimal flow, then Earth Mover Distance is defined as

.

xi 0 yj 0 ci j, 0≥,≥,≥

xi yj
j

∑≥
i

∑
0 i m 0 j n<≤,<≤

fij fij

fi j, 0≥

fi j, xi≤
i
∑

fi j,
j
∑ y=

min ci j, fi j,,
j
∑

i
∑
fij

EMD x y,()

ci j, fi j,
j

∑
i

∑

fi j,
j

∑
i

∑
--------------------------------------=

OpenCV Reference Manual Histogram 21

21-5

The task of finding the optimal flow is a well known transportation problem, which
can be solved, for example, using the simplex method.

Example Ground Distances

As shown in the section above, physically intuitive distance between two systems can
be found if the distance between their elements can be measured. The latter distance is
called ground distance and, if it is a true metric, then the resultant distance between
systems is a metric too. The choice of the ground distance depends on the concrete task
as well as the choice of the coordinate system for the measured characteristic. In
[RubnerSept98], [RubnerOct98] three different distances are considered.

• The first is used for human-like color discrimination between pictures. CIE Lab
model represents colors in a way when a simple Euclidean distance gives true
human-like discrimination between colors. So, converting image pixels into CIE
Lab format, that is, representing colors as 3D-vectors (L,a,b), and quantizing them
(in 25 segments on each coordinate in [RubnerSept98]), produces a color-based
signature of the image. Although in experiment, made in [RubnerSept98], the
maximal number of non-zero bins could be 25x25x25 = 15625, the average
number of clusters was ~8.8, that is, resulting signatures were very compact.

• The second example is more complex. Not only the color values are considered,
but also the coordinates of the corresponding pixels, which makes it possible to
differentiate between pictures of similar color palette but representing different
color regions placements: e.g., green grass at the bottom and blue sky on top vs.
green forest on top and blue lake at the bottom. 5D space is used and metric is:

, where regulates importance of the
spatial correspondence. When = 0, the first metric is obtained.

• The third example is related to texture metrics. In the example Gabor transform is
used to get the 2D-vector texture descriptor (l,m), which is a log-polar
characteristic of the texture. Then, no-invariance ground distance is defined as:

, , ,
where is the scale parameter of Gabor transform, L is the number of different
angles used (angle resolution), and M is the number of scales used (scale
resolution). To get invariance to scale and rotation, the user may calculate minimal
EMD for several scales and rotations:

L∆()2
a∆()2

b∆()2 λ x∆()2
y∆()2

+()+ + +[]
1 2⁄

λ
λ

d l1 m1,() l2 m2,(),() l∆ α m∆+= l∆ min l1 l2– L l1 l2––,()= m∆ m1 m2–=

α

l1 m1,() l2 m2,(),

OpenCV Reference Manual Histogram 21

21-6

where d is measured as in the previous case, but and look slightly different:

, .

Lower Boundary for EMD

If ground distance is metric and distance between points can be calculated via the norm
of their difference, and total suppliers’ capacity is equal to total consumers’ capacity,
then it is easy to calculate lower boundary of EMD because:

As it can be seen, the latter expression is the distance between the mass centers of the
systems.

Poor candidates can be easily rejected using this lower boundary for EMD distance,
when searching in the large image database.

Reference

cvCreateHist
Creates histogram.

CvHistogram* CreateHist(int c_dims, int* dims, CvHistType type,
float** ranges=0, int uniform=1);

c_dims Number of histogram dimensions.

dims Array with numbers of bins per each dimension.

EMD t1 t2,() min EMD t1 t2 l0 m0, , ,(),
0 l0 L<≤
M m0 M< <–

=

∆l ∆m

l∆ min l1 l2– l0 modL()+ L l1 l2– l0 modL()+–,()= m∆ m1 m2– m0+=

ci j, fi j,,
j

∑
i

∑ pi qj– fi j,
j

∑
i

∑ pi qj– fi j,

pi qi– fi j,
j

∑
i

∑≥

j

∑
i

∑

fi j,
j

∑ 
 
 

pi fi j,
i

∑ 
 
 

qj
j

∑–

i

∑

xipi yjqj
j

∑–

i

∑

= =

=

=

OpenCV Reference Manual Histogram 21

21-7

type Histogram representation format: CV_HIST_ARRAY means that
histogram data is represented as an array; CV_HIST_TREE means that
histogram data is represented as a sparse structure, that is, the
balanced tree in this implementation.

ranges 2-D array, or more exactly, an array of arrays, of bin ranges for every
histogram dimension. Its meaning depends on the uniform
parameter value.

uniform If not 0, thehistogramhas evenly spacedbins andeveryelementof
ranges array is an array of two numbers - lower and upper
boundaries for the corresponding histogram dimension. If the
parameter is equal to 0, then ith element of ranges array
contains dims[i]+1 elements: l(0), u(0) == l(1), u(1) == l(2),
..., u(n-1), where l(i) and u(i) are lower and upper
boundaries for the ith bin, respectively.

Discussion

The function cvCreateHist creates a histogram of the specified size and returns the
pointer to the created histogram. If the array ranges is 0, the histogram bin ranges
must be specified later via the function cvSetHistBinRanges.

cvReleaseHist
Releases histogram header and underlying data.

void cvReleaseHist(CvHistogram** hist);

hist Pointer to the released histogram.

Discussion

The function cvReleaseHist releases the histogram header and underlying data. The
pointer to histogram is cleared by the function. If *hist pointer is already NULL, the
function has no effect.

OpenCV Reference Manual Histogram 21

21-8

cvMakeHistHeaderForArray
Initializes histogram header.

void cvMakeHistHeaderForArray(int c_dims, int* dims, CvHistogram* hist,
float* data, float** ranges=0,int uniform=1);

c_dims Histogram dimension number.

dims Dimension size array.

hist Pointer to the histogram to be created.

data Pointer to the source data histogram.

ranges 2D array of bin ranges.

uniform If not 0, the histogram has evenly spaced bins.

Discussion

The function cvMakeHistHeaderForArray initializes the histogram header and sets
the data pointer to the given value data. The histogram must have the type
CV_HIST_ARRAY. If the array ranges is 0, the histogram bin ranges must be specified
later via the function cvSetHistBinRanges.

cvQueryHistValue_1D
Queries value of histogram bin.

float cvQueryHistValue_1D(CvHistogram* hist, int idx0);

hist Pointer to the source histogram.

idx0 Index of the bin.

OpenCV Reference Manual Histogram 21

21-9

Discussion

The function cvQueryHistValue_1D returns the value of the specified bin of 1D
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0.

cvQueryHistValue_2D
Queries value of histogram bin.

float cvQueryHistValue_2D(CvHistogram* hist, int idx0, int idx1);

hist Pointer to the source histogram.

idx0 Index of the bin in the first dimension.

idx1 Index of the bin in the second dimension.

Discussion

The function cvQueryHistValue_2D returns the value of the specified bin of 2D
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0.

cvQueryHistValue_3D
Queries value of histogram bin.

float cvQueryHistValue_3D(CvHistogram* hist, int idx0, int idx1, int idx2);

hist Pointer to the source histogram.

idx0 Index of the bin in the first dimension.

idx1 Index of the bin in the second dimension.

idx2 Index of the bin in the third dimension.

OpenCV Reference Manual Histogram 21

21-10

Discussion

The function cvQueryHistValue_3D returns the value of the specified bin of 3D
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0.

cvQueryHistValue_nD
Queries value of histogram bin.

float cvQueryHistValue_nD(CvHistogram* hist, int* idx);

hist Pointer to the source histogram.

idx Array of bin indices, that is, a multi-dimensional index.

Discussion

The function cvQueryHistValue_nD returns the value of the specified bin of nD
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0. The function is the most general in the family of
QueryHistValue functions.

cvGetHistValue_1D
Returns pointer to histogram bin.

float* cvGetHistValue_1D(CvHistogram* hist, int idx0);

hist Pointer to the source histogram.

idx0 Index of the bin.

OpenCV Reference Manual Histogram 21

21-11

Discussion

The function cvGetHistValue_1D returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

cvGetHistValue_2D
Returns pointer to histogram bin.

float* cvGetHistValue_2D(CvHistogram* hist, int idx0, int idx1);

hist Pointer to the source histogram.

idx0 Index of the bin in the first dimension.

idx1 Index of the bin in the second dimension.

Discussion

The function cvGetHistValue_2D returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

cvGetHistValue_3D
Returns pointer to histogram bin.

float* cvGetHistValue_3D(CvHistogram* hist,int idx0, int idx1, int idx2);

hist Pointer to the source histogram.

idx0 Index of the bin in the first dimension.

idx1 Index of the bin in the second dimension.

idx2 Index of the bin in the third dimension.

OpenCV Reference Manual Histogram 21

21-12

Discussion

The function cvGetHistValue_3D returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

cvGetHistValue_nD
Returns pointer to histogram bin.

float* cvGetHistValue_nD(CvHistogram* hist, int* idx);

hist Pointer to the source histogram.

idx Array of bin indices, that is, a multi-dimensional index.

Discussion

The function cvGetHistValue_nD returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

cvGetMinMaxHistValue
Finds minimum and maximum histogram bins.

void cvGetMinMaxHistValue(CvHistogram* hist, float* minVal, float* maxVal,
int* minIdx=0, int* maxIdx=0);

hist Pointer to the histogram.

minVal Pointer to the minimum value of the histogram; can be NULL.

maxVal Pointer to the maximum value of the histogram; can be NULL.

minIdx Pointer to the array of coordinates for minimum. If not NULL, must
have hist->c_dims elements.

OpenCV Reference Manual Histogram 21

21-13

maxIdx Pointer to the array of coordinates for maximum. If not NULL, must
have hist->c_dims elements.

Discussion

The function cvGetMinMaxHistValue finds the minimum and maximum histogram
bins and their positions.

cvNormalizeHist
Normalizes histogram.

void cvNormalizeHist(CvHistogram* hist, float factor);

hist Pointer to the histogram.

factor Normalization factor.

Discussion

The function cvNormalizeHist normalizes the histogram, such that the sum of
histogram bins becomes equal to factor.

cvThreshHist
Thresholds histogram.

void cvThreshHist(CvHistogram* hist, float thresh);

hist Pointer to the histogram.

thresh Threshold level.

Discussion

The function cvThreshHist clears histogram bins that are below the specified level.

OpenCV Reference Manual Histogram 21

21-14

cvCompareHist
Compares two histograms.

double cvCompareHist(CvHistogram* hist1, CvHistogram* hist2, CvCompareMethod
method);

hist1 First histogram.

hist2 Second histogram.

method Comparison method; may be any of those listed below:

• CV_COMP_CORREL;

• CV_COMP_CHISQR;

• CV_COMP_INTERSECT.

Discussion

The function cvCompareHist compares two histograms using specified method.

CV_COMP_CORREL ,

CV_COMP_CHISQR ,

CV_COMP_INTERSECT .

The function returns the comparison result.

result

q̂iv̂i
i

∑

q̂i
2 ∗

v̂i
2

i

∑
i

∑
-----------------------------------=

result
qi vi–()2

qi vi+

i

∑=

result min qi vi,()
i

∑=

OpenCV Reference Manual Histogram 21

21-15

cvCopyHist
Copies histogram.

void cvCopyHist(CvHistogram* src, CvHistogram** dst);

src Source histogram.

dst Pointer to destination histogram.

Discussion

The function cvCopyHist makes a copy of the histogram. If the second histogram
pointer *dst is null, it is allocated and the pointer is stored at *dst. Otherwise, both
histograms must have equal types and sizes, and the function simply copies the source
histogram bins values to destination histogram.

cvSetHistBinRanges
Sets bounds of histogram bins.

void cvSetHistBinRanges(CvHistogram* hist, float** ranges, int uniform=1);

hist Destination histogram.

ranges 2D array of bin ranges.

uniform If not 0, the histogram has evenly spaced bins.

Discussion

The function cvSetHistBinRanges is a stand-alone function for setting bin ranges
in the histogram. For more detailed description of the parameters ranges and uniform

see cvCreateHist function, that can initialize the ranges as well. Ranges for
histogram bins must be set before the histogram is calculated or backproject of the
histogram is calculated.

OpenCV Reference Manual Histogram 21

21-16

cvCalcHist
Calculates histogram of image(s).

void cvCalcHist(IplImage** img, CvHistogram* hist, int doNotClear=0,
IplImage* mask=0);

img Source images.

hist Pointer to the histogram.

doNotClear Clear flag.

mask Mask; determines what pixels of the source images are considered in
process of histogram calculation.

Discussion

The function cvCalcHist calculates the histogram of the array of single-channel
images. If the parameter doNotClear is 0, then the histogram is cleared before
calculation; otherwise the histogram is simply updated.

cvCalcBackProject
Calculates back project.

void cvCalcBackProject(IplImage** img, IplImage* dstImg, CvHistogram* hist);

img Source images array.

dstImg Destination image.

hist Source histogram.

Discussion

The function cvCalcBackProject calculates the back project of the histogram. For
each group of pixels taken from the same position from all input single-channel images
the function puts the histogram bin value to the destination image, where the

OpenCV Reference Manual Histogram 21

21-17

coordinates of the bin are determined by the values of pixels in this input group. From
the statistical point of view, an output image pixel value characterizes probability of
the corresponding input pixels group belonging to an object, whose local features
distribution histogram is used.

For example, to find a red object in the picture the procedure is as follows:

1. Calculate a hue histogram for the red object assuming the image contains only
this object. The histogram is likely to have a strong maximum, corresponding
to red color.

2. Calculate back project using the histogram and get the picture, where bright
pixel corresponds to typical colors (for example, red) in the searched object.

3. Find connected components in the resulting picture and choose the right
component using some additional criteria, for example, the largest connected
component.

cvCalcBackProjectPatch
Calculates back project patch of histogram.

void cvCalcBackProjectPatch(IplImage** img, IplImage* dst, CvSize patchSize,
CvHistogram* hist, CvCompareMethod method, float normFactor);

img Source images array.

dst Destination image.

patchSize Size of patch slid though the source image.

hist Probabilistic model.

method Method of comparison.

normFactor Normalization factor.

Discussion

The function cvCalcBackProjectPatch calculates back projection by comparing
histograms of the source image patches with the given histogram. Taking measurement
results from some image at each location over ROI creates an array img. These results

OpenCV Reference Manual Histogram 21

21-18

might be one or more of hue, x derivative, y derivative, Laplacian filter, oriented
Gabor filter, etc. Each measurement output is collected into its own separate image.
The img image array is a collection of these measurement images. A
multi-dimensional histogram hist is constructed by sampling from the img image
array. The final histogram is normalized. The hist histogram has as many dimensions
as elements in img array.

Each new image is measured and then converted into an img image array over a chosen
ROI. Histograms are taken from this img image in an area covered by a “patch” with
anchor at center as shown in Figure 21-1. The histogram is normalized using the
parameter norm_factor so that it may be compared with hist. The calculated
histogram is compared to the model histogram; hist uses the function cvCompareHist

(the parameter method). The resulting output is placed at the location corresponding to
the patch anchor in the probability image dst. This process is repeated as the patch is
slid over the ROI. Subtracting trailing pixels covered by the patch and adding newly
covered pixels to the histogram can make many calculations redundant.

OpenCV Reference Manual Histogram 21

21-19

Figure 21-1 Back Project Calculation by Patches

Each image of the image array img shown in the figure stores the corresponding
element of a multi-dimensional measurement vector. Histogram measurements are
drawn from measurement vectors over a patch with anchor at the center. A
multi-dimensional histogram hist is used via the function cvCompareHist to
calculate the output at the patch anchor. The patch is slid around until the values are
calculated over the whole ROI.

Patch

ROI

img
images

OpenCV Reference Manual Histogram 21

21-20

cvCalcEMD
Computes earth mover distance.

void cvCalcEMD(float* signature1, int size1, float* signature2, int size2, int
dims, CvDisType distType, float (*dist_func)(float* f1, float* f2, void*
user_param), float* emd, float* lowerBound, void* user_param);

signature1 First signature, array of size1 * (dims + 1) elements.

signature2 Second signature, array of size2 * (dims + 1) elements.

dims Number of dimensions in feature space.

distType Metrics used. CV_DIST_L1, CV_DIST_L2, and CV_DIST_C stand for
one of the standard metrics. CV_DIST_USER means that a
user-defined function is used as the metric. The function takes two
coordinate vectors and user parameter and returns the distance
between two vectors.

emd Pointer to the calculated emd distance.

lowerBound Pointer to the calculated lower boundary.

Discussion

The function cvCalcEMD computes earth mover distance and/or a lower boundary of
the distance. The lower boundary can be calculated only if dims > 0, and it has sense
only if the metric used satisfies all metric axioms. The lower boundary is calculated
very fast and can be used to determine roughly whether the two signatures are far
enough so that they cannot relate to the same object. If the parameter dims is equal to
0, then signature1 and signature2 are considered simple 1D histograms. Otherwise,
both signatures must look as follows:

(weight_i0, x0_i0, x1_i0, ..., x(dims-1)_i0,

weight_i1, x0_i1, x1_i1, ..., x(dims-1)_i1,

…

weight_(size1-1), x0_(size1-1), x1_(size1-1, ..., x(dims-1)_(size1-1)),

OpenCV Reference Manual Histogram 21

21-21

where weight_ik is the weight of ik cluster, while x0_ik,..., x(dims-1)_ik are
coordinates of the cluster ik.

If the parameter lower_bound is equal to 0, only emd is calculated. If the calculated
lower boundary is greater than or equal to the value stored at this pointer, then the true
emd is not calculated, but is set to that lower_bound.

OpenCV Reference Manual Histogram 21

21-22

22-1

22Gesture Recognition

This chapter describes specific functions for the static gesture recognition technology.

Overview
The gesture recognition algorithm can be divided into four main components as
illustrated in Figure 22-1.

The first component computes the 3D arm pose from range image data that may be
obtained from the standard stereo correspondence algorithm. The process includes 3D
line fitting, finding the arm position along the line and creating the arm mask image.

Figure 22-1 Gesture Recognition Algorithm

OpenCV Reference Manual Gesture Recognition 22

22-2

The second component produces a frontal view of the arm image and arm mask
through a planar homograph transformation. The process consists of the homograph
matrix calculation and warping image and image mask (See Figure 22-2).

The third component segments the arm from the background based on the probability
density estimate that a pixel with a given hue and saturation value belongs to the arm.
For this 2D image histogram, image mask histogram, and probability density
histogram are calculated. Following that, initial estimate is iteratively refined using the
maximum likelihood approach and morphology operations (See Figure 22-3).

Figure 22-2 Arm Location and Image Warping

OpenCV Reference Manual Gesture Recognition 22

22-3

Figure 22-3 Arm Segmentation by Probability Density Estimation

The fourth step is the recognition step when normalized central moments or seven Hu
moments are calculated using the resulting image mask. These invariants are used to
match masks by the Mahalanobis distance metric calculation.

The functions operate with specific data of several types. Range image data is a set of
3D points in the world coordinate system calculated via the stereo correspondence
algorithm. The second data type is a set of the original image indices of this set of 3D
points, that is, projections on the image plane. The functions of this group enable the
user:

• to locate the arm region in a set of 3D points (the functions cvFindHandRegion,
cvFindHandRegionA),

• create image mask from a subset of 3D points and associated subset indices around
the arm center (the function cvCreateHandMask),

• calculate the homography matrix for the initial image transformation from the
image plane to the plane defined by the frontal arm plane (the function
cvCalcImageHomography),

• and calculate the probability density histogram for the arm location (the function
cvCalcProbDensity).

OpenCV Reference Manual Gesture Recognition 22

22-4

Reference

cvFindHandRegion
Finds arm region in 3D range image data.

void cvFindHandRegion(CvPoint3D32f* points, int count, CvSeq* indexs, float*
line, CvSize2D32f size, int flag, CvPoint3D32f* center, CvMemStorage*
storage, CvSeq** numbers);

points Pointer to the input 3D point data.

count Numbers of the input points.

indexs Sequence of the input points indices in the initial image.

line Pointer to the input points approximation line.

size Size of the initial image.

flag Flag of the arm orientation.

center Pointer to the output arm center.

storage Pointer to the memory storage.

numbers Pointer to the output sequence of the points indices.

Discussion

The function cvFindHandRegion finds the arm region in 3D range image data. The
coordinates of the points must be defined in the world coordinates system. Each input
point has user-available transform indices in the initial image (indexs). The function
finds the arm region along the approximation line from the left, if flag = 0, or from
the right, if flag = 1, in the points maximum accumulation by the points projection
histogram calculation. Also the function calculates the center of the arm region and the
indices of the points that lie near the arm center. The function cvFindHandRegion

assumes that the arm length is equal to about 0.25m in the world coordinate system.

OpenCV Reference Manual Gesture Recognition 22

22-5

cvFindHandRegionA
Finds arm region in 3D range image data and
defines arm orientation.

void cvFindHandRegionA(CvPoint3D32f* points, int count, CvSeq* indexs, float*
line, CvSize2D32f size, int jCenter, CvPoint3D32f* center, CvMemStorage*
storage, CvSeq** numbers);

points Pointer to the input 3D point data.

count Number of the input points.

indexs Sequence of the input points indices in the initial image.

line Pointer to the input points approximation line.

size Size of the initial image.

jCenter Input j-index of the initial image center.

center Pointer to the output arm center.

storage Pointer to the memory storage.

numbers Pointer to the output sequence of the points indices.

Discussion

The function cvFindHandRegionA finds the arm region in the 3D range image data
and defines the arm orientation (left or right). The coordinates of the points must be
defined in the world coordinates system. The input parameter jCenter is the index j

of the initial image center in pixels (width/2). Each input point has user-available
transform indices on the initial image (indexs). The function finds the arm region
along approximation line from the left or from the right in the points maximum
accumulation by the points projection histogram calculation. Also the function
calculates the center of the arm region and the indices of points that lie near the arm
center. The function cvFindHandRegionA assumes that the arm length is equal to
about 0.25m in the world coordinate system.

OpenCV Reference Manual Gesture Recognition 22

22-6

cvCreateHandMask
Creates arm mask on image plane.

void cvCreateHandMask(CvSeq* numbers, IplImage *img_mask, CvRect *roi);

numbers Sequence of the input points indices in the initial image.

img_mask Pointer to the output image mask.

roi Pointer to the output arm ROI.

Discussion

The function cvCreateHandMask creates the arm mask on the image plane. The
pixels of the resulting mask associated with the set of indices on the initial image
(indexs) will have the maximum unsigned char value (255). All remaining pixels will
have the minimum unsigned char value (0). The output image mask (img_mask) has to
have the IPL_DEPTH_8U type and the number of channels is 1.

cvCalcImageHomography
Calculates homography matrix.

void cvCalcImageHomography(float *line, CvPoint3D32f* center, float
intrinsic[3][3], float homography[3][3]);

line Pointer to the input 3D line.

center Pointer to the input arm center.

intrinsic Matrix of the intrinsic camera parameters.

homography Output homography matrix.

OpenCV Reference Manual Gesture Recognition 22

22-7

Discussion

The function cvCalcImageHomography calculates the homograph matrix for the
initial image transformation from image plane to the plane, defined by 3D arm line
(See Figure 22-1). If n1=(nx,ny)and n2=(nx,nz) are coordinates of the normals of
the 3D line projection of planes XY and XZ, then the result image homography matrix is
calculated as , where Rh is the 3x3
matrix , and

,

where is the arm center coordinates in the world coordinate system. A is the
intrinsic camera parameters matrix

.

The diagonal entries and are the camera focal length in units of horizontal and
vertical pixels and the two remaining entries are the principal point image
coordinates.

cvCalcProbDensity
Calculates arm mask probability density on
image plane.

void cvCalcProbDensity (CvHistogram* hist, CvHistogram* hist_mask,
CvHistogram* hist_dens);

hist Input image histogram.

hist_mask Input image mask histogram.

hist_dens Result probability density histogram.

H A Rh I3 3× Rh–() xh 0 0 1, ,[]⋅ ⋅+() A
1–⋅ ⋅=

Rh R1 R2⋅=

R1 n1 uz n1 uz, ,×[] R2, uy n2 uy n2, ,×[] uz, 0 0 1, ,[] T
uy, 0 1 0, ,[] T

xh,
Th

Tz

Tx

Tz

Ty

Tz
----- 1, ,

T
= = = = = =

Tx Ty Tz, ,()

A

fx 0 cx

0 fy cy

0 0 1

=

fx fy

cx cy,

OpenCV Reference Manual Gesture Recognition 22

22-8

Discussion

The function cvCalcProbDensity calculates the arm mask probability density from
the two 2D-histograms. The input histograms have to be calculated in two channels on
the initial image. If and are input histogram and mask
histogram respectively, then the result probability density histogram is calculated
as

So the values of the are between 0 and 255.

cvMaxRect
Calculates the maximum rectangle.

void cvMaxRect (CvRect* rect1, CvRect* rect2, CvRect* max_rect);

rect1 First input rectangle.

rect2 Second input rectangle.

max_rect Result maximum rectangle.

Discussion

The function cvMaxRect calculates the maximum rectangle for two input rectangles
(Figure 22-4).

hij{ } hmij{ } 1 i Bi 1 j Bj≤ ≤,≤ ≤,
pij

pij

mij

hij
------- 255 if hij 0,≠,⋅

0 if hij, 0,=

255 if mij hij>,







=

pij

OpenCV Reference Manual Gesture Recognition 22

22-9

Figure 22-4 Maximum Rectangular for Two Input Rectangles

Rect1

Rect2

Maximum
rectangle

OpenCV Reference Manual Gesture Recognition 22

22-10

23-1

23Matrix Operations

This chapter describes functions for matrix operations.

Overview
OpenCV introduces special type CvMat for storing real single-precision or
double-precision matrices. Operations supported include basic matrix arithmetics,
eigen problem solution, SVD, 3D geometry and recognition-specific functions. To
reduce time call overhead the special type CvMatArray (array of matrices) and support
functions are also introduced.

Example 23-1 CvMat Structure Definition

typedef struct CvMat
{

int rows; // number of rows
int cols; // number of cols
CvMatType type; // type of matrix
int step; // not used
union
{

float* fl; //pointer to the float data
double* db; //pointer to double-precision data

}data;
}CvMat

Example 23-2 CvMatArray Structure Definition

typedef struct CvMatArray
{

int rows; //number of rows
int cols; //number pf cols
int type; // type of matrices
int step; // not used
int count; // number of matrices in aary

OpenCV Reference Manual Matrix Operations 23

23-2

Reference

cvmAlloc
Allocates memory for matrix data.

void cvmAlloc (CvMat* mat);

mat Pointer to the matrix for which memory must be allocated.

Discussion

The function cvmAlloc allocates memory for matrix data.

cvmAllocArray
Allocates memory for matrix array data.

void cvmAllocArray (CvMatArray* matAr);

matAr Pointer to the matrix array for which memory must be allocated.

Discussion

The function cvmAllocArray allocates memory for matrix array data.

union
{

float* fl;
float* db;

}data; // pointer to matrix array data
}CvMatArray

Example 23-2 CvMatArray Structure Definition (continued)

OpenCV Reference Manual Matrix Operations 23

23-3

cvmFree
Frees memory allocated for matrix data.

void cvmFree (CvMat* matAr);

mat Pointer to the matrix.

Discussion

The function cvmFree releases the memory allocated by the function cvmAlloc.

cvmFreeArray
Frees memory allocated for matrix array data.

void cvmFreeArray (CvMat* matAr);

mat Pointer to the matrix array.

Discussion

The function cvmFreeArray releases the memory allocated by the function
cvmAllocArray.

cvmAdd
Computes sum of two matrices.

void cvmAdd (CvMat* SrcA, CvMat* SrcB, CvMat* Dst);

SrcA Pointer to the first source matrix.

SrcB Pointer to the second source matrix.

OpenCV Reference Manual Matrix Operations 23

23-4

Dst Pointer to the destination matrix.

Discussion

The function cvmAdd adds the matrix SrcA to SrcB and stores the result in Dst.

.

cvmSub
Computes difference of two matrices.

void cvmSub (CvMat* SrcA, CvMat* SrcB, CvMat* Dst);

SrcA Pointer to the first source matrix.

SrcB Pointer to the second source matrix.

Dst Pointer to the destination matrix.

Discussion

The function cvmSub subtracts the matrix SrcB from the matrix SrcA and stores the
result in Dst.

.

cvmScale
Multiplies matrix by scalar value.

void cvmScale (CvMat* Src, CvMat* Dst, double value);

Src Pointer to the source matrix.

Dst Pointer to the destination matrix.

value Factor.

c(a b ci,+ ai bi)+= =

c(a b ci,– ai bi–)= =

OpenCV Reference Manual Matrix Operations 23

23-5

Discussion

The function cvmScale multiplies every element of the matrix by a scalar value

.

cvmDotProduct
Calculates dot product of two vectors in
Euclidian metrics.

double cvmDotProduct(CvMat* Src1, CvMat* Src2);

Src1 Pointer to the first source vector.

Src2 Pointer to the second source vector.

Discussion

The function cvmDotProduct calculates and returns the Euclidean dot product of two
vectors.

.

cvmCrossProduct
Calculates cross product of two 3D vectors.

void cvmCrossProduct(CvMat* Src1, CvMat* Src2, CvMat* Dest);

Src1 Pointer to the first source vector.

Src2 Pointer to the second source vector.

Dest Pointer to the destination vector.

c αa ci, αai= =

DP aibi

i 1=

N

∑=

OpenCV Reference Manual Matrix Operations 23

23-6

Discussion

The function cvmCrossProduct calculates the cross product of two 3-D vectors:

.

cvmMul
Multiplies matrices.

void cvmMul (CvMat* SrcA, CvMat* SrcB, CvMat* Dst);

SrcA Pointer to the first source matrix.

SrcB Pointer to the second source matrix.

Dst Pointer to the destination matrix

Discussion

The function cvmMul multiplies SrcA by SrcB and stores the result in Dst.

, .

cvmMulTransposed
Calculates product of matrix and transposition.

void cvmMulTransposed (CvMat* Src, CvMat* Dst, Int order);

Src Pointer to the source matrix.

DestMatr Pointer to the destination matrix.

Order Order of multipliers.

c axb c1(a2b3 a3b2 c2,– a3b1 a1b3 c3,– a1b2 a2b1)–= = = =

C AB= Cij AikBkj

k
∑=

OpenCV Reference Manual Matrix Operations 23

23-7

Discussion

The function cvmMulTransposed calculates the product of SrcMatr and its
transposition.

The function evaluates if Order is non-zero, otherwise.

cvmTranspose
Transposes matrix.

void cvmTranspose (CvMat* Src, CvMat*Dst);

Src Pointer to the source matrix.

Dst Pointer to the destination matrix.

Discussion

The function cvmTranspose transposes Src and stores result in Dst.

, .

cvmInvert
Inverses matrix.

void cvmInvert (CvMat* Src, CvMat*Dst);

Src Pointer to the source matrix.

Dst Pointer to the destination matrix.

Discussion

The function cvmInvert inverts Src and stores the result in Dst.

,

B A
T
A= B AA

T
=

B A
T

= Bij Aji=

B A
1–

 AB, BA I= = =

OpenCV Reference Manual Matrix Operations 23

23-8

cvmTrace
Returns trace of matrix.

double cvmTrace (CvMat* mat);

mat Pointer to the source matrix.

Discussion

The function cvmTrace returns the sum of diagonal elements of the matrix mat .

cvmDet
Returns determinant of matrix.

double cvmDet (CvMat* mat);

mat Pointer to the source matrix.

Discussion

The function cvmDet returns the determinant of the matrix mat.

cvmCopy
Copies one matrix to another.

void cvmCopy (CvMat* Src, CvMat* Dst);

Src Pointer to the source matrix.

Dest Pointer to the destination matrix.

OpenCV Reference Manual Matrix Operations 23

23-9

Discussion

The function cvmCopy copies the matrix Src to the matrix Dest.

.

cvmSetZero_32f
Sets matrix to zero.

void cvmSetZero_32f (CvMat* mat);

mat Pointer to the matrix to be set to zero.

Discussion

The function cvmSetZero_32f sets the matrix to zero.

.

cvmSetIdentity
Sets matrix to identity.

void cvmSetIdentity (CvMat* mat);

mat Pointer to the matrix to be set to identity.

Discussion

The function cvmSetIdentity sets the matrix to identity.

.

B A Bij, Aij= =

A 0 Aij, 0= =

A E Aij, δij= =

OpenCV Reference Manual Matrix Operations 23

23-10

cvmMahalonobis
Calculates Mahalonobis distance between
vectors.

double cvmMahalonobis (CvMat* SrcA, CvMat* SrcB, CvMat* mat);

SrcA Pointer to the first source vector.

SrcB Pointer to the second source vector.

Matr Pointer to the weighted matrix.

Discussion

The function cvmMahalonobis calculates the weighted distance between two vectors
and returns it:

.

Here, T matrix is supposed to be inverse of covariation matrix.

cvmSVD
Calculates singular value decomposition.

void cvmSVD (CvMat* Src, CvMat* Orth, CvMat* Diag);

Src Pointer to the source matrix.

Orth Pointer to the matrix where the orthogonal matrix will be saved.

Diag Pointer to the matrix where the diagonal matrix will be saved.

Discussion

The function cvmSVD decomposes the source matrix to product of two orthogonal and
one diagonal matrices.

Dist Tij ai bi–() aj bj–()
j
∑

i
∑=

OpenCV Reference Manual Matrix Operations 23

23-11

, where A1 is orthogonal matrix and stored in A, Diag is diagonal
matrix and Orth is another orthogonal matrix. If A is square matrix, A1 and Orth will
be the same.

.

cvmEigenVV
Computes eigenvalues and eigenvectors.

void cvmEigenVV (CvMat* Src, CvMat* evects CvMat* evals, Double eps);

Src Pointer to the source matrix.

evects Pointer to the matrix where eigenvectors must be stored.

evals Pointer to the matrix where eigenvalues must be stored.

eps Accuracy of diagonalization.

Discussion

The function cvmEigenVV computes the eigenvalues and eigenvectors of the matrix
Src and stores them in the parameters evals and evects correspondingly. Jacobi
method is used.

NOTE. The function cvmSVD destroys the source matrix Src.
Therefore, in case the source matrix is needed after decomposition,
the user is advised to clone it before running this function.

A A1′ Diag× Orth×=

OpenCV Reference Manual Matrix Operations 23

23-12

cvmPerspectiveProject
Implements general transform of 3D vector
array.

void cvmPerspectiveProject (CvMat* mat, CvMatArray src, CvMatArray dst);

mat 4x4 matrix.

src Source array of 3D vectors.

dst Destination array of 3D vectors.

Discussion

The function cvmPerspectiveProject maps every input 3D vector to
, where

and .

NOTE. The function cvmEigenVV destroys the source matrix Src.
Therefore, if the source matrix is needed after eigenvalues have been
calculated, the user is advised to clone it before running the function
cvmEigenVV.

x y z, ,()T

x' w y' w z' w⁄,⁄,⁄()T

x' y' z' w', , ,()T
mat() x y z l, , ,()T×= w

w' w' 0≠,
1 w' 0=,




=

OpenCV Reference Manual Matrix Operations 23

23-13

24-1

24Eigen Objects

This chapter describes functions that operate on eigen objects.

Overview
Let us define an object in the n-dimensional space as a sequence of
values ul that could be vectors, images, etc. Images may either have or not have ROI.
Let us assume that we have a group of input objects , ;
usually m << n. Averaged, or mean, object of this group is defined
as follows:

.

Covariance matrix C = |cij| is a square symmetric matrix :

. .

Eigen objects basis , i = 1, … , of the input objects group
may be calculated using the following relation:

,

where and are eigenvalues and the corresponding eigenvectors
of matrix C.

u u1 u2… un,,{ }=

u
i

u1
i

u2
i … un

i, , ,{ }= i 1 … m, ,=

u u1 u2 … un, , ,{ }=

ul
1
m
---- ul

k

k 1=

m

∑=

m m×

cij ul
i

ul) ul
j

ul)–(⋅–(
l 1=

n

∑=

e
i

e1
i

e2
i … en

i, , ,{ }= m1 m≤

el
i 1

λ i

--------- vk
i

ul
k

ul–()⋅
k 1=

m

∑=

λ i v
i

v1
i

v2
i … vm

i, , ,{ }=

OpenCV Reference Manual Eigen Objects 24

24-2

Any input object ui as well as any other object u may be decomposed in the eigen
objects m1-D sub-space. Decomposition coefficients of the object u are:

.

Using these coefficients, we may calculate projection of the object u
to the eigen objects sub-space, or, in other words, restore the object u in that sub-space:

Reference

cvCalcCovarMatrixEx
Calculates covariance matrix for group of input
objects.

void cvCalcCovarMatrixEx(int nObjects, void* input, int ioFlags, int
ioBufSize, uchar* buffer, void* userData, IplImage* avg, float*
covarMatrix);

nObjects Number of source objects.

input Pointer either to the array of IplImage input objects or to the read
callback function (depending on the parameter ioFlags).

ioFlags Input/output flags.

ioBufSize Input/output buffer size.

buffer Pointer to input/output buffer.

userData Pointer to the structure that contains all necessary data for the
callback functions.

wi el
i

ul ul–()⋅
l 1=

n

∑=

ũ ũ1 ũ2… ũn,,{ }=

ũl wkel
k

ul+

k 1=

m1

∑=

OpenCV Reference Manual Eigen Objects 24

24-3

avg Averaged object.

covarMatrix Covariance matrix. Output parameter; must be allocated before the
call.

Discussion

The function cvCalcCovarMatrixEx calculates a covariance matrix of the input
objects group using previously calculated averaged object. Depending on ioFlags

parameter it may be used either in direct access or callback mode. If ioFlags is not
CV_EIGOBJ_NO_CALLBACK, buffer must be allocated before the function
cvCalcCovarMatrixEx.

cvCalcEigenObjects
Calculates orthonormal eigen basis and
averaged object for group of input objects.

void cvCalcEigenObjects (int nObjects, void* input, void* output, int ioFlags,
int ioBufSize, void* userData, CvTermCriteria* calcLimit, IplImage* avg,
float* eigVals;

nObjects Number of source objects.

input Pointer either to the array of IplImage input objects or to the read
callback function (depending on the parameter ioFlags).

output Pointer either to the array of eigen objects or to the write callback
function (depending on the parameter ioFlags).

ioFlags Input/output flags.

ioBufSize Input/output buffer size in bytes. The size is zero, if unknown.

userData Pointer to the structure that contains all necessary data for the
callback functions.

calcLimit Determines conditions for the calculation to be finished.

avg Averaged object.

OpenCV Reference Manual Eigen Objects 24

24-4

eigVals Pointer to the eigenvalues array in the descending order; may be
NULL.

Discussion

The function cvCalcEigenObjects calculates orthonormal eigen basis and averaged
object for group of input objects. Depending on ioFlags parameter it may be used
either in direct access or callback mode. Depending on the parameter calcLimit,
calculations are finished either if the eigen faces number reaches a certain value or if
the relation between the current and the largest eigenvalues comes down to a certain
value, or any of the above conditions takes place. The value calcLimit->type must
be CV_TERMCRIT_NUMB, CV_TERMCRIT_EPS, or CV_TERMCRIT_NUMB |

CV_TERMCRIT_EPS. The function returns the real values calcLimit->maxIter and
calcLimit->epsilon.

Averaged object is also calculated by the function cvCalcEigenObjects, but it must
be created previously. Calculated eigen objects are ordered according to the
corresponding eigenvalues in the descending order.

The parameter eigVals may be equal to NULL, if eigenvalues are not needed.

The function cvCalcEigenObjects uses the function cvCalcCovarMatrixEx.

cvCalcDecompCoeff
Calculates decomposition coefficient of input
object.

double cvCalcDecompCoeff(IplImage* obj, IplImage* eigObj, IplImage* avg);

obj Input object.

eigObj Eigen object.

avg Averaged object.

Discussion

OpenCV Reference Manual Eigen Objects 24

24-5

The function cvCalcDecompCoeff calculates one decomposition coefficient of the
input object using the previously calculated eigen object and the averaged object.

cvEigenDecomposite
Calculates all decomposition coefficients for
input object.

void cvEigenDecomposite(IplImage* obj, int nEigObjs, void* eigInput, int
ioFlags, void* userData, IplImage* avg, float* coeffs);

obj Input object.

nEigObjs Number of eigen objects.

eigInput Pointer either to the array of IplImage eigen objects or to the read
callback function (depending on the parameter ioFlags).

ioFlags Input/output flags.

userData Pointer to the structure that contains all necessary data for the
callback functions.

avg Averaged object.

coeffs Calculated coefficients; output parameter.

Discussion

The function cvEigenDecomposite calculates all decomposition coefficients for the
input object using the previously calculated eigen objects basis and the averaged
object. Depending on ioFlags parameter it may be used either in direct access or
callback mode.

OpenCV Reference Manual Eigen Objects 24

24-6

cvEigenProjection
Calculates object projection to the eigen
sub-space.

void cvEigenProjection (int nEigObjs, void* eigInput, int ioFlags, void*
userData, float* coeffs, IplImage* avg, IplImage* proj);

nEigObjs Number of eigen objects.

eigInput Pointer either to the array of IplImage input objects or to the read
callback function (depending on the parameter ioFlags).

ioFlags Input/output flags.

userData Pointer to the structure that contains all necessary data for the
callback functions.

coeffs Previously calculated decomposition coefficients.

avg Averaged object.

proj Decomposed object projection to the eigen sub-space.

Discussion

The function cvEigenProjection calculates an object projection to the eigen
sub-space or, in other words, restores an object using previously calculated eigen
objects basis, averaged object, and decomposition coefficients of the restored object.
Depending on ioFlags parameter it may be used either in direct access or callback
mode.

Use of Functions

The functions of the eigen objects group have been developed to be used for any
number of objects, even if their total size exceeds free RAM size. So the functions may
be used in two main modes.

Direct access mode is the best choice if the size of free RAM is sufficient for all input
and eigen objects allocation. This mode is set if the parameter ioFlags is equal to
CV_EIGOBJ_NO_CALLBACK. In this case input and output parameters are pointers to

OpenCV Reference Manual Eigen Objects 24

24-7

arrays of input (output) objects of IplImage* type. The parameters ioBufSize and
userData are not used. An example of the function cvCalcEigenObjects used in
direct access mode is given below.

The callback mode is the right choice in case when the number and the size of objects
are large, which happens when all objects and/or eigen objects cannot be allocated in
free RAM. In this case input/output information may be read/written and developed by
portions. Such regime is called callback mode and is set by the parameter ioFlags.
Three kinds of the callback mode may be set:

IoFlag = CV_EIGOBJ_INPUT_CALLBACK, only input objects are read by portions;

IoFlag = CV_EIGOBJ_OUTPUT_CALLBACK, only eigen objects are calculated and
written by portions;

Example 24-1 Use of function cvCalcEigenObjects in Direct Access Mode

IplImage** objects;
IplImage** eigenObjects;
IplImage* avg;
float* eigVals;
CvSize size = cvSize(nx, ny);
. .
if(!(eigVals = (float*) cvAlloc(nObjects*sizeof(float))))

__ERROR_EXIT__;
if(!(avg = cvCreateImage(size, IPL_DEPTH_32F, 1)))

__ERROR_EXIT__;
for(i=0; i< nObjects; i++)
{

objects[i] = cvCreateImage(size, IPL_DEPTH_8U, 1);
eigenObjects[i] = cvCreateImage(size, IPL_DEPTH_32F, 1);
if(!(objects[i] & eigenObjects[i]))

__ERROR_EXIT__;
}
. .
cvCalcEigenObjects (nObjects,

(void*)objects,
(void*)eigenObjects,

CV_EIGOBJ_NO_CALLBACK,
0,
NULL,
calcLimit,
avg,
eigVals);

OpenCV Reference Manual Eigen Objects 24

24-8

IoFlag = CV_EIGOBJ_BOTH_CALLBACK, or IoFlag = CV_EIGOBJ_INPUT_CALLBACK |

CV_EIGOBJ_OUTPUT_CALLBACK, both processes take place. If one of the above modes is
realized, the parameters input and output, both or either of them, are pointers to
read/write callback functions. These functions must be written by the user; their
prototypes are the same:

CvStatus callback_read (int ind, void* buffer, void* userData);

CvStatus callback_write(int ind, void* buffer, void* userData);

ind Index of the read or written object.

buffer Pointer to the start memory address where the object will be
allocated.

userData Pointer to the structure that contains all necessary data for the
callback functions.

The user must define the user data structure which may carry all information necessary
to read/write procedure, such as the start address or file name of the first object on the
HDD or any other device, row length and full object length, etc.

If ioFlag is not equal to CV_EIGOBJ_NO_CALLBACK, the function
cvCalcEigenObjects allocates a buffer in RAM for objects/eigen objects portion
storage. The size of the buffer may be defined either by the user or automatically. If the
parameter ioBufSize is equal to 0, or too large, the function will define the buffer
size. The read data must be located in the buffer compactly, that is, row after row,
without alignment and gaps.

An example of the user data structure, i/o callback functions, and the use of the
function cvCalcEigenObjects in the callback mode is shown below.

Example 24-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode

// User data structure
typedef struct _UserData
{

int objLength; /* Obj. length (in elements, not in bytes !) */
int step; /* Obj. step (in elements, not in bytes !) */
CvSize size; /* ROI or full size */
CvPoint roiIndent;
char* read_name;
char* write_name;

} UserData;

OpenCV Reference Manual Eigen Objects 24

24-9

//--
--
// Read callback function
CvStatus callback_read_8u (int ind, void* buffer, void* userData)
{

int i, j, k = 0, m;
UserData* data = (UserData*)userData;
uchar* buff = (uchar*)buf;
char name[32];
FILE *f;

if(ind<0) return CV_StsBadArg;
if(buf==NULL || userData==NULL) CV_StsNullPtr;

for(i=0; i<28; i++)
{

name[i] = data->read_name[i];
if(name[i]=='.' || name[i]==' '))break;

}
name[i] = 48 + ind/100;
name[i+1] = 48 + (ind%100)/10;
name[i+2] = 48 + ind%10;
if((f=fopen(name, "r"))==NULL) return CV_BadCallBack;
m = data->roiIndent.y*step + data->roiIndent.x;

for(i=0; i<data->size.height; i++, m+=data->step)
{

fseek(f, m , SEEK_SET);
for(j=0; j<data->size.width; j++, k++)

fread(buff+k, 1, 1, f);
}

fclose(f);
return CV_StsOk;

}
//---
// Write callback function
cvStatus callback_write_32f (int ind, void* buffer, void* userData)
{

int i, j, k = 0, m;
UserData* data = (UserData*)userData;
float* buff = (float*)buf;
char name[32];
FILE *f;

if(ind<0) return CV_StsBadArg;
if(buf==NULL || userData==NULL) CV_StsNullPtr;

Example 24-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode (continued)

OpenCV Reference Manual Eigen Objects 24

24-10

for(i=0; i<28; i++)
{

name[i] = data->read_name[i];
if(name[i]=='.' || name[i]==' '))break;

}
if((f=fopen(name, "w"))==NULL) return CV_BadCallBack;
m = 4 * (ind*data->objLength + data->roiIndent.y*step

+ data->roiIndent.x);

for(i=0; i<data->size.height; i++, m+=4*data->step)
{

fseek(f, m , SEEK_SET);
for(j=0; j<data->size.width; j++, k++)

fwrite(buff+k, 4, 1, f);
}

fclose(f);
return CV_StsOk;

}
//--
--
// fragments of the main function
{
. .

int bufSize = 32*1024*1024; //32 MB RAM for i/o buffer
float* avg;

cv UserData data;
cvStatus r;
cvStatus (*read_callback)(int ind, void* buf, void* userData)=

read_callback_8u;
cvStatus (*write_callback)(int ind, void* buf, void* userData)=

write_callback_32f;
cvInput* u_r = (cvInput*)&read_callback;
cvInput* u_w = (cvInput*)&write_callback;
void* read_ = (u_r)->data;
void* write_ = (u_w)->data;

. .
data->read_name = ”input”;
data->write_name = ”eigens”;
avg = (float*)cvAlloc(sizeof(float) * obj_width * obj_height);

cvCalcEigenObjects(obj_number,
read_,
write_,
CV_EIGOBJ_BOTH_CALLBACK,
bufSize,

Example 24-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode (continued)

OpenCV Reference Manual Eigen Objects 24

24-11

(void*)&data,
&limit,
avg,
eigVal);

. .
}

Example 24-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode (continued)

25-1

25
Embedded Hidden Markov
Models

This chapter describes functions for using Embedded Hidden Markov Models (HMM)
in face recognition task.

Overview

HMM Structures

In order to support embedded models the user must define structures to represent 1D
HMM and 2D embedded HMM model.

typedef struct _CvEHMM

{

int level;

int num_states;

float* transP;

float** obsProb;

union

{

CvEHMMState* state;

struct _CvEHMM* ehmm;

} u;

}CvEHMM;

Below is the description of the CvEHMM fields:

OpenCV Reference Manual Embedded Hidden Markov Models 25

25-2

level Level of embedded HMM. If level==0, HMM is most external. In
2D HMM there are two types of HMM: 1 external and several
embedded. External HMM has level==1, embedded HMMs have
level==0.

num_states Number of states in 1D HMM.

transP State-to-state transition probability, square matrix
().

obsProb Observation probability matrix.

state Array of HMM states. For the last-level HMM, that is, an HMM
without embedded HMMs, HMM states are “real”.

ehmm Array of embedded HMMs. If HMM is not last-level, then HMM
states are not “real” and they are HMMs.

For representation of observations the following structure is defined:

typedef struct CvImgObsInfo

{

int obs_x;

int obs_y;

int obs_size;

float** obs;

int* state;

int* mix;

}CvImgObsInfo;

This structure is used for storing observation vectors extracted from 2D image.

obs_x Number of observations in the horizontal direction.

obs_y Number of observations in the vertical direction.

obs_size Length of every observation vector.

obs Pointer to observation vectors stored consequently. Number of
vectors is obs_x*obs_y.

state Array of indices of states, assigned to every observation vector.

num_state num_state×

OpenCV Reference Manual Embedded Hidden Markov Models 25

25-3

mix Index of mixture component, corresponding to the observation
vector within an assigned state.

Reference

cvCreate2DHMM
Creates 2D embedded HMM.

CvEHMM* cvCreate2DHMM(int* stateNumber, int* numMix, int obsSize);

stateNumber Array, the first element of the which specifies the number of
superstates in the HMM. All subsequent elements specify the
number of states in every embedded HMM, corresponding to each
superstate. So, the length of the array is stateNumber[0]+1.

numMix Array with numbers of Gaussian mixture components per each
internal state. The number of elements in the array is equal to
number of internal states in the HMM, that is, superstates (or
external states) are not counted here.

obsSize Size of observation vectors to be used with created HMM.

Discussion

The function cvCreate2DHMM returns created structure of the type CvEHMM with
specified parameters.

cvRelease2DHMM
Releases 2D embedded HMM.

void cvRelease2DHMM(CvEHMM** hmm);

hmm Address of pointer to HMM to be released.

OpenCV Reference Manual Embedded Hidden Markov Models 25

25-4

Discussion

The function cvRelease2DHMM frees all memory used by HMM and clears the pointer
to HMM.

cvCreateObsInfo
Creates structure to store image observation
vectors.

CvImgObsInfo* cvCreateObsInfo(CvSize numObs, int obsSize);

numObs Numbers of observations in the horizontal and vertical directions.
For the given image and scheme of extracting observations the
parameter can be computed via the macro CV_COUNT_OBS(roi,

dctSize, delta, numObs), where roi, dctSize, delta, numObs
are the pointers to structures of the type CvSize. The pointer roi
means size of roi of image observed, numObs is the output
parameter of the macro.

obsSize Size of observation vectors to be stored in the structure.

Discussion

The function cvCreateObsInfo creates new structures to store image observation
vectors. For definitions of the parameters roi, dctSize, and delta see the
specification of the function cvImgToObs_DCT.

cvReleaseObsInfo
Releases observation vectors structure.

void cvReleaseObsInfo(CvImgObsInfo** obs_info);

obs_info Address of the pointer to the structure CvImgObsInfo.

OpenCV Reference Manual Embedded Hidden Markov Models 25

25-5

Discussion

The function cvReleaseObsInfo frees all memory used by observations and the
clears pointer to the structure CvImgObsInfo.

cvImgToObs_DCT
Extracts observation vectors from image.

void cvImgToObs_DCT(IplImage* image, float* obs, CvSize dctSize, CvSize
obsSize, CvSize delta);

image Input image.

obs Pointer to consequently stored observation vectors.

dctSize Size of image blocks for which DCT coefficients are to be computed.

obsSize Number of the lowest DCT coefficients in the horizontal and vertical
directions that will be put into the observation vector.

delta Shift in pixels between two consecutive image blocks in the
horizontal and vertical directions.

Discussion

The function cvImgToObs_DCT extracts observation vectors, that is, DCT coefficients,
from the image. The user must pass obs_info.obs as the parameter obs to use this
function with other HMM functions and use the structure obs_info of the
CvImgObsInfo type.

Example 25-1

CvImgObsInfo* obs_info;
……………………………
CvImgToObs_DCT(image,

obs_info->obs, //!!!
dctSize, obsSize, delta);

OpenCV Reference Manual Embedded Hidden Markov Models 25

25-6

cvUniformImgSegm
Performs uniform segmentation of image
observations by HMM states.

void cvUniformImgSegm(CvImgObsInfo* obs_info, CvEHMM* hmm);

obs_info Observations structure.

hmm HMM structure.

Discussion

The function cvUniformImgSegm segments image observations by HMM states
uniformly (see Figure 25-1 for 2D embedded HMM with 5 superstates and 3, 6, 6, 6, 3
internal states of every corresponding superstate).

Figure 25-1 Initial Segmentation for 2D Embedded HMM

cvInitMixSegm
Segments all observations within every internal
state of HMM by state mixture components.

void cvInitMixSegm(CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm);

obs_info_array Array of pointers to the observation structures.

num_img Length of above array.

OpenCV Reference Manual Embedded Hidden Markov Models 25

25-7

hmm HMM.

Discussion

The function cvInitMixSegm takes a group of observations from several training
images already segmented by states and splits a set of observation vectors within every
internal HMM state into as many clusters as number of mixture components in the
state.

cvEstimateHMMStateParams
Estimates all parameters of every HMM state.

void cvEstimateHMMStateParams(CvImgObsInfo** obs_info_array, int num_img,
CvEHMM* hmm);

obs_info_array Array of pointers to the observation structures.

num_img Length of the array.

hmm HMM.

Discussion

The function cvEstimateHMMStateParams computes all inner parameters of every
HMM state, including Gaussian means, variances, etc.

cvEstimateTransProb
Computes transition probability matrices for
embedded HMM.

void cvEstimateTransProb(CvImgObsInfo** obs_info_array, int num_img, CvEHMM*
hmm);

obs_info_array Array of pointers to the observation structures.

OpenCV Reference Manual Embedded Hidden Markov Models 25

25-8

num_img Length of above array.

hmm HMM.

Discussion

The function cvEstimateTransProb uses current segmentation of image
observations to compute transition probability matrices for all embedded and external
HMMs.

cvEstimateObsProb
Computes probability of every observation of
several images.

void cvEstimateObsProb(CvImgObsInfo* obs_info, CvEHMM* hmm);

obs_info Observation structure.

hmm HMM structure.

Discussion

The function cvEstimateObsProb computes Gaussian probabilities of each
observation to occur in each of the internal HMM states.

cvEViterbi
Executes Viterbi algorithm for embedded HMM.

Float cvEViterbi(CvImgObsInfo* obs_info, CvEHMM* hmm);

obs_info Observation structure.

hmm HMM structure.

OpenCV Reference Manual Embedded Hidden Markov Models 25

25-9

Discussion

The function cvEViterbi executes Viterbi algorithm for embedded HMM. Viterbi
algorithm evaluates the likelihood of the best match between given image observations
and given HMM and performs segmentation of image observations by HMM states.
The segmentation is done on the basis of the match found.

cvMixSegmL2
Segments observations from all training images
by mixture components of newly assigned states.

void cvMixSegmL2(CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm);

obs_info_array Array of pointers to the observation structures.

num_img Length of the array.

hmm HMM.

Discussion

The function cvMixSegmL2 segments observations from all training images by
mixture components of newly Viterbi algorithm-assigned states. The function uses
Euclidean distance to group vectors around existing mixtures centers.

OpenCV Reference Manual Embedded Hidden Markov Models 25

25-10

26-1

26Drawing Primitives

This chapter describes simple drawing functions.

Overview
The functions described in this chapter are intended mainly to mark out recognized or
tracked features in the image. With tracking or recognition pipeline implemented it is
often necessary to represent results of the processing in the image. Despite the fact that
most Operating Systems have advanced graphic capabilities, they often require an
image, where one is going to draw, to be created by special system functions. For
example, under Win32 a graphic context (DC) must be created in order to use GDI
draw functions. Therefore, several simple functions for 2D vector graphic rendering
have been created. All of them are platform-independent and work with IplImage

structure. Now supported image formats include byte-depth (depth == IPL_DEPTH_8U

or depth == IPL_DEPTH_8S) single channel (grayscale) or three channel (RGB or,
more exactly, BGR (that is, blue channel goes first) images.

There are several notes that can be made for each drawing function in the library,
therefore, they are put below - not in discussion sections:

• All of the functions take color parameter that means brightness for grayscale
images and RGB color for color images. In the latter case a value, passed to the
function, can be composed via CV_RGB macro that is defined as:

#define CV_RGB(r,g,b) ((((r)&255) << 16)|(((g)&255) << 8)|((b)&255))

• Any function in the group takes one or more points (CvPoint structure instance(s))
as input parameters. Point coordinates are counted from top-left ROI corner for
top-origin images and from bottom-left ROI corner for bottom-origin images.

OpenCV Reference Manual Drawing Primitives 26

26-2

• All the functions are divided into two classes - with or without antialiasing. For
several functions there exist antialiased versions that end with AA suffix. The
coordinates, passed to AA-functions, can be specified with sub-pixel accuracy, that
is they can have several fractional bits, which number is passed via scale
parameter. For example, if cvCircleAA function is passed center =

cvPoint(34,18)and scale = 2 then the actual center coordinates will be
(34/4.,19/4.)==(16.5,4.75).

• Simple (that is, non-antialiased) functions have thickness parameter that
specifies thickness of lines a figure is drawn with. For some functions the
parameter may take negative values. It causes the functions to draw a filled figure
instead of drawing its outline. To improve code readability one may use constant
CV_FILLED = -1 as a thickness value to draw filled figures.

Reference

cvLine
Draws simple or thick line segment.

void cvLine(IplImage* img, CvPoint pt1, CvPoint pt2, int color, int
thickness=1);

img Image.

pt1 First point of the line segment.

pt2 Second point of the line segment.

color Line color (RGB) or brightness (grayscale image).

thickness Line thickness.

OpenCV Reference Manual Drawing Primitives 26

26-3

Discussion

The function cvLine draws the line segment between pt1 and pt2 points in the
image. The line is clipped by the image or ROI rectangle. The Bresenham algorithm is
used for simple line segments. Thick lines are drawn with rounding endings. To
specify the line color the user may use the macro CV_RGB (r, g, b) that makes a 32-bit
color value from the color components.

cvLineAA
Draws antialiased line segment.

void cvLineAA(IplImage* img, CvPoint pt1, CvPoint pt2, int color, int scale=0
);

img Image.

pt1 First point of the line segment.

pt2 Second point of the line segment.

color Line color (RGB) or brightness (grayscale image).

scale Number of fractional bits in the end point coordinates.

Discussion

The function cvLineAA draws the line segment between pt1 and pt2 points in the
image. The line is clipped by the image or ROI rectangle. Drawing algorithm includes
some sort of Gaussian filtering to get smooth picture. To specify the line color the user
may use the macro CV_RGB (r, g, b) that makes a 32-bit color value from the color
components.

OpenCV Reference Manual Drawing Primitives 26

26-4

cvRectangle
Draws simple, thick or filled rectangle.

void cvRectangle(IplImage* img, CvPoint pt1, CvPoint pt2,
int color, int thickness);

img Image.

pt1 One of the rectangle vertices.

pt2 Opposite rectangle vertex.

color Line color (RGB) or brightness (grayscale image).

thickness Thickness of lines that make up the rectangle.

Discussion

The function cvRectangle draws rectangle with two opposite corners pt1 and pt2. If
the parameter thickness is positive or zero, the outline of the rectangle is drawn with
that thickness, otherwise a filled rectangle is drawn.

cvCircle
Draws simple, thick or filled circle.

void cvCircle(IplImage* img, CvPoint center, int radius, int color,
int thickness=1);

img Image where the line is drawn.

center Center of the circle.

radius Radius of the circle.

color Circle color (RGB) or brightness (grayscale image).

thickness Thickness of the circle outline if positive, otherwise indicates that a
filled circle should be drawn.

OpenCV Reference Manual Drawing Primitives 26

26-5

Discussion

The function cvCircle draws a simple or filled circle with given center and radius.
The circle is clipped by ROI rectangle. The Bresenham algorithm is used both for
simple and filled circles. To specify the circle color the user may use the macro CV_RGB

(r, g, b) that makes a 32-bit color value from the color components.

cvEllipse
Draws simple or thick elliptic arc or fills ellipse
sector.

void cvEllipse(IplImage* img, CvPoint center, CvSize axes, double angle,
double start_angle, double end_angle, int color, int thickness=1);

img Image.

center Center of the ellipse.

axes Length of ellipse axes.

angle Rotation angle.

start_angle Starting angle of the elliptic arc.

end_angle Ending angle of the elliptic arc.

color Ellipse color (RGB) or brightness (grayscale image).

thickness Thickness of the ellipse arc.

Discussion

The function cvEllipse draws a simple or thick elliptic arc or fills an ellipse sector.
The arc is clipped by ROI rectangle. Generalized Bresenham algorithm for conic
section is used for simple elliptic arcs here, and piecewise-linear approximation is used
for antialiased arcs and thick arcs. All the angles are given in degrees. The meaning of
parameters is shown in Figure 26-1:

OpenCV Reference Manual Drawing Primitives 26

26-6

Figure 26-1

cvEllipseAA
Draws antialiased elliptic arc.

void cvEllipseAA(IplImage* img, CvPoint center, CvSize axes, double angle,
double start_angle, double end_angle, int color, int scale=0);

img Image.

center Center of the ellipse.

axes Length of ellipse axes.

angle Rotation angle.

start_angle Starting angle of the elliptic arc.

end_angle Ending angle of the elliptic arc.

Drawn arc

First ellipse axis

Second ellipse axis

Rotation angle

Starting angle of the arc

Ending angle of the arc

OpenCV Reference Manual Drawing Primitives 26

26-7

color Ellipse color (RGB) or brightness (grayscale image).

scale Specifies the number of fractional bits in the center coordinates and
axes sizes.

Discussion

The function cvEllipseAA draws an antialiased elliptic arc. The arc is clipped by
ROI rectangle. Generalized Bresenham algorithm for conic section is used for simple
elliptic arcs here, and piecewise-linear approximation is used for antialiased arcs and
thick arcs. All the angles are in degrees. The meaning of parameters is shown in
Figure 26-1.

cvFillPoly
Fills polygons interior.

void cvFillPoly(IplImage* img, CvPoint** pts, int* npts, int contours,
int color);

img Image.

pts Array of pointers to polygons.

npts Array of array counters or a single counter.

contours Number of contours that bind the filled region.

color Polygon color (RGB) or brightness (grayscale image).

Discussion

The function cvFillPoly fills an area, bounded by several polygonal contours. The
function fills complex areas, e.g., areas with holes, contour self-intersection, etc.

OpenCV Reference Manual Drawing Primitives 26

26-8

cvFillConvexPoly
Fills convex polygon.

void cvFillConvexPoly(IplImage* img, CvPoint* pts, int npts, int color);

img Image.

pts Array of pointers to a single polygon.

npts Array of array counters or a single counter.

color Polygon color (RGB) or brightness (grayscale image).

Discussion

The function cvFillConvexPoly fills convex polygon interior. The function
cvFillConvexPoly is much faster than the function cvFillPoly and fills not only
the convex polygon but any monotonic polygon, that is, a polygon, whose contour
intersects every horizontal line (scan line) twice at the most.

cvPolyLine
Draws simple or thick polygons.

void cvPolyLine(IplImage* img, CvPoint** pts, int* npts, int contours,
is_closed, int color, int thickness=1);

img Image.

pts Array of pointers to polylines.

npts Array of polyline counters or a single counter.

contours Number of polyline contours.

is_closed Indicates whether the polylines must be drawn closed. If closed, the
function draws the line from the last vertex of every contour to the
first vertex.

OpenCV Reference Manual Drawing Primitives 26

26-9

color Polygon color (RGB) or brightness (grayscale image).

thickness Thickness of the polyline edges.

Discussion

The function cvPolyLine draws a set of simple or thick polylines.

cvPolyLineAA
Draws antialiased polygons.

void cvPolyLineAA(IplImage* img, CvPoint** pts, int* npts, int contours,
is_closed, int color, int scale=0);

img Image.

pts Array of pointers to polylines.

npts Array of polyline counters or a single counter.

contours Number of polyline contours.

is_closed Indicates whether the polylines must be drawn closed. If closed, the
function draws the line from the last vertex of every contour to the
first vertex.

color Polygon color (RGB) or brightness (grayscale image).

scale Specifies number of fractional bits in the coordinates of polyline
vertices.

Discussion

The function cvPolyLineAA draws a set of antialiased polylines.

OpenCV Reference Manual Drawing Primitives 26

26-10

cvInitFont
Initializes font structure.

void cvInitFont(CvFont* font, CvFontFace font_face, float hscale, float
vscale, float italic_scale, int thickness);

font Pointer to the resultant font structure.

font_face Font name identifier. Only the font CV_FONT_VECTOR0 is currently
supported.

hscale Horizontal scale. If equal to 1.0f, the characters will have the
original width depending on the font type. If equal to 0.5f, the
characters will be half of the original width.

vscale Vertical scale. If equal to 1.0f, the characters will have the original
height depending on the font type. If equal to 0.5f, the characters
will be half of the original height.

italic_scale Approximate tangent of the character slope relative to the vertical
line. Zero value means a non-italic font, 1.0f means ~45× slope, etc.

thickness Thickness of lines composing letters outlines. The function cvLine

is used for drawing letters.

Discussion

The function cvInitFont initializes the font structure that can be passed further into
text drawing functions. Although only one font is supported, it is possible to get
different font “flavors” by varying the scale parameters, slope, and thickness.

cvPutText
Draws the text string.

void cvPutText(IplImage* img, const char* text, CvPoint org, CvFont* font, int
color);

OpenCV Reference Manual Drawing Primitives 26

26-11

img Input image.

text String to print.

org Coordinates of bottom-left corner of the first letter.

font Pointer to the font structure.

color Text color (RGB) or brightness (grayscale image).

Discussion

The function cvPutText renders the text in the image with the specified font and
color. The printed text is clipped by ROI rectangle. Symbols that do not belong to the
specified font are replaced with the “rectangle” symbol.

cvGetTextSize
Retrieves width and height of text string.

void cvGetTextSize(CvFont* font, const char* text_string, CvSize* text_size,
int* ymin);

font Pointer to the font structure.

text_string Input string.

text_size Resultant size of the text string. Height of the text does not include
the height of character parts that are below the baseline.

ymin Lowest y coordinate of the text relative to the baseline. Negative, if
the text includes such characters as g, j, p, q, y, etc., and zero
otherwise.

Discussion

The function cvGetTextSize calculates the binding rectangle for the given text string
when the specified font is used.

OpenCV Reference Manual Drawing Primitives 26

26-12

27-1

27System Functions

This chapter describes system library functions.

Reference

cvLoadPrimitives
Loads optimized versions of functions for specific
platform.

int cvLoadPrimitives (char* dllName, char* processorType);

dllName Name of dynamically linked library without postfix that
contains the optimized versions of functions

processorType Postfix that specifies the platform type:

“W7” for Pentium® 4 processor, “A6” for Intel® Pentium® II
processor, “M6” for Intel® Pentium® II processor, NULL for
auto detection of the platform type.

Discussion

The function cvLoadPrimitives loads the versions of functions that are optimized
for a specific platform. The function is automatically called before the first call to the
library function, if not called earlier.

OpenCV Reference Manual System Functions 27

27-2

cvGetLibraryInfo
Gets the library information string.

void cvGetLibraryInfo (char** version, int* loaded, char** dllName);

version Pointer to the string that will receive the build date information; can
be NULL.

loaded Postfix that specifies the platform type:

“W7” for Pentium® 4 processor, “A6” for Intel® Pentium® III
processor, “M6” for Intel® Pentium® II processor, NULL for auto
detection of the platform type.

dllName Pointer to the full name of dynamically linked library without path,
could be NULL.

Discussion

The function cvGetLibraryInfo retrieves information about the library: the build
date, the flag that indicates whether optimized DLLs have been loaded or not, and their
names, if loaded.

OpenCV Reference Manual System Functions 27

27-3

OpenCV Reference Manual System Functions 27

27-4

28-1

28Utility

The chapter describes unclassified OpenCV functions.

Reference

cvAbsDiff
Calculates absolute difference between two
images and between image and scalar value.

void cvAbsDiff(IplImage* srcA, IplImage* srcB, IplImage* dst);

srcA First compared image.

srcB Second compared image.

dst Destination image.

value Value to compare.

Discussion

The function cvAbsDiff calculates the absolute difference between two images or
between an image and a scalar value.

cvAbsDiff: .dst i[] abs src i[] dst i[]–()=

OpenCV Reference Manual Utility 28

28-2

cvAbsDiffS
Calculates absolute difference between two
images and between image and scalar value.

void cvAbsDiffS(IplImage* srcA, IplImage* dst, double value);

srcA First compared image.

srcB Second compared image.

dst Destination image.

value Value to compare.

Discussion

The function cvAbsDiffS calculates the absolute difference between two images or
between an image and a scalar value.

cvAbsDiffS: .

cvMatchTemplate
Fills characteristic image for given image and
template.

void cvMatchTemplate(IplImage* img, IplImage* templ, IplImage* result,
CvTemplMatchMethod method);

img Image where the search is running.

templ Searched template; must be not greater than the source image. The
parameters img and templ must be single-channel images and have
the same depth (IPL_DEPTH_8U, IPL_DEPTH_8S, or
IPL_DEPTH_32F).

dst i[] abs src i[] value–()=

OpenCV Reference Manual Utility 28

28-3

result Output characteristic image. It has to be a single-channel image with
depth equal to IPL_DEPTH_32F. If the parameter img has the size of

and the template has the size of size , the resulting image
must have the size or selected ROI .

method Specifies the way the template must be compared with image
regions.

Discussion

The function cvMatchTemplate implements a set of methods for finding regions in
the image that are similar to the given template.

Given a source image with pixels and template with pixels, we get the
resulting image with pixels, and the pixel value in each location
(x,y) characterizes the similarity between the template and the image rectangle with
the top-left corner at (x,y) and the right-bottom corner at (x + w - 1, y + h - 1).
Similarity can be calculated in several ways:

Squared difference (method == CV_TM_SQDIFF)

,

where I(x,y) is the value of the image pixel in the location (x,y), while T(x,y) is the
value of the template pixel in the location (x,y).

Normalized squared difference (method == CV_TM_SQDIFF_NORMED)

.

Cross correlation (method == CV_TM_CCORR):

W H× w h×
W w– 1 H h– 1+×+

W H× w h×
W w– 1 H h– 1+×+

S x y,() T x' y',() I x x' y y'+,+()–[] 2

x' 0=

w 1–

∑
y' 0=

h 1–

∑=

S x y,()

T x' y',() I x x' y y'+,+()–[] 2

x' 0=

w 1–

∑
y' 0=

h 1–

∑

T x' y',()2
I x x' y y'+,+()2

x' 0=

w 1–

∑
y' 0=

h 1–

∑
x' 0=

w 1–

∑
y' 0=

h 1–

∑

---=

OpenCV Reference Manual Utility 28

28-4

.

Cross correlation, normalized (method == CV_TM_CCORR_NORMED):

.

Correlation coefficient (method == CV_TM_CCOEFF):

,

where , , and where
stands for the average value of pixels in the template raster and stands for the
average value of the pixels in the current “window” of the image.

Correlation coefficient, normalized (method == CV_TM_CCOEFF_NORMED):

.

After the function cvMatchTemplate returns the resultant image, probable positions
of the template in the image could be located as the local or global maximums of the
resultant image brightness.

C x y,() T x' y',()I x x' y y'+,+()
x' 0=

w 1–

∑
y' 0=

h 1–

∑=

C̃ x y,()

T x' y',()I x x' y y'+,+()
x' 0=

w 1–

∑
y' 0=

h 1–

∑

T x' y',()2
I x x' y y'+,+()2

x' 0=

w 1–

∑
y' 0=

h 1–

∑
x' 0=

w 1–

∑
y' 0=

h 1–

∑

---=

R x y,() T̃ x' y',()Ĩ x x' y y'+,+()
x' 0=

w 1–

∑
y' 0=

h 1–

∑=

T̃ x' y',() T x' y',() T–= I' x x' y y'+,+() I x x' y y'+,+() I x y,()–= T

I x y,()

R̃ x y,()

T̃ x' y',()Ĩ x x' y y'+,+()
x' 0=

w 1–

∑
y' 0=

h 1–

∑

T̃ x' y',()2
Ĩ x x' y y'+,+()2

x' 0=

w 1–

∑
y' 0=

h 1–

∑
x' 0=

w 1–

∑
y' 0=

h 1–

∑

---=

OpenCV Reference Manual Utility 28

28-5

cvCvtPixToPlane
Divides pixel image into separate planes.

void cvCvtPixToPlane(IplImage* src, IplImage* dst0, IplImage* dst1, IplImage*
dst2, IplImage* dst3);

src Source image.

dst0…dst4 Destination planes.

Discussion

The function cvCvtPixToPlane divides a color image into separate planes. Two
modes are available for the operation. Under the first mode the parameters dst0, dst1,
and dst2 are non-zero, while dst3 must be zero for the three-channel source image.
For the four-channel source image all the destination image pointers are non-zero, in
this case the function splits the three/four channel image into separate planes and
writes them to destination images. Under the second mode only one of the destination
images is not NULL; in this case, the corresponding plane is extracted from the image
and placed into destination image.

cvCvtPlaneToPix
Composes color image from separate planes.

void cvCvtPlaneToPix(IplImage* src0, IplImage* src1, IplImage* src2,
IplImage* src3, IplImage* dst);

src0…src4 Source planes.

dst Destination image.

OpenCV Reference Manual Utility 28

28-6

Discussion

The function cvCvtPlaneToPix composes color image from separate planes. If the
dst has three channels, then src0, src1, and src2 must be non-zero, otherwise dst
must have four channels and all the source images must be non-zero.

cvConvertScale
Converts one image to another with linear
transformation.

void cvConvertScale(IplImage* src, IplImage* dst, double scale, double
shift);

src Source image.

dst Destination image.

Discussion

The function cvConvertScale applies linear transform to all pixels in the source
image and puts the result into the destination image with appropriate type conversion.
The following conversions are supported: IPL_DEPTH_8U <-> IPL_DEPTH_32F,
IPL_DEPTH_8U <-> IPL_DEPTH_16S, IPL_DEPTH_8S <-> IPL_DEPTH_32F,
IPL_DEPTH_8S <-> IPL_DEPTH_16S, IPL_DEPTH_16S <-> IPL_DEPTH_32F and
IPL_DEPTH_32S <-> IPL_DEPTH_32F. The unsigned char to float conversion is effected
by the formula

dst(x,y) = (float)(src(x,y)*scale + shift);

The float is converted to unsigned char by the following algorithm:

t = round(src(x,y)*scale + shift);

if(t < 0)

dst(x,y) = 0;

else if(t > 255)

dst(x,y) = 255;

else

OpenCV Reference Manual Utility 28

28-7

dst(x,y) = (unsigned char)t;

cvInitLineIterator
Initializes line iterator.

int cvInitLineIterator(IplImage* img, CvPoint pt1, CvPoint pt2,
CvLineIterator* lineIterator);

img Image.

pt1 Starting line point.

pt2 Ending line point.

lineIterator Pointer to the line iterator state structure.

Discussion

The function cvInitLineIterator initializes the line iterator and returns the number
of pixels between two ending points. Both points must be inside the image. After the
iterator has been initialized, all the points on the raster line that connects the two
ending points may be retrieved by successive calls of CV_NEXT_LINE_POINT point. The
points on the line are calculated one by one using the 8-point connected Bresenham
algorithm. Below follows an example how to draw the line on the RGB image, such
that the image pixels that belong to the line are mixed with the given color using the
XOR operation.

void put_xor_line(IplImage* img, CvPoint pt1, CvPoint pt2, int r, int
g, int b) {

CvLineIterator iterator;

int count = cvInitLineIterator(img, pt1, pt2, &iterator);

for(int i = 0; i < count; i++){

iterator.ptr[0] ^= (uchar)b;

iterator.ptr[1] ^= (uchar)g;

iterator.ptr[2] ^= (uchar)r;

CV_NEXT_LINE_POINT(iterator);

OpenCV Reference Manual Utility 28

28-8

}

}

cvSampleLine
Reads raster line to buffer.

int cvSampleLine(IplImage* img, CvPoint pt1, CvPoint pt2, void* buffer);

img Image.

pt1 Starting line point.

pt2 Ending line point.

buffer Buffer to store the line points; must have enough size to store
MAX(|pt2.x - pt1.x| + 1,|pt2.y - pt1.y|+1) points.

Discussion

The function cvSampleLine implements one particular case of application of line
iterators. The function reads all the image points, lying on the line between pt1 and
pt2, including the ending points, and stores them into the buffer.

cvGetRectSubPix
Retrieves raster rectangle from image with
sub-pixel accuracy.

void cvGetRectSubPix(IplImage* src, IplImage* rect, CvPoint2D32f center);

src Source image.

rect Extracted rectangle; must have odd width and height.

center Floating point coordinates of the rectangle center. The center must
be inside the image.

OpenCV Reference Manual Utility 28

28-9

buffer Buffer to store the line points; must have enough size to store
MAX(|pt2.x - pt1.x| + 1,|pt2.y-pt1.y| + 1) points.

Discussion

The function cvGetRectSubPix extracts pixels from src, if the pixel coordinates
satisfy the conditions below:

center.x –(widthrect-1)/2 <= x <= center.x + (widthrect-1)/2;

center.y-(heightrect-1)/2 <= y <= center.y+(heightrect-1)/2.

Since the center coordinates are not integer, bilinear interpolation is applied to get the
values of pixels in non-integer locations. Although the rectangle center must be inside
the image, the whole rectangle may be partially occluded. In this case, the pixel values
are spread from the boundaries outside the image to approximate values of occluded
pixels.

cvbFastArctan
Calculates fast arctangent approximation for
arrays of abscissas and ordinates.

void cvbFastAcrtan(const float* y, const float* x, float* angle, int len);

y Array of ordinates.

x Array of abscissas.

angle Calculated angles of points (x[i],y[i]).

len Number of elements in the arrays.

Discussion

The function cvbFastArctan calculates an approximate arctangent value, the angle
of the point (x,y). The angle is in the range from 0° to 360°. Accuracy is about 0.1°.
For point (0,0) the resultant angle is 0.

OpenCV Reference Manual Utility 28

28-10

cvSqrt
Calculates square root of single float argument
or array of floats.

float cvSqrt(float x);

x Argument, scalar or array.

y Resultant array.

len Number of elements in the arrays.

Discussion

The function cvSqrt calculates the square root of arguments. The arguments should
be non-negative, otherwise the result is unpredictable. The relative error for the scalar
version is less than 9e-6, for the vector function less than 3e-7.

cvbSqrt
Calculates square root of single float argument
or array of floats.

void cvbSqrt(const float* x, float* y, int len);

x Argument, scalar or array.

y Resultant array.

len Number of elements in the arrays.

Discussion

The function cvbSqrt calculates the square root of arguments. The arguments should
be non-negative, otherwise the result is unpredictable. The relative error for the scalar
version is less than 9e-6, for the vector function less than 3e-7.

OpenCV Reference Manual Utility 28

28-11

cvInvSqrt
Calculates inverse square root of single float
argument or array of floats.

float cvInvSqrt(float x);

x Argument, scalar or array.

y Resultant array.

len Number of elements in the arrays.

Discussion

The function cvInvSqrt calculates the inverse square root of arguments. The
arguments should be non-negative, otherwise the result is unpredictable. The relative
error for the scalar version is less than 9e-6, for the vector function less than 3e-7.

cvbInvSqrt
Calculates inverse square root of single float
argument or array of floats.

void cvbInvSqrt(const float* x, float* y, int len);

x Argument, scalar or array.

y Resultant array.

len Number of elements in the arrays.

Discussion

The function cvbInvSqrt calculates the inverse square root of their arguments. The
arguments should be non-negative, otherwise the result is unpredictable. The relative
error for the scalar version is less than 9e-6, for the vector function less than 3e-7.

OpenCV Reference Manual Utility 28

28-12

cvbReciprocal
Calculates inverse of array of floats.

void cvbReciprocal(const float* x, float* y, int len);

x Argument, scalar or array.

y Resultant array.

len Number of elements in the arrays.

Discussion

The function cvbReciprocal calculates the inverse (1/x) of arguments. The
arguments should be non-zero. The function gives a very precise result with the
relative error less than 1e-7.

cvbCartToPolar
Calculates magnitude and angle for array of
abscissas and ordinates.

void cvbCartToPolar(const float* y, const float* x, float* mag, float* angle,
int len);

y Array of ordinates.

x Array of abscissas.

mag Calculated magnitudes of points (x[i],y[i]).

angle Calculated angles of points (x[i],y[i]).

len Number of elements in the arrays.

OpenCV Reference Manual Utility 28

28-13

Discussion

The function cvbCartToPolar calculates the magnitude and the angle
of each point (x[i],y[i]). The angle is measured in degrees and

varies from 0° to 360°. The function is a combination of the functions cvbFastArctan

and cvbSqrt, so the accuracy is the same as in these functions. If pointers to the angle
array or the magnitude array are NULL, the corresponding part is not calculated.

cvbFastExp
Calculates fast exponent approximation for array
of floats.

void cvbFastExp(const float* x, double* exp_x, int len);

x Array of arguments.

exp_x Array of results.

len Number of elements in the arrays.

Discussion

The function cvbFastExp calculates fast exponent approximation for each element of
the input array. Maximal relative error is about 7e-6.

cvbFastLog
Calculates fast approximation of natural
logarithm for array of doubles.

void cvbFastLog(const double* x, float* log_x, int len);

x Array of arguments.

exp_x Array of results.

x i[] 2
y i[] 2

+

arctan y i[] x i[]⁄()

OpenCV Reference Manual Utility 28

28-14

len Number of elements in the arrays.

Discussion

The function cvbFastLog calculates fast logarithm approximation for each element
of the input array. Maximal relative error is about 7e-6.

cvRandInit
Initializes state of random number generator.

void cvRandInit(CvRandState* state, float lower, float upper, int seed);

state Pointer to the initialized random number generator state.

lower Lower boundary of uniform distribution.

upper Upper boundary of uniform distribution.

seed Initial 32-bit value to start a random sequence.

Discussion

The function cvRandInit initializes the state structure that is used for generating
uniformly distributed numbers in the range [lower, upper). A multiply-with-carry
generator is used.

cvbRand
Fills array with random numbers

void cvbRand(CvRandState* state, float* x, int len);

state Random number generator state.

x Destination array.

len Number of elements in the array.

OpenCV Reference Manual Utility 28

28-15

Discussion

The function cvbRand fills the array with random numbers and updates generator
state.

cvFillImage
Fills image with constant value.

void cvFillImage(IplImage* img, double val);

img Filled image.

val Value to fill the image.

Discussion

The function cvFillImage is equivalent to either iplSetFP or iplSet, depending on
the pixel type, that is, floating-point or integer.

cvRandSetRange
Sets range of generated random numbers without
reinitializing RNG state.

void cvRandSetRange(CvRandState* state, double lower, double upper);

state State of random number generator (RNG).

lower New lower bound of generated numbers.

upper New upper bound of generated numbers.

OpenCV Reference Manual Utility 28

28-16

Discussion

The function cvRandSetRange changes the range of generated random numbers
without reinitializing RNG state. For the current implementation of RNG the function
is equivalent to the following code:

unsigned seed = state.seed;

unsigned carry = state.carry;

cvRandInit(&state, lower, upper, 0);

state.seed = seed;

state.carry = carry;

However, the function is preferable because of compatibility with the next versions of
the library.

cvKMeans
Splits set of vectors into given number of clusters.

void cvKMeans (int num_clusters, CvVect32f* samples, int num_samples, int
vec_size, CvTermCriteria termcrit, int* cluster);

num_clusters Number of required clusters.

samples Pointer to array of input vectors.

num_samples Number of input vectors.

vec_size Size of every input vector.

termcrit Criteria of iterative algorithm termination.

cluster Characteristic array of cluster numbers, corresponding to each input
vector.

Discussion

The function cvKMeans iteratively adjusts mean vectors of every cluster. Termination
criteria must be used to stop the execution of the algorithm. At every iteration the
convergence value is computed as follows:

OpenCV Reference Manual Utility 28

28-17

.

The function terminates if .

old_meani new_meani–
2

i 1=

K

∑

E Termcrit.epsilon<

29-1

29Bibliography

This bibliography provides a list of publications that might be useful to the Intel®

Computer Vision Library users. This list is not complete; it serves only as a starting
point.

[Borgefors86] Gunilla Borgefors. Distance Transformations in Digital Images.
Computer Vision, Graphics and Image Processing 34, 344-371
(1986).

[Bradski00] G. Bradski and J. Davis.Motion Segmentation and Pose Recognition
with Motion History Gradients. IEEE WACV'00, 2000.

[Burt81] P. J. Burt, T. H. Hong, A. Rosenfeld. Segmentation and Estimation
of Image Region Properties Through Cooperative Hierarchical
Computation. IEEE Tran. On SMC, Vol. 11, N.12, 1981, pp.
802-809.

[Canny86] J. Canny. A Computational Approach to Edge Detection, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 8(6), pp.
679-698 (1986).

[Davis97] J. Davis and Bobick. The Representation and Recognition of Action
Using Temporal Templates. MIT Media Lab Technical Report 402,
1997.

[DeMenthon92] Daniel F. DeMenthon and Larry S. Davis.Model-Based Object Pose
in 25 Lines of Code. In Proceedings of ECCV '92, pp. 335-343, 1992.

[Fitzgibbon95] Andrew W. Fitzgibbon, R.B.Fisher. A Buyer’s Guide to Conic
Fitting, Proc.5th British Machine Vision Conference, Birmingham,
pp. 513-522, 1995.

[Hu62] M. Hu. Visual Pattern Recognition by Moment Invariants, IRE
Transactions on Information Theory, 8:2, pp. 179-187, 1962.

OpenCV Reference Manual Bibliography 29

29-2

[Jahne97] B. Jahne. Digital Image Processing. Springer, New York, 1997.

[Kass88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour
Models, International Journal of Computer Vision, pp. 321-331,
1988.

[Matas98] J.Matas, C.Galambos, J.Kittler. Progressive Probabilistic Hough
Transform. British Machine Vision Conference, 1998.

[Rosenfeld73] A. Rosenfeld and E. Johnston. Angle Detection on Digital Curves.
IEEE Trans. Computers, 22:875-878, 1973.

[RubnerJan98] Y. Rubner. C. Tomasi, L.J. Guibas. Metrics for Distributions with
Applications to Image Databases. Proceedings of the 1998 IEEE
International Conference on Computer Vision, Bombay, India,
January 1998, pp. 59-66.

[RubnerSept98] Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover’s Distance as a
Metric for Image Retrieval. Technical Report STAN-CS-TN-98-86,
Department of Computer Science, Stanford University, September
1998.

[RubnerOct98] Y. Rubner. C. Tomasi. Texture Metrics. Proceeding of the IEEE
International Conference on Systems, Man, and Cybernetics,
San-Diego, CA, October 1998, pp. 4601-4607.

http://robotics.stanford.edu/~rubner/publications.html

[Serra82] J. Serra. Image Analysis and Mathematical Morphology. Academic
Press, 1982.

[Schiele2000] Bernt Schiele and James L. Crowley. Recognition without
Correspondence Using Multidimensional Receptive Field
Histograms. In International Journal of Computer Vision 36 (1),
pp. 31-50, January 2000.

[Suzuki85] S. Suzuki, K. Abe. Topological Structural Analysis of Digital Binary
Images by Border Following. CVGIP, v.30, n.1. 1985, pp. 32-46.

[Teh89] C.H. Teh, R.T. Chin. On the Detection of Dominant Points on
Digital Curves. - IEEE Tr. PAMI, 1989, v.11, No.8, p. 859-872.

[Trucco98] Emanuele Trucco, Alessandro Verri. Introductory Techniques for
3-D Computer Vision. Prentice Hall, Inc., 1998.

1

OpenCV Reference Manual Bibliography 29

29-3

[Williams92] D. J. Williams and M. Shah. A Fast Algorithm for Active Contours
and Curvature Estimation. CVGIP: Image Understanding, Vol. 55,
No. 1, pp. 14-26, Jan., 1992.
http://www.cs.ucf.edu/~vision/papers/shah/92/WIS92A.pdf.

[Yuille89] A.Y.Yuille, D.S.Cohen, and P.W.Hallinan. Feature Extraction from
Faces Using Deformable Templates in CVPR, pp. 104-109, 1989.

[Zhang96] Zhengyou Zhang. Parameter Estimation Techniques: A Tutorial
with Application to Conic Fitting, Image and Vision Computing
Journal, 1996.

Williams92
Williams92

OpenCV Reference Manual Bibliography 29

29-4

Index-1 Intel Restricted Secret

Index

A
Active Contours

cvSnakeImage, 17-3

B
Background Subtraction, 9-1

cvAcc, 9-2
cvMultiplyAcc, 9-3
cvRunningAvg, 9-4
cvSquareAcc, 9-3

C
Camera Calibration

cvCalibrateCamera, 13-5
cvCalibrateCamera_64d, 13-6
cvFindChessBoardCornerGuesses, 13-12
cvFindExtrinsicCameraParams, 13-7
cvFindExtrinsicCameraParams_64d, 13-8
cvRodrigues, 13-9
cvRodrigues_64d, 13-9
cvUnDistort, 13-12
cvUnDistortInit, 13-11
cvUnDistortOnce, 13-10

CamShift
cvCamShift, 16-7
cvMeanShift, 16-8

Contour Processing
cvApproxChains, 3-24
cvApproxPoly, 3-26
cvContourArea, 3-28
cvContourFromContourTree, 3-30

cvContoursMoments, 3-27
cvCreateContourTree, 3-30
cvDrawContours, 3-26
cvEndFindContours, 3-23
cvFindContours, 3-20
cvFindNextContour, 3-22
cvMatchContours, 3-28
cvMatchContourTrees, 3-31
cvReadChainPoint, 3-25
cvStartFindContours, 3-21
cvStartReadChainPoints, 3-25
cvSubstituteContour, 3-23

cvCalcPGH, 4-14

cvCheckContourConvexity, 4-12

cvCreateStructuringElementEx, 8-6

cvEndFindContours, 3-23

cvFitLine2D, 4-5

cvLaplace, 5-7

cvReleaseStructuringElement, 8-7

cvSeqElemIdx, 2-17

cvSeqPopFront, 2-13

D
Distance Transform

cvDistTransform, 10-1

Drawing Primitives
cvCircle, 26-4
cvEllipse, 26-5
cvEllipseAA, 26-6
cvFillConvexPoly, 26-8
cvFillPoly, 26-7

Book Title Goes Here Index

Index-2 Intel Restricted Secret

cvGetTextSize, 26-11
cvInitFont, 26-10
cvLine, 26-2
cvLineAA, 26-3
cvPolyLine, 26-8
cvPolyLineAA, 26-9
cvPutText, 26-10
cvRectangle, 26-4

Dynamic Data Structures
Graphs

cvClearGraph, 2-42
cvCreateGraph, 2-35
cvFindGraphEdge, 2-40
cvFindGraphEdgeByPtr, 2-40
cvGetGraphVtx, 2-43
cvGraphAddEdge, 2-37
cvGraphAddEdgeByPtr, 2-38
cvGraphAddVtx, 2-36
cvGraphEdgeIdx, 2-44
cvGraphRemoveEdge, 2-39
cvGraphRemoveEdgeByPtr, 2-39
cvGraphRemoveVtx, 2-36
cvGraphRemoveVtxByPtr, 2-37
cvGraphVtxDegree, 2-41
cvGraphVtxDegreeByPtr, 2-42
cvGraphVtxIdx, 2-43

Memory Functions
cvClearMemStorage, 2-4
cvCreateChildMemStorage, 2-3
cvCreateMemStorage, 2-3
cvReleaseMemStorage, 2-4
cvRestoreMemStoragePos, 2-5

Sequences
cvClearSeq, 2-16
cvCreateSeq, 2-10
cvCvtSeqToArray, 2-18
cvGetSeqElem, 2-17
cvMakeSeqHeaderForArray, 2-18
cvSeqElemIdx, 2-17
cvSeqInsert, 2-15
cvSeqPop, 2-13
cvSeqPopFront, 2-13
cvSeqPopMulti, 2-14
cvSeqPush, 2-12

cvSeqPushFront, 2-13
cvSeqPushMulti, 2-14
cvSeqRemove, 2-16
cvSetSeqBlockSize, 2-11

Sets
cvClearSet, 2-31
cvCreateSet, 2-29
cvGetSetElem, 2-30
cvSetAdd, 2-29
cvSetRemove, 2-30

Writing and Reading Sequences
cvEndWriteSeq, 2-22
cvFlushSeqWriter, 2-23
cvGetSeqReaderPos, 2-24
cvSetSeqReaderPos, 2-25
cvStartAppendToSeq, 2-21
cvStartReadSeq, 2-23
cvStartWriteSeq, 2-21

E
Eigen Objects

cvCalcCovarMatrixEx, 24-2
cvCalcDecompCoeff, 24-4
cvCalcEigenObjects, 24-3
cvEigenDecomposite, 24-5
cvEigenProjection, 24-6

Estimators
cvConDensInitSampleSet, 19-8
cvConDensUpdatebyTime, 19-9
cvCreateConDensation, 19-7
cvCreateKalman, 19-4
cvKalmanUpdateByMeasurement, 19-6
cvKalmanUpdateByTime, 19-5
cvReleaseConDensation, 19-8
cvReleaseKalman, 19-5

F
Features

Feature Detection Functions
cvCanny, 5-11
cvCornerEigenValsandVecs, 5-12

Book Title Goes Here Index

Index-3 Intel Restricted Secret

cvCornerMinEigenVal, 5-13
cvFindCornerSubPix, 5-14
cvGoodFeaturesToTrack, 5-16
cvPreCornerDetect, 5-12

Hough Transform
cvHoughLines, 5-18
cvHoughLinesP, 5-19
cvHoughLinesSDiv, 5-19

Optimal Filter Kernels
cvLaplace, 5-7
cvSobel, 5-7

Flood Fill
cvFloodFill, 12-2

G
Geometry

cvCalcPGH, 4-14
cvCheckContourConvexity, 4-12
cvContourConvexHull, 4-9
cvContourConvexHullApprox, 4-11
cvConvexHull, 4-9
cvConvexHullApprox, 4-10
cvConvexityDefects, 4-12
cvFitEllipse_32f, 4-4
cvFitLine, 4-5
cvMinAreaRect, 4-13
cvMinEnclosingCircle, 4-15
cvProject3D, 4-8

H
Histogram

cvCalcBackProject, 21-16
cvCalcBackProjectPatch, 21-17
cvCalcEMD, 21-20
cvCalcHist, 21-16
cvCompareHist, 21-14
cvCopyHist, 21-15
cvCreateHist, 21-6
cvGetHistValue_1D, 21-10
cvGetHistValue_2D, 21-11
cvGetHistValue_3D, 21-11

cvGetHistValue_nD, 21-12
cvGetMinMaxHistValue, 21-12
cvMakeHistHeaderForArray, 21-8
cvNormalizeHist, 21-13
cvQueryHistValue_1D, 21-8
cvQueryHistValue_2D, 21-9
cvQueryHistValue_3D, 21-9
cvQueryHistValue_nD, 21-10
cvReleaseHist, 21-7
cvSetHistThresh, 21-15
cvThreshHist, 21-13

I
Image Function Reference

cvCopyImage, 1-10
cvCreateImage, 1-5
cvCreateImageData, 1-6
cvCreateImageHeader, 1-4
cvGetImageRawData, 1-9
cvInitImageHeader, 1-9
cvReleaseImage, 1-6
cvReleaseImageData, 1-7
cvReleaseImageHeader, 1-5
cvSetImageCOI, 1-8
cvSetImageData, 1-7
cvSetImageROI, 1-8

Image Statistics
cvCountNonZero, 6-2
cvGetCentralMoment, 6-7
cvGetHuMoments, 6-9
cvGetNormalizedCentralMoment, 6-8
cvGetSpatialMoment, 6-7
cvMean, 6-3
cvMean_StdDev, 6-3
cvMinMaxLoc, 6-4
cvMinMaxLocMask, 6-4
cvMoments, 6-6
cvNorm, 6-4
cvSumPixels, 6-2

Book Title Goes Here Index

Index-4 Intel Restricted Secret

M
Morphology, 8-1

cvCreateStructuringElementEx, 8-6
cvDilate, 8-8
cvErode, 8-7
cvMorphologyEx, 8-9
cvReleaseStructuringElement, 8-7

Motion Templates
cvCalcGlobalOrientation, 15-9
cvCalcMotionGradient, 15-8
cvSegmentMotion, 15-10

O
Optical Flow

cvCalcOpticalFlowBM, 18-5
cvCalcOpticalFlowHS, 18-4
cvCalcOpticalFlowLK, 18-4
cvCalcOpticalFlowPyrLK, 18-6

P
Pixel Access Macro Reference, 1-10

CV_INIT_PIXEL_POS, 1-12
CV_MOVE, 1-13
CV_MOVE_PARAM, 1-14
CV_MOVE_PARAM_WRAP, 1-15
CV_MOVE_TO, 1-13
CV_MOVE_WRAP, 1-14

POSIT
cvCreatePOSITObject, 20-7
cvPOSIT, 20-7
cvReleasePOSITObject, 20-8

Pyramids
cvPyrDown, 7-6
cvPyrSegmentation, 7-7
cvPyrUp, 7-6

S
System Functions

cvGetLibraryInfo, 27-2

cvLoadPrimitives, 27-1

T
Threshold Functions

cvAdaptiveThreshold, 11-2
cvThreshold, 11-3

U
Utility

cvAbsDiff, 28-1
cvAbsDiffS, 28-2
cvbCartToPolar, 28-12
cvbFastArctan, 28-9
cvbFastExp, 28-13
cvbFastLog, 28-13
cvbInvSqrt, 28-11
cvbRand, 28-14
cvbReciprocal, 28-12
cvbSqrt, 28-10
cvConvertScale, 28-6
cvCvtPixToPlane, 28-5
cvCvtPlaneToPix, 28-5
cvFillImage, 28-15
cvGetRectSubPix, 28-8
cvInitLineIterator, 28-7
cvInvSqrt, 28-11
cvKMeans, 28-16
cvMatchTemplate, 28-2
cvRandInit, 28-14
cvRandSetRange, 28-15
cvSampleLine, 28-8
cvSqrt, 28-10

V
View Morphing

cvDeleteMoire, 14-12
cvDynamicCorrespondMulti, 14-9
cvFindFundamentalMatrix, 14-5
cvFindRuns, 14-8
cvMakeAlphaScanlines, 14-9

Book Title Goes Here Index

Index-5 Intel Restricted Secret

cvMakeScanlines, 14-6
cvMorphEpilinesMulti, 14-10
cvPostWarpImage, 14-11
cvPreWarpImage, 14-7

	Open Source �Computer Vision Library
	Contents
	Image Functions
	Overview
	Reference
	cvCreateImageHeader
	cvCreateImage
	cvReleaseImageHeader
	cvReleaseImage
	cvCreateImageData
	cvReleaseImageData
	cvSetImageData
	cvSetImageCOI
	cvSetImageROI
	cvGetImageRawData
	cvInitImageHeader
	cvCopyImage

	Pixel Access Macros
	Overview
	CV_INIT_PIXEL_POS
	CV_MOVE_TO
	CV_MOVE
	CV_MOVE_WRAP
	CV_MOVE_PARAM
	CV_MOVE_PARAM_WRAP

	Dynamic Data Structures
	Memory Storage
	Overview
	cvCreateMemStorage
	cvCreateChildMemStorage
	cvReleaseMemStorage
	cvClearMemStorage
	cvSaveMemStoragePos
	cvRestoreMemStoragePos

	Sequences
	Overview
	cvCreateSeq
	cvSetSeqBlockSize
	cvSeqPush
	cvSeqPop
	cvSeqPushFront
	cvSeqPopFront
	cvSeqPushMulti
	cvSeqPopMulti
	cvSeqInsert
	cvSeqRemove
	cvClearSeq
	cvGetSeqElem
	cvSeqElemIdx
	cvCvtSeqToArray
	cvMakeSeqHeaderForArray

	Writing and Reading Sequences
	Overview
	Reference
	cvStartAppendToSeq
	cvStartWriteSeq
	cvEndWriteSeq
	cvFlushSeqWriter
	cvStartReadSeq
	cvGetSeqReaderPos
	cvSetSeqReaderPos

	Sets
	Overview

	Reference
	cvCreateSet
	cvSetAdd
	cvSetRemove
	cvGetSetElem
	cvClearSet

	Graphs
	Overview
	Reference
	cvCreateGraph
	cvGraphAddVtx
	cvGraphRemoveVtx
	cvGraphRemoveVtxByPtr
	cvGraphAddEdge
	cvGraphAddEdgeByPtr
	cvGraphRemoveEdge
	cvGraphRemoveEdgeByPtr
	cvFindGraphEdge
	cvFindGraphEdgeByPtr
	cvGraphVtxDegree
	cvGraphVtxDegreeByPtr
	cvClearGraph
	cvGetGraphVtx
	cvGraphVtxIdx
	cvGraphEdgeIdx

	Contour Processing
	Overview
	Basic Definitions
	Contour Representation
	Contour Retrieving Algorithm
	Polygonal Approximation
	Douglas-Peucker Approximation
	Contours Moments
	Hierarchical Representation of Contours
	Data Structures

	Reference
	cvFindContours
	cvStartFindContours
	cvFindNextContour
	cvSubstituteContour
	cvEndFindContours
	cvApproxChains
	cvStartReadChainPoints
	cvReadChainPoint
	cvApproxPoly
	cvDrawContours
	cvContoursMoments
	cvContourArea
	cvMatchContours
	cvCreateContourTree
	cvContourFromContourTree
	cvMatchContourTrees

	Geometry
	Overview
	Ellipse Fitting
	Line Fitting
	Convexity Defects

	Reference
	cvFitEllipse
	cvFitLine2D
	cvFitLine3D
	cvProject3D
	cvConvexHull
	cvContourConvexHull
	cvConvexHullApprox
	cvContourConvexHullApprox
	cvCheckContourConvexity
	cvConvexityDefects
	cvMinAreaRect
	cvCalcPGH
	cvMinEnclosingCircle

	Features
	Fixed Filters
	Overview
	Sobel Derivatives

	Optimal Filter Kernels with Floating Point Coefficients
	First Derivatives
	Second Derivatives
	Laplacian Approximation

	Reference
	cvLaplace
	cvSobel

	Feature Detection Functions
	Overview
	Corner Detection
	Canny Edge Detector

	Reference
	cvCanny
	cvPreCornerDetect
	cvCornerEigenValsAndVecs
	cvCornerMinEigenVal
	cvFindCornerSubPix
	cvGoodFeaturesToTrack

	Hough Transform
	Overview

	Reference
	cvHoughLines
	cvHoughLinesSDiv
	Discussion

	cvHoughLinesP
	Discussion

	Image Statistics
	Overview
	Reference
	cvCountNonZero
	cvSumPixels
	cvMean
	cvMean_StdDev
	cvMinMaxLoc
	cvNorm
	cvMoments
	cvGetSpatialMoment
	cvGetCentralMoment
	cvGetNormalizedCentralMoment
	cvGetHuMoments

	Pyramids
	Overview
	Reference
	cvPyrDown
	cvPyrUp
	cvPyrSegmentation

	Morphology
	Overview
	Flat Structuring Elements for Gray Scale

	Reference
	cvCreateStructuringElementEx
	cvReleaseStructuringElement
	cvErode
	cvDilate
	cvMorphologyEx

	Background Subtraction
	Overview
	Reference
	cvAcc
	cvSquareAcc
	cvMultiplyAcc
	cvRunningAvg

	Distance Transform
	Overview
	Reference
	cvDistTransform

	Threshold Functions
	Overview
	Reference
	cvAdaptiveThreshold
	cvThreshold

	Flood Fill
	Overview
	Reference
	cvFloodFill

	Camera Calibration
	Overview
	Camera Parameters
	Homography
	Pattern
	Lens Distortion
	Rotation Matrix and Rotation Vector

	Reference
	cvCalibrateCamera
	cvCalibrateCamera_64d
	cvFindExtrinsicCameraParams
	cvFindExtrinsicCameraParams_64d
	cvRodrigues
	cvRodrigues_64d
	cvUnDistortOnce
	cvUnDistortInit
	cvUnDistort
	cvFindChessBoardCornerGuesses

	View Morphing
	Overview
	Algorithm
	Using Functions for View Morphing Algorithm

	Reference
	cvFindFundamentalMatrix
	cvMakeScanlines
	cvPreWarpImage
	cvFindRuns
	cvDynamicCorrespondMulti
	cvMakeAlphaScanlines
	cvMorphEpilinesMulti
	cvPostWarpImage
	cvDeleteMoire

	Motion Templates
	Overview
	Motion Representation and Normal Optical Flow Method
	Motion Representation
	A) Updating MHI Images
	B) Making Motion Gradient Image
	C) Finding Regional Orientation or Normal Optical Flow
	Motion Segmentation

	Reference
	cvUpdateMotionHistory
	cvCalcMotionGradient
	cvCalcGlobalOrientation
	cvSegmentMotion

	CamShift
	Overview
	Mass Center Calculation for 2D Probability Distribution
	CamShift Algorithm
	Calculation of 2D Orientation

	Reference
	cvCamShift
	cvMeanShift

	Active Contours
	Overview
	Reference
	cvSnakeImage

	Optical Flow
	Overview
	Lucas & Kanade Technique
	Horn & Schunck Technique
	Block Matching

	Reference
	cvCalcOpticalFlowHS
	cvCalcOpticalFlowLK
	cvCalcOpticalFlowBM
	cvCalcOpticalFlowPyrLK

	Estimators
	Overview
	Definitions and Motivation
	Models
	Estimators
	Kalman Filtering

	Reference
	cvCreateKalman
	cvReleaseKalman
	cvKalmanUpdateByTime
	cvKalmanUpdateByMeasurement
	ConDensation Algorithm

	Implementation of Nonlinear Models

	Reference
	cvCreateConDensation
	cvReleaseConDensation
	cvConDensInitSampleSet
	cvConDensUpdatebyTime

	POSIT
	Overview
	Background
	Camera parameters
	Geometric Image Formation
	Pose Approximation Method
	Algorithm

	Reference
	cvCreatePOSITObject
	cvPOSIT
	cvReleasePOSITObject

	Histogram
	Overview
	Histograms and Signatures
	Example Ground Distances
	Lower Boundary for EMD

	Reference
	cvCreateHist
	cvReleaseHist
	cvMakeHistHeaderForArray
	cvQueryHistValue_1D
	cvQueryHistValue_2D
	cvQueryHistValue_3D
	cvQueryHistValue_nD
	cvGetHistValue_1D
	cvGetHistValue_2D
	cvGetHistValue_3D
	cvGetHistValue_nD
	cvGetMinMaxHistValue
	cvNormalizeHist
	cvThreshHist
	cvCompareHist
	cvCopyHist
	cvSetHistBinRanges
	cvCalcHist
	cvCalcBackProject
	cvCalcBackProjectPatch
	cvCalcEMD

	Gesture Recognition
	Overview
	Reference
	cvFindHandRegion
	cvFindHandRegionA
	cvCreateHandMask
	cvCalcImageHomography
	cvCalcProbDensity
	cvMaxRect

	Matrix Operations
	Overview
	Reference
	cvmAlloc
	cvmAllocArray
	cvmFree
	cvmFreeArray
	cvmAdd
	cvmSub
	cvmScale
	cvmDotProduct
	cvmCrossProduct
	cvmMul
	cvmMulTransposed
	cvmTranspose
	cvmInvert
	cvmTrace
	cvmDet
	cvmCopy
	cvmSetZero_32f
	cvmSetIdentity
	cvmMahalonobis
	cvmSVD
	cvmEigenVV
	cvmPerspectiveProject

	Eigen Objects
	Overview
	Reference
	cvCalcCovarMatrixEx
	cvCalcEigenObjects
	cvCalcDecompCoeff
	cvEigenDecomposite
	cvEigenProjection
	Use of Functions

	Embedded Hidden Markov Models
	Overview
	HMM Structures

	Reference
	cvCreate2DHMM
	cvRelease2DHMM
	cvCreateObsInfo
	cvReleaseObsInfo
	cvImgToObs_DCT
	cvUniformImgSegm
	cvInitMixSegm
	cvEstimateHMMStateParams
	cvEstimateTransProb
	cvEstimateObsProb
	cvEViterbi
	cvMixSegmL2

	Drawing Primitives
	Overview
	Reference
	cvLine
	cvLineAA
	cvRectangle
	cvCircle
	cvEllipse
	cvEllipseAA
	cvFillPoly
	cvFillConvexPoly
	cvPolyLine
	cvPolyLineAA
	cvInitFont
	cvPutText
	cvGetTextSize

	System Functions
	Reference
	cvLoadPrimitives
	cvGetLibraryInfo

	Utility
	Reference
	cvAbsDiff
	cvAbsDiffS
	cvMatchTemplate
	cvCvtPixToPlane
	cvCvtPlaneToPix
	cvConvertScale
	cvInitLineIterator
	cvSampleLine
	cvGetRectSubPix
	cvbFastArctan
	cvSqrt
	cvbSqrt
	cvInvSqrt
	cvbInvSqrt
	cvbReciprocal
	cvbCartToPolar
	cvbFastExp
	cvbFastLog
	cvRandInit
	cvbRand
	cvFillImage
	cvRandSetRange
	cvKMeans

	Bibliography
	Index

