
Object Detection Networks on Convolutional Feature Maps

Shaoqing Ren Kaiming He Ross Girshick Xiangyu Zhang Jian Sun
Microsoft Research

{v-shren, kahe, rbg, v-xiangz, jiansun}@microsoft.com

Abstract

Most object detectors contain two important compo-
nents: a feature extractor and an object classifier. The
feature extractor has rapidly evolved with significant re-
search efforts leading to better deep ConvNet architectures.
The object classifier, however, has not received much at-
tention and most state-of-the-art systems (like R-CNN) use
simple multi-layer perceptrons. This paper demonstrates
that carefully designing deep networks for object classifi-
cation is just as important. We take inspiration from tradi-
tional object classifiers, such as DPM, and experiment with
deep networks that have part-like filters and reason over
latent variables. We discover that on pre-trained convolu-
tional feature maps, even randomly initialized deep classi-
fiers produce excellent results, while the improvement due to
fine-tuning is secondary; on HOG features, deep classifiers
outperform DPMs and produce the best HOG-only results
without external data. We believe these findings provide
new insight for developing object detection systems. Our
framework, called Networks on Convolutional feature maps
(NoC), achieves outstanding results on the PASCAL VOC
2007 (73.3% mAP) and 2012 (68.8% mAP) benchmarks.

1. Introduction
Most object detectors contain two important compo-

nents: a feature extractor and a classifier. The feature ex-
tractor in traditional object detection methods is a hand-
engineered module, such as HOG [4]. The classifier is often
a linear SVM (possibly with a latent structure over the fea-
tures) [8], a non-linear boosted classifier [30], or an additive
kernel SVM [27].

Recently, large performance improvements have been re-
alized by training deep ConvNets [18] for object detection.
R-CNN [9], one particularly successful approach, starts
with a pre-trained ImageNet [5] classification network and
then fine-tunes the ConvNet, end-to-end, for detection. Al-
though these methods blur the distinction between the fea-
ture extractor and the classifier, a logical division can still
be imposed. For example, an R-CNN can be thought of

as a convolutional feature extractor, ending at the last pool-
ing layer, followed by a multi-layer perceptron (MLP). To
date, even when extra training data are used by traditional
methods [34], they still trail far behind deep ConvNets on
detection benchmarks.

One research stream [24, 11, 29, 36] attempting to bridge
the performance gap between traditional detectors and deep
ConvNets creates a hybrid of the two: the feature extractor
is “upgraded” to a pre-trained deep ConvNet, but the classi-
fier is left as a traditional model, such as a DPM [24, 11, 29]
or a boosted classifier [36]. These hybrid approaches out-
perform their HOG/SIFT/LBP-based counterparts [8, 30],
but still lag far behind R-CNN, even when the DPM is
trained end-to-end with deep ConvNet features [29]. Inter-
estingly, the detection accuracy of these hybrid methods is
close to that of R-CNN when using a linear SVM on the last
convolutional features, without the fully-connected layers.

The SPPnet approach [13] for object detection occupies
a middle ground between the hybrid models and R-CNN.
SPPnet, like the hybrid models but unlike R-CNN, uses a
pre-trained deep ConvNet as a feature extractor. For clas-
sification, SPPnet uses a fine-tuned multi-layer perceptron,
just like R-CNN but unlike the hybrid methods. For the
range of models considered in [13], SPPnet performs sim-
ilarly to R-CNN and thus significantly outperforms the hy-
brid methods.

From these systems and results, the de facto strategy for
object detection is now: use a pre-trained deep ConvNet
for feature extraction (with or without fine-tuning) followed
by a fine-tuned MLP for classification. This strategy is,
however, likely only driven by the pre-trained architecture,
which motivates us to ask two questions: (1) Can we design
a better region classifier for detection than an MLP? and (2)
How important is fine-tuning for region classification?

We investigate these questions within an experimen-
tal framework we call Networks on Convolutional feature
maps, or NoCs for short. We propose to use a fixed, pre-
trained deep ConvNet as a feature extractor and explore dif-
ferent NoC architectures, each of which implements an ob-
ject classifier. To answer the first question (Is there a better
classifier architecture?), we design and test three NoC fam-

1

ar
X

iv
:1

50
4.

06
06

6v
1 

 [
cs

.C
V

] 
 2

3 
A

pr
 2

01
5



conv layers pool

conv+1 conv+2

fc1 fc2 fc3

conv feature map

region

image

region 

feature

Network on Conv feature map (NoC)

feature extrator object classifier

Figure 1. Overview of NoC. The convolutional feature maps are generated by the convolutional layers of a pre-trained model. A feature
map region is extracted and pooled into a fixed-resolution “tiny image.” A new network, called a NoC, is then designed and trained on
these tiny images. In this illustration, the NoC architecture consists of two convolutional layers and three fully-connected layers.

ilies: MLPs of various depths, ConvNets of various depths,
and ConvNets with maxout [12] for latent scale selection.
To answer the second question (How important is classifier
fine-tuning?), we train NoCs from random initialization and
from pre-trained ImageNet weights (fine-tuning). We assess
the relative improvement in mAP coming from NoC design
versus fine-tuning.

Unsurprisingly, we find that pre-training plus fine-tuning
works the best. However, we also find a surprising result:
a well-designed NoC (ConvNet with maxout) performs ex-
tremely well when trained from a random initialization and
the improvement from NoC design is larger than from fine-
tuning. These results show that the de facto strategy is not
the end of the story; there are still significant gains to be
had from designing new classification networks with novel
detection-tailored properties, like additional convolutional
layers motivated by part models [11] and maxout for latent
scale selection.

We believe these findings provide new insights into the
design of object detection systems. In particular, they sug-
gest that designing deep classifier networks on top of feature
extractors is a good strategy. One hypothesis inspired by
these results is that a well-designed NoC applied to HOG
features will outperform traditional HOG classifiers, such
as DPMs and boosted classifiers. To test this hypothesis we
design and experiment with NoCs on top of HOG feature
maps. Doing so leads to 39% mAP when training on PAS-
CAL VOC 2007 [7] data only, which is the best HOG-only
detection performance published to date. This compares fa-
vorably to DPM (34% mAP) [8], showing the generality of
our findings. These results in turn suggest that the accuracy
gap between the hybrid methods [24, 11, 29] and R-CNN is
mainly due to the power of the classifier.

As a final contribution, we improve upon the state-of-
the-art detection results by exploiting pre-trained very deep
ConvNets [26] with NoCs. With this approach we achieve
excellent results on PASCAL VOC 2007 (73.3% mAP) and

2012 (68.8% mAP). Our method is also computationally
efficient, as is the case with methods that share computation
through convolutional feature maps [13, 21].

2. Related Work

Traditional Object Detection. The pioneering work of
Viola and Jones [28] uses simple Haar-like features and
boosted classifiers. The pedestrian detection method in [4]
proposes HOG features used with linear SVMs. The DPM
method [8] develops deformable graphical models and la-
tent SVM as a sliding-window classifier. The Selective
Search paper [27] relies on spatial pyramid features [19]
on SIFT vectors [22] and an additive kernel SVM. The Re-
gionlet method [30] learns boosted classifiers on a combi-
nation of HOG, LBP [2], and covariance features. In these
methods, the regions to be classified are either densely enu-
merated sliding windows [28, 4, 8] or computed object pro-
posals [27, 30].

Convolutional Feature Maps. Convolutional layers can be
applied to images of arbitrary size yielding proportionally-
sized feature maps. In the Overfeat method [25], the fully-
connected layers are used on each sliding window of the
convolutional feature maps for efficient classification. The
Overfeat method also proposes a regressor on the feature
maps, which outputs bounding box coordinates for localiza-
tion or detection. In the SPP-based object detection method
[13], features are pooled from proposal regions [27] on
convolutional feature maps, and fed into the original fully-
connected layers for classifying regions. In [3], networks
with a masking layer on feature maps are developed for
semantic segmentation. The Fully Convolutional Network
(FCN) [21] reshapes all fully-connected layers as convolu-
tions for efficient semantic segmentation. For these meth-
ods [13, 3, 21], the fully-connected layers are initialized
from a pre-trained model and fine-tuned.



3. Experimental Setting

Dataset. We investigate NoCs on the PASCAL VOC 2007
object detection benchmark [7]. This dataset covers 20 ob-
ject categories, and performance is measured by mAP on
the test set of 5k images. We investigate two sets of training
images: (i) the original trainval set of 5k images in VOC
2007, and (ii) an augmented set of 16k images that consists
of VOC 2007 trainval images and VOC 2012 trainval im-
ages, following [1]. We test certain NoC configurations on
the 2012 test set using the evaluation server.

Pre-trained Models. As a common practice [9, 13, 21], we
adopt deep CNNs pre-trained on the 1000-class ImageNet
dataset [5] as feature extractors. We investigate Zeiler and
Fergus’s (ZF) model [32] and VGG models [26]. The ZF
model has five convolutional (conv) layers and three fully-
connected (fc) layers. We use a ZF model with an SPP layer,
which is released by [13].1 The VGG-16/19 models [26]2

have 13/16 conv layers and three fc layers.

4. Method
On the convolutional feature maps, we design and train

new networks (referred to as NoCs) for object detection. We
overview the algorithm pipeline in this section, and detail
the NoC designs in the next section.

Region Extraction. Given an image, we apply the conv
layers of a pre-trained model to compute the convolutional
feature map of the entire image. As in [25, 13, 11], we ex-
tract feature maps from multiple image scales. These fea-
ture maps are fixed and the pre-trained conv layers will not
be further tuned. We also extract about 2,000 candidate re-
gions proposed by Selective Search [27]. The rectangular
boundary of each proposal is projected onto the convolu-
tional feature map [13].

The feature map regions are of arbitrary spatial sizes. We
generate a fixed-resolution feature map region via a region
pooling operation that has a fixed output resolution. For-
mally, we define a desired fixed output spatial resolution
m ×m, which is the output spatial size of the last pooling
layer in the pre-trained model (e.g., 6 × 6 for ZF net and
7× 7 for VGG-16/19). For an arbitrary feature map region
of size w×h, we produce the m×m output by max pooling
in spatial bins of a size w

m ×
h
m . This operation is a special

case of SPP in [13]. Here, the pyramid has a single level of
m ×m spatial resolution. The pooled feature map regions
can be thought of as tiny multi-channel images.

Training and Inference. We consider the tiny images of
feature map regions as a new data source and design var-

1research.microsoft.com/en-us/um/people/kahe/
eccv14sppnet/

2www.robots.ox.ac.uk/˜vgg/research/very_deep/

ious NoC architectures (Sec. 5) to classify this data. The
NoC structures have multiple layers, and the last layer is
an (n+1)-way classifier for n object categories plus back-
ground. We implement this classifier by an (n+1)-d fc layer
followed by softmax. Each NoC is trained by backpropaga-
tion and stochastic gradient descend (SGD) using the “tiny
image” data generated on the detection training set. Af-
ter network training, we use the second-to-last fc layer in
the NoC to extract features from regions, and train a linear
SVM classifier for each category using these features, as in
R-CNN [9].

For inference, the tiny images of feature map regions
are extracted and fed into the NoC till the second-to-last fc
layer. The SVM classifier is then used to score each region,
followed by non-maximum suppression [9].

5. Networks on Convolutional Feature Maps

Given the m×m region features, we design and investi-
gate various network architectures as classifiers.

5.1. NoC as an MLP

A simple design of NoC is to use only fc layers, known
as a multi-layer perceptron (MLP) [17]. We investigate us-
ing 2 to 4 fc layers. The last fc layer is always (n+1)-d with
softmax, and the other fc layers are 4,096-d with Rectified
Linear Units (ReLUs) [23]. As an example, we denote the
NoC structure with 3 fc layers as “f4096-f4096-f21” where
“f” denotes an fc layer and 21 is for the VOC categories.

When the ZF net is used, we apply multi-level pooling
before the first fc layer. On the m×m = 6× 6 feature map
region, we pool three low-resolution feature maps of spatial
sizes {3×3, 2×2, 1×1}. The 6×6 and lower-resolution fea-
ture maps are concatenated and fed into the first fc layer. As
such, in the special case when 3 fc layers are used, the NoC
has the same structure as the SPP detection method [13], as
we will discuss in Sec. 5.4.

Table 1 shows the results of using MLP as NoC. Here we
randomly initialize the weights by Gaussian distributions,
so various NoC architectures can be compared fairly. The
result of “SVM on pool5” is based on [13], for which the
SVM is trained on the pool5 features. The results of NoC
with 2 to 4 fc layers are in Table 1. Compared with the
SVM classifier trained on pool5, the 4-fc NoC (53.6%) as a
classifier on the same features has 7.8% higher mAP. Note
that in this comparison the NoC has no pre-training. The
gain is solely because the multi-layer network models the
data better than the single-layer SVM.

5.2. NoC as a ConvNet

The first fc layer in an MLP plays the role of a large num-
ber (4096) of mixture components, conceptually similar to
the root filters in a DPM [8]. Motivated by the part filters

research.microsoft.com/en-us/um/people/kahe/eccv14sppnet/
research.microsoft.com/en-us/um/people/kahe/eccv14sppnet/
www.robots.ox.ac.uk/~vgg/research/very_deep/


method architecture VOC 07

SVM on pool5 [13] f21 45.8
2-fc NoC f4096-f21 49.0
3-fc NoC f4096-f4096-f21 53.1
4-fc NoC f4096-f4096-f4096-f21 53.6

Table 1. Detection results of NoC as MLP for PASCAL VOC 07
using a ZF net. The training set is PASCAL VOC 07 trainval. The
NoCs are randomly initialized. No bbox regression is used.

method architecture VOC 07 07+12

3-fc NoC f4096-f4096-f21 53.1 56.5
1-conv NoC c256-f4096-f4096-f21 53.3 58.5
2-conv NoC c256-c256-f4096-f4096-f21 51.4 58.9
3-conv NoC c256-c256-c256-f4096-f4096-f21 51.3 58.8

Table 2. Detection results of NoC as ConvNet for PASCAL VOC
07 using a ZF net. The training sets are PASCAL VOC 07 trainval
and PASCAL VOC 07+12 trainval respectively. The NoCs are
randomly initialized. No bbox regression is used.

method architecture VOC 07+12

2-conv NoC c256-c256-f4096-f4096-f21 58.9
mo input mo-c256-c256-f4096-f4096-f21 60.1
mo conv+1 c256-mo-c256-f4096-f4096-f21 60.7
mo fc1 c256-c256-f4096-mo-f4096-f21 60.3
mo output c256-c256-f4096-f4096-f21-mo 60.1

Table 3. Detection results of maxout NoC for PASCAL VOC 07
using a ZF net. The training set is PASCAL VOC 07+12 trainval.
The NoCs are randomly initialized. No bbox regression is used.

of a DPM, we investigate adding conv layers to NoCs. A
conv filter has a smaller receptive field on the feature map,
as is the case with a part filter for a DPM. In fact, a DPM
part filter can be recast as a conv layer followed by distance
transform pooling [11].

We investigate using 1 to 3 additional conv layers. All
conv layers are followed by ReLUs. We use 256 filters for
the ZF net and 512 for the VGG net, which is equal to the
filter number of the last conv layer in the pre-trained mod-
els. The conv filters have a spatial size of 3×3 and a padding
of 1, so the (m×m) output spatial resolution is unchanged.
After the last additional conv layer, we apply three fc layers
as in the above MLP case. As an example, we denote an
NoC with 2 conv layers as “c256-c256-f4096-f4096-f21”.
We apply SPP after the last additional conv layer in the case
of the ZF net.

In Table 2 we compare the cases of no conv layer (i.e.,
3-layer MLP) and using 1 to 3 additional conv layers. Here
we randomly initialize all NoC layers. When using VOC 07
trainval for training, the mAP improves slightly when using

pool

pool

conv+1

maxout

maxout NoC

conv feature 

maps

conv+1

conv+2

fc1 fc2 fc3

Figure 2. A maxout NoC of “c256-mo-c256-f4096-f4096-f21”.
The features are pooled from two feature maps computed at two
scales. After pooling, the two features have the same size (e.g.,
6×6), and are used as two inputs to the network. In this figure,
maxout is used after conv+1.

1 additional conv layer, but drops when using more conv
layers. The degradation is a result of overfitting, because
we observe that the additional conv layers effectively reduce
the training error. The VOC 07 trainval set is too small to
train deeper models.

However, NoCs with conv layers show improvements
when trained on the VOC 07+12 trainval set (Table 2). For
this training set, the 3-fc NoC baseline is lifted to 56.5%
mAP. The deeper 2-conv NoC improves over this baseline
to 58.9%. This justifies the effects of the additional conv
layers. Table 2 also shows that the mAP remains the same
when using 3 additional conv layers. But it is reasonable
to hope that more training data will further improve deeper
convolutional NoC models.

5.3. Maxout for Scale Selection

Our convolutional feature maps are extracted from mul-
tiple discrete scales, known as a feature pyramid [8]. In
the following, we incorporate a local competition operation
(maxout) [12] into NoCs to improve scale selection from
the feature pyramid.

In the above, a region feature is pooled from a single
selected scale (detailed in Sec. 7). To improve scale invari-
ance, for each proposal region we select two adjacent scales
in the feature pyramid. Two fixed-resolution (m ×m) fea-
tures are pooled, and the NoC model has two data sources.

Maxout [12] (element-wise max) is a widely considered
operation for merging two or multiple competing sources.
In DPM [8], the prediction scores of multiple components
compete with each other, and the component with the high-
est score is taken. This can be formulated as a maxout op-
eration on the outputs of multiple networks [11]. Alterna-
tively, the maxout operation can be applied on the network
inputs from multiple scales to select the most responsive
features.

In the case of a deep structure, the maxout operation



method init. VOC 07 07+12

SVM on pool5 [13] - 45.8 47.7

3-fc NoC
random 53.1 56.5

fine-tune 55.8 58.0

maxout 2-conv NoC
random 54.7 60.7

fine-tune 57.7 62.9

Table 4. Detection results of NoC with/without fine-tuning for
PASCAL VOC 07 using a ZF net. The training sets are PASCAL
VOC 07 trainval and PASCAL VOC 07+12 trainval respectively.
The “maxout NoC” is the 2-conv NoC with maxout after conv+1.
No bounding box regression is used.

can also be applied on any intermediate layers. We in-
vestigate NoCs with maxout after several different layers.
As an example, the NoC model of “c256-mo-c256-f4096-
f4096-f21” is illustrated in Fig. 2. When the maxout oper-
ation is used, the two feature maps (for the two scales) are
merged into a single feature of the same dimensionality us-
ing element-wise max. There are two pathways before the
maxout, and we let the corresponding layers in both path-
ways share their weights. Thus the total number of weights
is unchanged when using maxout.

Table 3 shows the mAP of the four variants of maxout
NoCs. Their mAP is higher than that of the non-maxout
counterpart. The case of maxout after conv+1 performs the
best, and it improves over the no-maxout baseline by 1.8%
to 60.7% mAP. We note that the results thus far are all with-
out bounding-box regression.

5.4. Fine-tuning

In the above, all NoC architectures are initialized ran-
domly. Whenever possible, we can still transfer weights
from a pre-trained architecture and fine-tune the NoCs. The
comparison of random initialization vs. fine-tuning provides
new insights into the impacts of the well established fine-
tuning strategy [9].

For fine-tuning, we initialize the two 4096-d layers by
the two corresponding fc layers in the pre-trained model.
As such, the fine-tuned 3-fc NoC becomes equivalent to the
SPPnet object detection method [13]. For the cases of addi-
tional conv layers, each conv layer is initialized to the iden-
tity map, and thus the initial network state is equivalent to
the pre-trained 3-fc structure. We compare the results of an
SVM on pool5, randomly initialized NoC, and fine-tuned
NoC. Table 4 shows the cases of the 3-fc NoC and the best
performing maxout 2-conv NoC.

How important is fine-tuning for classifiers? Unsurpris-
ingly, the fine-tuned models boost the results, and the max-
out 2-conv NoC has an mAP of 62.9%. However, it is less
expected to see that the randomly initialized NoCs produce
excellent results. Compared with the SVM counterpart us-
ing the same features (47.7%, Table 4), the randomly ini-

pre-trained method VOC 07+12
VGG-16 3-fc NoC 64.6
VGG-16 2-conv NoC 66.1
VGG-16 maxout 2-conv NoC 68.8

Table 5. Detection results of NoC for PASCAL VOC 07 using
VGG nets. The training set is PASCAL VOC 07+12 trainval. The
NoC is the fine-tuned version (Sec. 5.4). The “maxout NoC” is the
2-conv NoC with maxout after conv+1. No bounding box regres-
sion is used.

tialized NoC (60.7%) showcases an improvement of 13.0%,
whereas the fine-tuned counterpart (62.9%) has an extra
2.2% gain. This indicates that the fine-tuning procedure,
for the classifier, obtains a majority of accuracy via train-
ing a network on the detection data, rather than inheriting
pre-trained information.

For the above result (60.7%), the pre-trained features are
fixed and not fine-tuned, the training is not end-to-end, and
the randomly initialized NoCs as classifiers are not trans-
ferred. Under these ablation settings, we are able to delve
into the “black boxes” and separately probe the importance
of each building block. Our investigations suggest that deep
features aside, a carefully designed deep classifier is an es-
sential factor for object detection. While the depth of our
classifier is limited by the amount of training data available
(e.g., 16k VOC 07+12 trainval images for training a 5-layer
NoC), it is still a deeper and more powerful classifier than
an SVM.

It is worth noticing that we do not undervalue the im-
portance of feature fine-tuning and end-to-end training.
Whenever it is feasible, we conjecture that an end-to-end
training (fine-tuning) of deep features plus deep classifiers
may produce even better results. We have not done so in
this paper, because the implementation of such end-to-end
training is difficult. But our entire pipeline (Fig. 1) has
been readily formulated as an end-to-end network, and for-
ward/backward propagations are thus possible. We plan to
investigate this in the future.

5.5. Using Very Deep Pre-trained Models

We find that our NoCs also enjoy benefits from deeper
pre-trained models [26], and a deep classifier is comple-
mentary to pre-trained very deep features.

Table 5 shows the fine-tuned NoC results using the
VGG-16 model [26]. The mAP of the baseline 3-fc NoC is
64.6%. The 2-conv NoC improves to 66.1%, and the max-
out 2-conv NoC further increases the mAP to 68.8%. On
the other hand, the baseline 3-fc NoC using the VGG-19
model is 65.1%, which is inferior to the results of sophis-
ticated NoCs. With the maxout 2-conv NoC, VGG-19 and
VGG-16 perform just comparably.



Cor: 60.2%

Loc: 28.1%

baseline, mAP 58.0
(ZF)

 

 

Cor: 60.2%

Loc: 28.1%

Sim: 2.8%

Oth: 2.0%

BG: 6.9%

Cor: 64.6%

Loc: 22.6%

ours, mAP 62.9
(ZF)

 

 

Cor: 64.6%

Loc: 22.6%

Sim: 3.2%

Oth: 2.2%

BG: 7.4%

Cor: 64.9%

Loc: 24.8%

baseline, mAP 64.6
(VGG−16)

 

 

Cor: 64.9%

Loc: 24.8%

Sim: 1.8%

Oth: 1.3%

BG: 7.2%

Cor: 69.6%

Loc: 20.1%

ours, mAP 68.8
(VGG−16)

 

 

Cor: 69.6%

Loc: 20.1%

Sim: 1.6%

Oth: 1.3%

BG: 7.4%

Figure 3. Distribution of top-ranked True Positives (TP) and False
Positives (FP), generated by the published diagnosis code of [16].
The types of positive predictions are categorized [16] as Cor (cor-
rect), Loc (false due to poor localization), Sim (confusion with a
similar category), Oth (confusion with a dissimilar category), BG
(fired on background). The total number of samples in each disk is
the same and equal to the total number of ground-truth labels [16].
The baseline is the fine-tuned 3-fc NoC [13]. “Ours” refers to the
fine-tuned maxout 2-conv NoC.

Error Analysis. To better understand the effect of NoC,
we use the diagnosis tool of [16] to analyze the top-ranked
false-positive predictions (Fig. 3). The false positives due
to poor localization are denoted as “Loc”. The false pos-
itives due to category recognition error consist of “Sim”
(confusion with a similar category), “Oth” (confusion with
a dissimilar category), “BG” (fired on background). Here
the baseline is the fine-tuned 3-fc NoC. “Ours” refers to the
fine-tuned maxout 2-conv NoC.

Fig. 3 shows that the deeper VGG-16 model has an over-
all lower recognition error than the shallower ZF model, re-
spectively for the baseline cases and our NoC cases. The
effect of NoC is mainly the considerable reduction of lo-
calization error, e.g., reducing from 24.8% to 20.1% in the
VGG-16 case. This analysis indicates that a deeper NoC
helps to substantially reduce localization errors, while the
recognition error is mainly reduced by a deeper pre-trained
model.

method mAP
DPM + HOG, v5 [10] 33.7
Regionlet + HOG [30] 35.1

NoC + HOG 37.0
NoC + HOG, bb 39.4

Table 6. Detection results using HOG features only for PASCAL
VOC 07. The training set for all methods is PASCAL VOC 07
trainval. No external data is used.

6. Networks on HOG Feature Maps

The above experiments suggest that designing deep net-
works on top of feature maps is important. To provide a fur-
ther proof of concept, we experiment with NoCs on top of
HOG feature maps. There is no pre-training or fine-tuning
available in this setting.

We extract HOG feature maps using the public code
of DPM v5 [10]. These feature maps consist of 31-
dimensional HOG vectors and have a stride of 8 pixels. We
compute HOG feature maps from rescaled images of five
scales {480, 576, 688, 864, 1200}. The proposal regions
are generated using Selective Search [27]. During training,
a scale is randomly selected for each proposal region; and
for inference, a proposal region is mapped to the “closest”
scale where the rescaled region has an area closest to 60×60
on the feature map. For each region, we max pool the fea-
tures to a spatial resolution of m × m, where m = 24.
The resulting 24×24×31-d features are the input to NoCs.
Training and inference are analogous to those in the previ-
ous sections.

We investigate a maxout NoC structure of c96s2-mo-
c256s2-f4096-f21 that consists of two conv and two fc lay-
ers. The first conv layer has 5×5 spatial filters, and the
second has 3×3. The notation “s2” means a stride of 2 is
used. Before the first fc layer, the features are pooled using
SPP into a pyramid of spatial resolutions {6×6, 3×3, 2×2,
1×1}, concatenated, and fed into the fc layers. This NoC is
randomly initialized and trained on VOC 07 trainval, with-
out external data.

The mAP of this network on the VOC 07 test data is
37.0% and 39.4%, respectively, without and with bounding
box regression (Table 6). These results compare favorably
to DPM [8] and Regionlet [30] trained on HOG features. To
our knowledge, this is the best HOG-only result to date for
VOC 07 without external data.

This investigation in turn explains the major accuracy
gap between the hybrid DPM+CNN methods [24, 11, 29]
and R-CNN/SPPnet. The DPM model is a less powerful
classifier than a multi-layer network, whether applied to
deep convolutional features or shallow HOG features.

The work in [34] shows that a DPM classifier has di-
minishing improvement when given more training data. To



method trained on mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

R-CNN [9] VOC 07 62.2 71.6 73.5 58.1 42.2 39.4 70.7 76.0 74.5 38.7 71.0 56.9 74.5 67.9 69.6 59.3 35.7 62.1 64.0 66.5 71.2

R-CNN,bb [9] VOC 07 66.0 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1

SPP [13] (3fc) VOC 07 60.4 69.4 70.4 58.8 47.3 39.2 72.2 70.4 71.5 38.1 70.3 52.8 69.3 69.8 71.1 51.4 33.5 58.5 52.6 67.1 73.8

SPP [13] (3fc) 07+12 64.6 70.8 78.1 65.6 51.0 43.4 74.4 71.2 76.6 43.6 73.8 55.0 76.9 73.8 73.1 55.2 33.7 65.3 65.0 69.4 75.6

NoC 07+12 68.8 74.6 77.7 68.5 53.3 45.5 78.0 75.5 82.1 47.9 77.2 63.0 81.1 75.9 75.1 61.6 41.7 72.9 73.3 73.8 77.7

NoC, bb 07+12 71.6 75.4 79.4 71.9 57.4 50.9 83.0 77.4 85.9 51.3 77.5 65.9 82.8 82.7 77.7 65.2 45.6 70.2 75.7 76.8 78.6
NoC, +EB 07+12 71.8 74.2 79.8 73.0 60.4 59.0 82.0 76.8 82.8 51.3 81.5 63.2 82.3 81.9 78.7 70.0 40.3 73.0 73.2 77.9 75.4

NoC, +EB, bb 07+12 73.3 76.3 81.4 74.4 61.7 60.8 84.7 78.2 82.9 53.0 79.2 69.2 83.2 83.2 78.5 68.0 45.0 71.6 76.7 82.2 75.7

Table 7. Detection results for PASCAL VOC 2007 test set using the VGG-16 model [26]. Here “bb” denotes bounding box regression [9].
EB denotes additional EdgeBoxes [35] for region proposal. The NoC used is c512-mo-c512-f4096-f4096-f21.

understand the impact of the dataset scale for an NoC classi-
fier, we train the above HOG-only model using VOC 07+12
trainval data. The mAP increases significantly from 39.4%
to 46.1%. The NoC as a region classifier benefits from the
amount of training data, similar to image classifier networks
[18, 32]. This result suggests that the role of larger-scale
data for object detection is not merely on learning generic
features, but also on improving object classifiers.

7. Implementation

The implementation details follow those in [9, 13]. The
proposal regions are extracted by the “fast” mode of Selec-
tive Search [27]. The convolutional feature maps are com-
puted from multiple scales [13]. We use seven scales where
the shorter side of the rescaled image is in {224, 360, 480,
576, 688, 864, 1200}. For NoC training, a scale is randomly
selected for each region at each iteration, and the feature is
computed using this scale; if maxout is used, two adjacent
scales are randomly selected. For inference, a scale (or two
scales for maxout) is selected when the rescaled proposal
region has an area closest to 224×224 pixels.

To compute feature maps, we pad bp/2c pixels for a layer
with a filter size of p. As such, for a response centered at
(x′, y′), its effective receptive field in the image domain is
centered at (x, y) = (16x′, 16y′) where 16 is the effective
stride in ZF or VGG models. Given a window in the image,
we project the left (top) boundary to the conv feature map
by: x′ = bx/16c+ 1 and the right (bottom) boundary x′ =
dx/16e − 1.

For NoC training, we use a mini-batch size of 128. We
start with a learning rate of 0.001, and divide by 10 twice
after each 50k iterations. When the NoC weights are ran-
domly initialized, we use the scaled Gaussian distribution
[14]. All fc layers (expect the last 21-d fc) are with a
dropout [15] ratio of 50%.

Running Time. A prominent behavior of the NoC is
that it benefits considerably from larger-scale training data
and more region proposals. This is made feasible by the

shared computation of convolutional feature maps as in
other feature-map-based methods [13, 24, 11, 29], because
the region-wise computation is kept low. Using a VGG-16
model, it takes our method 3.9 seconds evaluating an im-
age. This is reasonably slower than SPPnet (using VGG-
16) that takes 2.3 seconds per image, but is over one order
of magnitude faster than R-CNN that takes 48 seconds. The
running time is averaged on 100 random PASCAL images,
and is evaluated by a single Nvidia K40 GPU and using
2,000 proposal windows (proposal time not counted). For
fine-tuning, our method takes about one day caching fea-
ture maps using the single K40 GPU and less than one day
training the NoC for 150k iterations.

8. Results
By exploiting NoCs and the pre-trained very deep VGG

models [26], we achieve state-of-the-art results in PASCAL
VOC 2007 and 2012. In this section, we compare our
method with previous leading methods.

Table 7 shows the comparisons on PASCAL VOC 2007,
all using the VGG-16 model [26]. R-CNN fine-tuned on
VOC 07 trainval has 62.2% mAP without bounding box re-
gression. The SPPnet method has 60.4% mAP under the
same setting, which is 1.8% lower than R-CNN. This sug-
gests that fine-tuning all layers of a very deep model (as
in R-CNN) improves accuracy compared with using fixed
pre-trained convolutional layers (as in SPPnet).

The SPPnet method has 64.6% mAP when fine-tuned on
VOC 07+12. Our NoC method improves the mAP to 68.8%
under the same settings. This is a 4.2% increase due to a
carefully designed NoC as a region classifier.

With bounding box (bbox) regression [9] for post-
processing, the mAP is 71.6%. We use the features of the
last conv layer (conv+2) for bbox regression. The bbox re-
gression boosts the mAP by 2.8%. This gain, however, is
smaller than the gain of bbox regression for R-CNN (3.8%).
This is perhaps because the bbox regression technique is for
reducing localization error, which is also the main improve-
ment of NoCs (Fig. 3).



method trained on mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

R-CNN [9] VOC 12 59.2 76.8 70.9 56.6 37.5 36.9 62.9 63.6 81.1 35.7 64.3 43.9 80.4 71.6 74.0 60.0 30.8 63.4 52.0 63.5 58.7

R-CNN, bb [9] VOC 12 62.4 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3

BabyLearning, bb [20] VOC+ext. 63.2 78.0 74.2 61.3 45.7 42.7 68.2 66.8 80.2 40.6 70.0 49.8 79.0 74.5 77.9 64.0 35.3 67.9 55.7 68.7 62.6

NUS NIN c2000, bb [6] unknown 63.8 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3

R-CNN+Str+FGS, bb [33] VOC 12 66.4 82.9 76.1 64.1 44.6 49.4 70.3 71.2 84.6 42.7 68.6 55.8 82.7 77.1 79.9 68.7 41.4 69.0 60.0 72.0 66.2

NoC, +EB VOC 07+12 67.6 82.5 77.8 71.3 50.0 50.2 74.4 67.8 84.6 44.8 74.2 50.5 84.9 80.1 79.8 71.0 37.8 72.0 57.2 73.8 67.1

NoC, +EB, bb VOC 07+12 68.8 82.8 79.0 71.6 52.3 53.7 74.1 69.0 84.9 46.9 74.3 53.1 85.0 81.3 79.5 72.2 38.9 72.4 59.5 76.7 68.1

Table 8. Detection results for PASCAL VOC 2012 test set reported by the evaluation server. The entries of R-CNN use pre-trained VGG
models. The entries of BabyLearning, NUS NIN c2000, and [33] are based on the R-CNN framework.

Data augmentation is a standard method for improving
ConvNet accuracy for image classification [18]. NoCs also
shows improved accuracy if the region data source is aug-
mented. A simple approach is to use two complemen-
tary object proposal algorithms. We augment the Selec-
tive Search proposal regions by EdgeBoxes [35]. We use
the top-ranked 2,000 proposals generated by the default set-
ting of EdgeBoxes (for a threshold of 0.7). These regions,
combined with 2k Selective Search proposals, are used for
training and inference.

The result using EdgeBoxes is increased by 1.7% from
71.6% to 73.3%. Our result is 4.8% higher than the pre-
vious best result published recently (68.5% by [33]). The
method in [33] trains an R-CNN model with a structured
loss, which is complementary to our method and can in
principle be combined with NoCs.

We also evaluate our model on the PASCAL VOC 2012
test set. In Table 8 we compare our results with the state-
of-the-art on this set. Our result of NoC is 68.8%, which is
2.4% higher than the previous best result (66.4%, [33]).

Lastly, it is interesting to evaluate our object detection
model on the PASCAL VOC 2012 classification bench-
mark. Without training any new model, we use the above
model to generate predictions of object bounding boxes
with their scores. For each category, we use the highest
score in the predictions as the category score of an image.
This simple strategy leads to 90.6% mAP in the PASCAL
VOC 2012 classification test set, on par with 90.3% re-
ported by [31] which also exploits ground-truth bounding
box annotations for training. On the other hand, the VGG-
16 model leads to 89.0% mAP [26] by fine-tuning without
using bounding boxes. Our result suggests that a superior
object detector can perform favorably for multi-label image
classification.

9. Conclusion and Future Work

In this work, we delve into the detection pipeline and
provide insights about the importance of each component.
We discover that deep classifiers are just as important as
deep feature extractors. Randomly initialize deep classi-

fiers showcase excellent results, on both deep pre-trained
features and shallow HOG features, suggesting that fine-
tuning is not the sole strategy of designing object detectors.
We also find that deep classifiers (on conv/HOG features)
favorably benefit from the increasing amount of detection
training data, indicating that large-scale data are not merely
useful for learning generic features, but also for learning
object detectors.

As discussed in Sec. 5.4, we conjecture that an end-to-
end training of deep features plus deep object classifiers
may produce better results. As such, the fine-tuning pro-
cedure will behave like that of R-CNN, but the classifiers
on feature maps will still enjoy the efficiency of shared fea-
tures. We plan to investigate this direction in the future.

References
[1] P. Agrawal, R. Girshick, and J. Malik. Analyzing the perfor-

mance of multilayer neural networks for object recognition.
In ECCV, 2014.

[2] T. Ahonen, A. Hadid, and M. Pietikäinen. Face recognition
with local binary patterns. In ECCV, 2004.

[3] J. Dai, K. He, and J. Sun. Convolutional feature masking for
joint object and stuff segmentation. In CVPR, 2015.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
CVPR, 2009.

[6] J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified
object detection and semantic segmentation. In ECCV, 2014.

[7] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes (VOC)
Challenge. IJCV, 2010.

[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. TPAMI, 2010.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014.

[10] R. Girshick, P. Felzenszwalb, and D. McAllester. Discrimi-
natively trained deformable part models, release 5, 2012.



[11] R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable
part models are convolutional neural networks. In CVPR,
2015.

[12] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. Maxout networks. arXiv:1302.4389, 2013.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In
ECCV. 2014.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. arXiv:1502.01852, 2015.

[15] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. Improving neural networks by pre-
venting co-adaptation of feature detectors. arXiv:1207.0580,
2012.

[16] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error
in object detectors. In ECCV. 2012.

[17] K. Hornik, M. Stinchcombe, and H. White. Multilayer feed-
forward networks are universal approximators. Neural net-
works, 1989.

[18] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS,
2012.

[19] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006.

[20] X. Liang, S. Liu, Y. Wei, L. Liu, L. Lin, and S. Yan. Compu-
tational baby learning. arXiv:1411.2861, 2014.

[21] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[22] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 2004.

[23] V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In ICML, 2010.

[24] P.-A. Savalle, S. Tsogkas, G. Papandreou, and I. Kokkinos.
Deformable part models with CNN features. In Parts and
Attributes Workshop, ECCV, 2014.

[25] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. In ICLR, 2014.

[26] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[27] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.
Smeulders. Selective search for object recognition. IJCV,
2013.

[28] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, 2001.

[29] L. Wan, D. Eigen, and R. Fergus. End-to-end integration of
a convolutional network, deformable parts model and non-
maximum suppression. arXiv:1411.5309, 2014.

[30] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic
object detection. In ICCV, 2013.

[31] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao, and
S. Yan. CNN: single-label to multi-label. arXiv:1406.5726,
2014.

[32] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional neural networks. In ECCV, 2014.

[33] Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee. Improv-
ing object detection with deep convolutional networks via
bayesian optimization and structured prediction. In CVPR,
2015.

[34] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we
need more training data or better models for object detec-
tion? In BMVC, 2012.

[35] C. L. Zitnick and P. Dollár. Edge boxes: Locating object
proposals from edges. In ECCV, 2014.

[36] W. Y. Zou, X. Wang, M. Sun, and Y. Lin. Generic object de-
tection with dense neural patterns and regionlets. In BMVC,
2014.


