7.3 PID算法的改进

- 一、积分饱和现象及抑制:
 - 1、积分饱和的产生: 执行机构所能执行的控制信号是有范围的。我们可设:
 - xmax为执行机构所能执行的最大输出控制值
 - x_{min}为执行机构所能执行的最小输出控制值

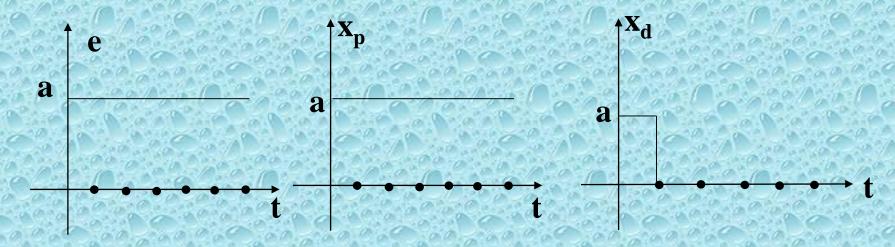
例如一个阀门开度为0%~100%,对应输出量为0~100

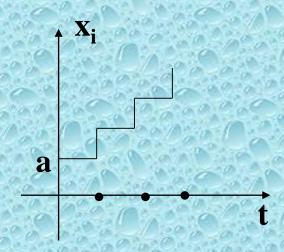
则: Xmax=100, Xmin=0, 对于x>Xmax的数值,阀门只能取100%,而对于x<Xmin的数值,阀门只能取0%

而对于PID运算来说,计算结果x的数值是不受限制的,因此有可能出现x>Xmax,或者x<Xmin的情况,称之为输出饱和

输出饱和产生的原因:

- (1)、稳态条件下, e=0或较小, 计算出的x不易出现饱和。
- (2)、系统受扰动使e较大并存在较长时间时, x_p 增大但不累加。 x_i 增大并累加增长迅速, x_d 表现为脉冲响应。例如,当给定值变化而使e发生阶跃变化时, x_p , x_i , x_d 的影响为: (设 K_i = T_i = T_d =T=1, e不变化)





出由此可见,x的增大主要是由x_i产生的。若e存在较长时间,就会出现x_i>x_{max},称之为积分饱和。输出饱和主要是在存在较大偏差条件下由积分饱和产生的。

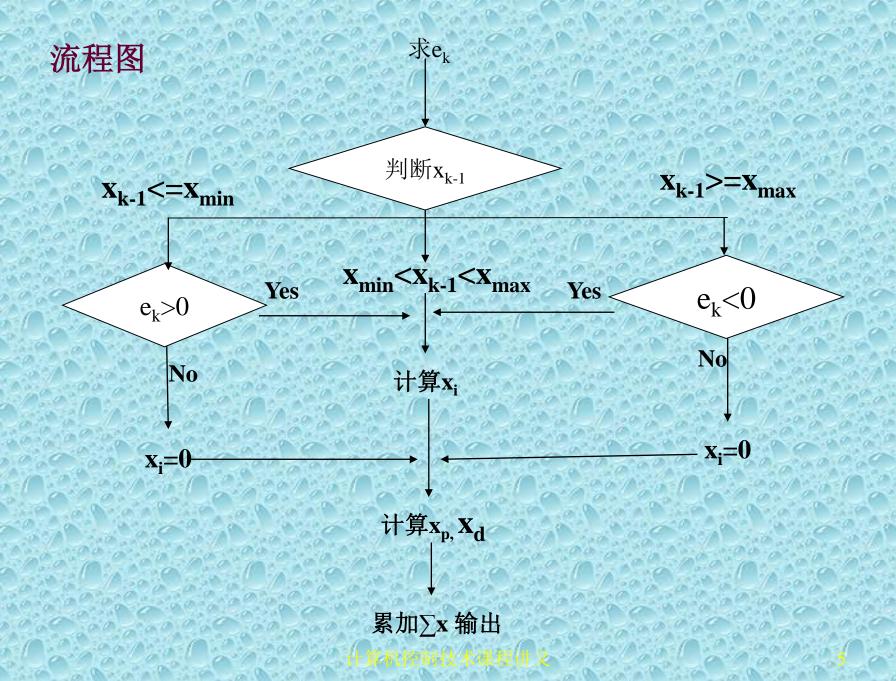
- 2、饱和输出的危害:由于饱和的存在,使执行机构不能实现理想计算值所代表的意义,而使控制算法误以为输出还不够强,因而继续加大(或减少)输出值,使系统进入更深的饱和不容易退出,导致控制系统性能严重下降。
- 3、抑制积分饱和的方法:
 - (1)积分分离算法:只在e较小时才运行积分算法

$$\mathbb{H}: \ x_k = K_p[e_k + k_l \frac{T}{T_i} \sum_{j=1}^k e_j + \frac{T_d}{T} (e_k - e_{k-1})] + x_0$$

其中:
$$k_l = \begin{cases} 0 \stackrel{.}{=} |ek| > A \text{ 时} \\ 1 \stackrel{.}{=} |ek| \le A \text{ 时} \end{cases}$$

A: 常数, 积分门限制

此式意义在于当e比A大时,积分项为0,由PD进行调节。



(3)输出限值法:限制输出值不进入饱和区

即:

$$x_{k} = \begin{cases} x_{\min} & \exists x_{k} < x_{\min} \\ x_{k} & \exists x_{\min} \le x_{k} \le x_{\max} \\ x_{\max} & \exists x_{\max} < x_{k} \end{cases}$$

使输出 x_k 永远在[x_{\min}, x_{\max}]范围内

二、微分项的干扰措施

干扰信号呈现出较大的变化率,而直接导致微分项取值的变化,从而影响控制系统的稳定。

抑制方法:

1.四点中心差分法:改进微分项的结构,以减少干扰的影响。

将差分 e_k - e_{k-1} 改为过去四个时刻偏差的平均和形式。即:

$$x_d = \frac{K_p T_d}{T} \cdot \frac{1}{4} \left(\frac{e_k - \overline{e_k}}{1.5} + \frac{e_{k-1} - \overline{e_k}}{0.5} + \frac{-e_{k-2} + \overline{e_k}}{0.5} + \frac{-e_{k-3} + \overline{e_k}}{1.5} \right)$$

其中:

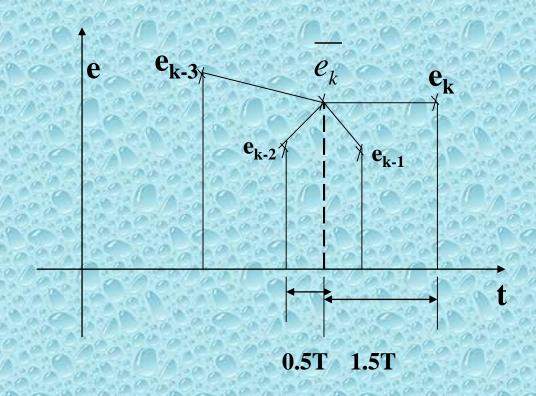
$$\overline{e_k} = \frac{1}{4} (e_k + e_{k-1} + e_{k-2} + e_{k-3})$$

整理后为:
$$x_d = \frac{K_p T_d}{6T} (e_k + 3e_{k-1} + 3e_{k-2} + e_{k-3})$$

图解表示

 \mathbf{g} ① e_k 为最近四点平均值,其时间点也平均计算

②用四个差分的平均值代替原来一个差分



2. 不完全微分法:

不在一个周期内完成微分,而将其分散在多个周期中, 并按指数规律衰减

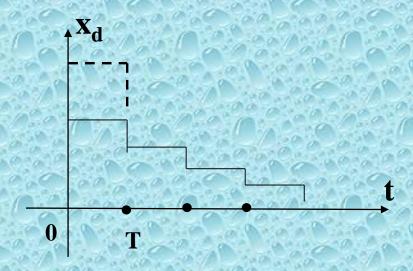
为此,引入微分增益常数Ks

而将微分项改为:

$$X_{d_k} = \frac{K_p T_d}{T_s} (e_k - e_{k-1}) + \alpha X_{d_{k-1}}$$

其中: $X_{d_{k-1}}$ 为上次微分项的结果。

效果图:



可见, ①因Ts>T, 原(ek-ek-1)的作用减小; ②因α的存在,本次微分与上次相关。

三、PID算法的其他改进

1、带死区的PID:对于控制精度要求较低,并且不希望执行机构频繁动作的情况下,可使用带死区的PID算法

即:

$$x_k = \begin{cases} x_{k-1} \stackrel{\text{det}}{=} |e_k| \leq B, \text{不计算PID} \\ x_k \stackrel{\text{det}}{=} |e_k| > B, \text{计算PID} \end{cases}$$

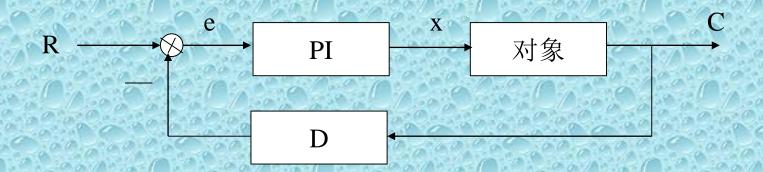
B:死区门限常数,或允许误差限 当误差 e_k 在给定范围内时,输出 x_k 不变,执行机构不变, 有利于系统稳定和延长设备的使用寿命。 2、微分先行算法:对于设定值经常变化的系统,对设定值的阶跃反应最敏感的是微分项(x_d).若要求输出x的值能平稳地变化时,可将微分项中设定值的因素去除。

即:将
$$e_k = R_k - C_k$$
代入 x_d
为: $x_d = \frac{K_p T_d}{T} (e_k - e_{k-1})$
$$= \frac{K_p T_d}{T} (R_k - C_k - R_{k-1} + C_{k-1})$$

$$= \frac{K_p T_d}{T} [(R_k - R_{k-1}) - (C_k - C_{k-1})]$$

去掉 $R_k - R_{k-1}$ 项,得:
$$x_d = -\frac{K_p T_d}{T} (C_k - C_{k-1})$$

在方块图中可表示为:



* D先于PI进行运算,所以称之为微分先行算法,也是 微分项的抗干扰措施之一。

7.4 PID控制程序设计

- 一、数制选择:由于e的数值较小,运算较复杂,中间结果多,所以定点运算易损失精度,一般采用浮点运算。
- 二、输出限幅
- 1、位置限幅: 即: 当x>x_{max}时, x=x_{max} 当x<x_{min}时, x=x_{min}
- 2、增量限幅: 即:

即要求每次的增量在一定限度之内,有利于系统稳定运行

三、积分整量化误差:

为了防止积分饱和,一般积分项的系数较小,这使得在正常状态下,Xi的数值较小,当其和Xp, Xd相加时,可能因有效位长度有限而被忽略,产生了积分整量化误差。

例:某计算机浮点运算相当于5位十进制有效位,

若此时: $x_i = .001$, 而 $x_p + x_d = 100$

则: $x=x_p+x_i+x_d=100.001$

取5位有效位: 100.00

解决方法是对 x_i 进行单独累加为 $\sum x_i$,而后将 $\sum x_i$ 再加到输出控制值X中。

四、简化运算:

以PID增量式为例:
$$\Delta x_k = K_p[e_k - e_{k-1} + \frac{T}{T_i}e_k + \frac{T_d}{T}(e_k - 2e_{k-1} + e_{k-2})]$$

 Δx_k 是 e_k , e_{k-1} , e_{k-2} 的函数,可简化为:

$$\Delta x_k = Ae_k + Be_{k-1} + Ce_{k-2}$$

其中:
$$\begin{cases} A = K_p + K_p \frac{T}{T_i} + K_p \frac{T_d}{T} \\ B = -K_p - 2K_p \frac{T_d}{T} \end{cases}$$

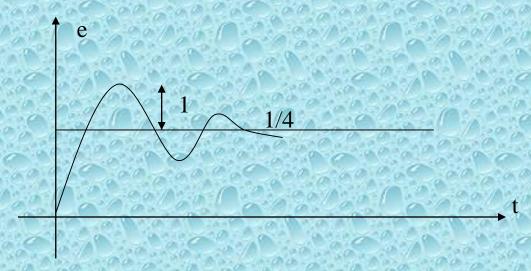
$$C = K_p \frac{T_d}{T}$$

由 "5乘5 加" 简化为 "3乘2 加"

7.5 PID参数的整定

控制系统要求稳定性好,调节迅速,误差小。但是同时满足这诸方面要求又是难于做到的,因此通过折中,选择衰减度为1/4的过渡过程为最佳控制。

最佳控制过程的单位阶跃响应曲线为:



为使PID控制达到最佳控制,必须调整好Kp, Ti, Td等各项系数, 称之为PID参数整定

一、理论分析法

通过求解、分析、输入、输出,PID的传递函数,最终求出Kp, Ti, Td各参数值

该方法分析运算较复杂,而且大系统对象传递函数的确定也不容易。

- 二、实验总结法:不必求解对象属性,只需获得实验数据。
 - 1、临界比例度法

工作步骤:

- (1)选择纯比例控制,暂时关闭积分、微分作用
- (2)由小到大调节K_p, 直至被控量的单位阶跃响应达到临界振荡。(无衰减等幅振荡,实际振荡4~5周期即可)
- (3)此时 K_p 记为 K_r ,第一振荡周期时间记为 T_r
- (4)由 K_r , T_r 查表求出 K_p , T_i , T_d 。

PID经验参数表

类型	Kp 🕝	Ti 🕝	Td
P	0.5Kr		
PI	0.45Kr	0.85Tr	

- 2、数字PID的扩充临界比例度法:
 - (1)控制度概念:表征数字控制的效果相当于模拟控制效果的程度。定义为:

控制度 =
$$\frac{\int_0^\infty e^2 dt$$
数字
$$\int_0^\infty e^2 dt$$
模拟

- 一般选择控制度=1.05,认为数字控制与模拟控制相当
- (2) 整定步骤:
- ①根据采样周期经验值粗定T;
- ②按临界比例度法确定Kr, Tr
- ③ 选定控制度, 查表定参数
- 三、参数修改:要求 K_p , T_i , T_d 均能在线通过人机对话修改

PID经验参数表扩充

控制度	类型	T	Кр	Ti	Td
1.05	PI	0.03Tr	0.53Kr	0.88Tr	
1.05	PID	0.014Tr	0.63Kr	0.49Tr	0.14Tr
1.2	PI	0.05Tr	0.49Kr	0.91Tr	
1.2	PID	0.043Tr	0.47Kr	0.47Tr	0.16Tr
1.5	PI	0.14Tr	0.42Kr	0.99Tr	
1,5	PID	0.09Tr	0.34Kr	0.43Tr	0.22Tr