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Abstract

Shared representations are highly appealing
due to their potential for gains in computa-
tional and statistical efficiency. Compress-
ing a shared representation leads to greater
computational savings, but can also severely
decrease performance on a target task. Re-
cently, sparselets (Song et al., 2012) were in-
troduced as a new shared intermediate repre-
sentation for multiclass object detection with
deformable part models (Felzenszwalb et al.,
2010a), showing significant speedup factors,
but with a large decrease in task perfor-
mance. In this paper we describe a new train-
ing framework that learns which sparselets to
activate in order to optimize a discriminative
objective, leading to larger speedup factors
with no decrease in task performance. We
first reformulate sparselets in a general struc-
tured output prediction framework, then an-
alyze when sparselets lead to computational
efficiency gains, and lastly show experimen-
tal results on object detection and image
classification tasks. Our experimental re-
sults demonstrate that discriminative acti-
vation substantially outperforms the previ-
ous reconstructive approach which, together
with our structured output prediction for-
mulation, make sparselets broadly applicable
and significantly more effective.

1. Introduction

Shared intermediate representations are highly appeal-
ing due to their potential for gains in computational
and statistical efficiency. These representations appear
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under a variety of guises, such as steerable filter banks
(Freeman & Adelson, 1991), low-rank approximations
for collaborative filtering (Sarwar et al., 2000), and
shared part models for object detection (Zhu et al.,
2010; Ott & Everingham, 2011; Girshick et al., 2011).

Recently, sparselets (Song et al., 2012) were introduced
as a new shared intermediate representation for mul-
ticlass object detection with deformable part models
(DPMs) (Felzenszwalb et al., 2010a). In this appli-
cation, each sparselet can be thought of as a small,
generic part (e.g., a corner or edge) that is shared
between all object categories. The parts of a DPM,
for any class, are then constructed by tiling sparse lin-
ear combinations (“activations”) of the sparselet mini-
parts. The computational efficiency gains of this ap-
proach were demonstrated in a GPU sparselets im-
plementation of DPM detection that outperformed a
baseline GPU implementation by a factor of 3x, and
outperformed the CPU version of the cascade algo-
rithm in (Felzenszwalb et al., 2010b) by a factor of 15x,
with almost no loss in detection average precision. The
sparsity level used in this construction naturally trades
off a decrease in detection accuracy for greater speed.
However, the reconstructive method for learning acti-
vations proposed in (Song et al., 2012) is brittle, and
pushing slightly beyond these speedup factors leads to
a substantial loss in detection accuracy.

This paper makes two contributions, the first of which
remedies the brittleness of the approach in (Song et al.,
2012). We formulate a new, discriminative framework
for sparselet activation training that leads to greater
speedup factors while maintaining high task perfor-
mance. Second, (Song et al., 2012) introduced sparse-
lets only in the context of DPMs, making their applica-
bility limited. In this paper we show how to formulate
sparselets in a generic structured output prediction
(Taskar et al., 2003; Tsochantaridis et al., 2006) setting
and then analyze when the structure of the problem
leads to gains in computational efficiency. This new
insight opens the path for the application of sparse-
lets to a wide variety of problems. As an example, our
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experiments demonstrate that sparselets are highly ef-
fective when applied to off-the-shelf image classifiers.

Our work is related to three strands of active research:
(1) part sharing with compositional models (Torralba
et al., 2007; Fidler et al., 2009; Zhu et al., 2010; Ott
& Everingham, 2011; Girshick et al., 2011), (2) sparse
coding and dictionary learning (Kreutz-Delgado et al.,
2003; Mairal et al., 2009; 2012), and (3) modeling
and learning with low-rank approximations (Freeman
& Adelson, 1991; Manduchi et al., 1998; Wolf et al.,
2007). None of these methods, however, simultane-
ously exploit shared interclass information and dis-
criminative sparsity learning to speed up inference
while maintaining task performance.

This paper also helps unify sparselets with the steer-
able part models of (Pirsiavash & Ramanan, 2012).
These closely related approaches were both applied to
DPMs and resulted in the same 3x speedup factor.
The fundamental differences between the two meth-
ods lies in how they accelerate inference and how they
are trained. Steerable part models use a small part
dictionary with dense linear combinations and discrim-
inative training, whereas sparselets use a larger dictio-
nary with sparse linear combination, and a reconstruc-
tive error training paradigm. With regard to dictio-
nary size and linear combination density, the two ap-
proaches can be viewed as operating at different points
within the same algorithm design space. The remain-
ing difference, then, lies in the training method. This
paper unifies the two approaches by showing how to
train sparselet activations discriminatively, or alter-
nately, how to train steering coefficients sparsely.

The paper is structured as follows. In Sec. 2, we start
with a brief overview of sparselets (Song et al., 2012)
and formulate structured output prediction with gen-
eralized sparselets. In Sec. 3, we describe how dis-
criminative sparselet activation training fits into the
framework and discuss several regularization methods
for sparse activation learning. In Sec. 4, we discuss im-
portant applications of the proposed approach to mul-
ticlass object detection with mixtures of deformable
part models (Felzenszwalb et al., 2010a) and to multi-
class image classification. Before we conclude in Sec. 6,
we provide experimental results on multiclass object
detection and multiclass image classification problems
in Sec. 5.

2. Generalized sparselets

In this section we introduce generalized sparselets —
a general approach for speeding up inference in any
linear structured output prediction model.

2.1. Sparselets reviewed

Sparselets were introduced in (Song et al., 2012) for
the purpose of accelerating object detection with de-
formable part models (DPMs) (Felzenszwalb et al.,
2010a). In brief, a sparselet model is completely spec-
ified by a dictionary S = [s1, . . . , sd] in Rm×d, where
each column sj in Rm is called a sparselet. Noting that
the computational bottleneck of detection is convolu-
tion of a feature pyramid Ψ with a set of DPM part fil-
ters, {fi}, (Song et al., 2012) proposed to approximate
each filter fi as a sparse linear combination of sparse-
lets, yielding: Ψ∗fi ≈ Ψ∗

∑
j αijsj =

∑
j αij (Ψ ∗ sj).

The sparselet responses Ψ ∗ sj are independent of any
filter, and thus their cost can be amortized over all fil-
ters from all object models. In the remainder of this
section we present a novel generalization of this tech-
nique. First, we illustrate how to generalize sparselets
for simple multiclass linear classifiers, and then for any
linear structured output prediction model.

2.2. Multiclass classification with generalized
sparselets

Consider a set of K linear classifiers parameterized by
the weight vectors w1, . . . ,wK each in Rn. An input
feature vector x ∈ Rn is assigned to a class fw(x) ∈
{1, . . . ,K} according to the rule

fw(x) = argmax
k∈{1,...,K}

wᵀ
kx. (1)

Our objective is to reduce the computational cost of
computing Eq. 1.

We begin by partitioning each parameter vector wk

into several m-dimensional blocks. A block is a sub-
vector of parameters chosen so that the set of all blocks
from all wk admits a sparse representation over S.
Concretely, in the examples that follow, blocks will be
chosen to be fragments of part filters in a deformable
part model (see Fig. 1), or simply contiguous subvec-
tors of the parameters in a bag-of-visual-words clas-
sifier. For clarity, we will assume that n = pm for
some positive integer p. We can rewrite each linear
classifier in terms of its blocks, bki in Rm, such that
wk = (bᵀ

k1, . . . ,b
ᵀ
kp)

ᵀ. Similarly, we can partition an
input feature vector into p subvectors, ci in Rm, such
that x = (cᵀ1 , . . . , c

ᵀ
p)ᵀ.

Given a sparselet model S, we can approximate any
vector b ∈ Rm as a sparse linear combination of the
sparselets in S

b ≈ Sα =

d∑
i=1

αi 6=0

αisi, (2)
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Figure 1. (Left) 128 of the 256 sparselets learned from 20 DPMs trained on the PASCAL VOC 2007 dataset. (Right) The
top 16 sparselets activated for the motorbike category.

where α = (α1, . . . , αd)
ᵀ ∈ Rd is a sparselet activa-

tion vector for b. The quality of the approximation
depends on the fixed dictionary and the chosen acti-
vation vector. Now, the dot product in Eq. 1 can be
approximated as

wᵀ
kx = (bᵀ

k1, . . . ,b
ᵀ
kp)(c

ᵀ
1 , . . . , c

ᵀ
p)ᵀ

=

p∑
i=1

bᵀ
kici ≈

p∑
i=1

(Sαki)
ᵀci =

p∑
i=1

αᵀ
ki(S

ᵀci). (3)

We note two important properties of Eq. 3: (1) the
sparselet responses Sᵀci are independent of any par-
ticular classifier, and (2) the subsequent product with
αki can be computed efficiently by accessing only the
nonzero elements of αki. In the following, let λ0 be
the average number of nonzero elements in each αki.

Computational costs. We can analyze generalized
sparselets for multiclass classification by looking at the
cost of computing bᵀ

kici for a single block i and for all
classes k. The original classifiers require Km addi-
tions and multiplications. The generalized sparselet
approach has a shared cost of dm operations for com-
puting the sparselet responses, ri = Sᵀci, and a cost
of Kλ0 operations for computing αᵀ

kiri for all classes.
The overall speedup is thus Km/(dm+Kλ0). To make
this value large, the dictionary size d should be much
smaller than the number of classes K, and the aver-
age number of nonzero coefficients in the activation
vectors should be much less than the sparselet size
m. As the number of classes becomes large, the cost
of computing sparselet responses becomes fully amor-
tized which leads to a maximum theoretical speedup
of m/λ0 (Song et al., 2012). This emphasizes the im-
portance of a sparse representation, in contrast, for
example, to the dense steering coefficients in (Pirsi-
avash & Ramanan, 2012). This analysis shows that

generalized sparselets are most applicable to multi-
class problems with a large number of classes. This
is a regime of growing interest, especially in com-
puter vision as exemplified by datasets such as Ima-
geNet (Deng et al., 2009), which includes more than
10,000 categories (Deng et al., 2010). In Sec. 5.3 we
show results on the Caltech-{101,256} (Fei-Fei et al.,
2006; Griffin et al., 2007) datasets demonstrating that
even with only one or two hundred classes generalized
sparselets can accelerate simple linear classifiers.

2.3. Structured output prediction with
generalized sparselets

Multiclass classification is a special case of structured
output prediction. To complete the description of gen-
eralized sparselets for structured output prediction,
consider the linear discriminant function

fw(x) = argmax
y∈Y

wᵀΦ(x, y) (4)

where the input x comes from an arbitrary input space
X , and fw outputs an element from the label space Y.
As in the previous discussion, w is partitioned into
blocks in a problem specific manner. The partition
used in the multiclass setup is one concrete example.
Given the partition, sparselets can be applied to each
block in a straightforward extension of the multiclass
case.

Computational costs. To generalize the analysis
to the structured prediction setting, we rewrite the
speedup as Qm/(dm+Qλ0), where Q is defined to be
the number of unique parameter blocks that are multi-
plied with a distinct subvector of feature values. Intu-
itively, Q counts the number of times the intermediate
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sparselet response, for a distinct feature vector block,
is reused while solving the argmax in Eq. 4. The value
of Q depends on the specific feature map Φ(x, y) and
inference algorithm, and in general may vary across
feature blocks. We point interested readers to a more
detailed analysis in the supplementary material. For
more intuition, we consider two examples below.

Multiclass convolutional classifiers. Consider
the multiclass setting and let w = (wᵀ

1 , . . . ,w
ᵀ
K)ᵀ

in RKn. As before, each wk is partitioned into p
blocks. But now, instead of an n-dimensional in-
put feature vector, consider larger input vectors x ∈
Rq, q � n, and the feature map Φ(x, (k, y)) =
(0, . . . , 0,xᵀ

y:n, 0, . . . , 0)ᵀ. We write xy:n to denote the
length-n subvector of x starting at position y. This
subvector is placed into the k-th “slot” of Φ (corre-
sponding to the slot for wk in w). The label space Y
consists of all valid (class, position) pairs (k, y). This
setup is equivalent to the problem of searching for the
subvector of x that has maximum correlation with a
weight vector in {wk}. A concrete example of this is
multiclass object detection with Dalal and Triggs style
scanning window detectors (Dalal & Triggs, 2005). In
contrast to the non-convolutional multiclass setting,
now each block of w must be multiplied with each sub-
vector of x while scanning for the maximum response
(imagine “sliding” each wk over x while computing a
dot product at each position), and thus Q = Kp.

Part-based models. Another common situation
that leads to a large Q value is when w parameterizes a
set of “parts” and fw(x) computes the optimal assign-
ment of the parts to locations y in the input x. For ex-
ample, a location y might be a position in a sentence or
an image. In this problem setting, there is a (typically
very large) pool of feature vectors, where each vector in
the pool describes one location in x. The feature map
Φ(x, y) acts on a label y by installing the selected sub-
set of local feature vectors into the appropriate slots of
Φ. These problems typically also involve pairwise in-
teractions between the labels assigned to some pairs of
parts. When these interactions form a tree, dynamic
programming can be used to efficiently compute the
optimal label assignments. In the dynamic program-
ming algorithm, the dot product between each part
model and each local feature vector must be evalu-
ated. As a concrete example, consider the deformable
part models of (Felzenszwalb et al., 2010a). For this
model, the dynamic programming algorithm implicitly
generates the large set of local feature vectors through
the convolution of each part with a histogram of ori-
ented gradients (HOG) feature image (Dalal & Triggs,
2005; Felzenszwalb et al., 2010a). Given object detec-

tors for K classes, each with N parts, each of which
is partitioned into p blocks, this model and algorithm
result in Q = KNp. The part-based structure of this
problem increases sparselet response reuse by a factor
of N .

3. Discriminative activation of
generalized sparselets

Throughout the rest of this paper we consider linear
models defined by parameter vectors that are parti-
tioned into K slots: w = (wᵀ

1 , . . . ,w
ᵀ
K)ᵀ. In the mul-

ticlass setting, slots correspond to the individual classi-
fiers. More generally, slots might be structures like the
filters in a deformable part model. Generalized sparse-
lets may be applied to any subset of the slots. For a
slot wk to which sparselets are applied, it is further
partitioned into pk blocks: wk = (bᵀ

k1, . . . ,b
ᵀ
kpk

)ᵀ.
The {wk} may have different dimensions, as long as
each is a multiple of the sparselet dimension m.

In (Song et al., 2012), the task of learning the sparse-
let model S from a training set of parameter blocks
{bki} was naturally posed as a sparse coding dictio-
nary learning problem (Kreutz-Delgado et al., 2003;
Mairal et al., 2009). The objective was to find a dictio-
nary S and activation vectors {αki} that minimize re-
construction error, subject to an `0-pseudo-norm spar-
sity constraint on each activation vector. Then, given
the learned dictionary S, the activation vectors for a
model w (either previously unseen or from the training
set) were learned by minimizing reconstruction error,
subject to the same sparsity constraint.

The experimental results in (Song et al., 2012) show
that task performance (average precision for object
detection) quickly degrades to undesirable levels as
the activation vectors are made increasingly sparse.
This result is intuitive given the reconstructive learn-
ing paradigm used in (Song et al., 2012): when recon-
struction error is low (usually requiring low sparsity),
the original decision boundary of the model is roughly
preserved. However, as sparsity increases, and the re-
construction error becomes larger, the decision bound-
ary of the reconstructed model changes in an uncon-
trolled way and may no longer be discriminative for
the target task.

Our solution is to replace reconstruction error with a
discriminative objective. To do this (assuming a fixed
dictionary), we propose to rewrite the original opti-
mization problem used for training the linear model in
terms of sparselet responses, which now act as train-
ing features, and the activation vectors, which now act
as the model parameters. To achieve sparsity, we aug-
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ment this new objective function with a sparsity induc-
ing regularizer. As we show below, the obvious choice
of `1 regularization leads to unsatisfactory results, mo-
tivating the development of an alternative approach.

3.1. Learning discriminative activation vectors

Here we consider learning the activation vectors for a
predictor w in the structural SVM (SSVM) framework
(Taskar et al., 2003; Tsochantaridis et al., 2006). The
SSVM training equation is

w∗ = argmin
w

λ

2
‖w‖22+

1

M

M∑
i=1

max
ŷ∈Y

(wᵀΦ(xi, ŷ) + ∆(yi, ŷ))−wᵀΦ(xi, yi),

(5)

where ∆(y, y′) is a loss function. Given a fixed sparse-
let model S, we can rewrite Eq. 5 in terms of the acti-
vation vector parameters and sparselet responses. For
clarity, assume the slots of w have been arranged so
that slots 1 through s are represented with sparse-
lets, and slots s + 1 through K are not.1 For each
slot wk = (bᵀ

k1, . . . ,b
ᵀ
kpk

)ᵀ that is represented by
sparselets, we define a corresponding activation pa-
rameter vector αk = (αᵀ

k1, . . . ,α
ᵀ
kpk

)ᵀ ∈ Rpkd. Let

α = (αᵀ
1 , . . . ,α

ᵀ
s )ᵀ and w̃ = (wᵀ

s+1, . . . ,w
ᵀ
K)ᵀ, and

define the new model parameter vector β = (αᵀ, w̃ᵀ)ᵀ.

We transform the feature vector in a similar manner.
For a feature vector slot Φk(x, y) = (cᵀk1, . . . , c

ᵀ
kpk

)ᵀ

that will be represented by sparselets, we trans-
form the features into sparselet responses:
Φ̃k(x, y) = (cᵀk1S, . . . , c

ᵀ
kpk

S)ᵀ ∈ Rpkd. The

fully transformed feature vector is Φ̃(x, y) =

(Φ̃
ᵀ
1(x, y), . . . , Φ̃

ᵀ
s (x, y),Φᵀ

s+1(x, y), . . . ,Φᵀ
K(x, y))ᵀ.

The resulting objective is

β∗ = argmin
β

R(α) +
λ

2
‖w̃‖22

+
1

M

M∑
i=1

max
ŷ∈Y

(
βᵀΦ̃(xi, ŷ) + ∆(yi, ŷ)

)
− βᵀΦ̃(xi, yi),

(6)

where R(α) is a regularizer applied to the activation
vectors.

3.2. Inducing sparsity

We consider three sparsity inducing regularizers R.

1This flexibility lets us leave slots where sparselets don’t
make sense unchanged, e.g. a bias parameter slot.

I. Lasso penalty (Tibshirani, 1996)
RLasso(α) = λ1‖α‖1

II. Elastic net penalty (Zou & Hastie, 2005)
REN(α) = λ1‖α‖1 + λ2‖α‖22

III. Combined `0 and `2 penalty
R0,2(α) = λ2‖α‖22 subject to ‖α‖0 ≤ λ0

The first two regularizers lead to convex optimization
problems, however the third does not. We consider
two alternative methods for approximately minimizing
Eq. 6 when R(α) = R0,2(α). Both of these methods
employ a two step process. In the first step, a sub-
set of the activation coefficients is selected to satisfy
the constraint ‖α‖0 ≤ λ0. In the second step, the
selection of nonzero variables is fixed, thus satisfying
the sparsity constraint and resulting in convex opti-
mization problem to solve. We consider the following
variable selection strategies.

III-A. Overshoot, rank, and threshold (ORT). In
this method, we first apply either RLasso or REN

with λ1 set to overshoot the target number of
nonzero variables λ0. We then rank the nonzero
activation coefficients by their magnitudes and
select the λ0 variables with the largest magni-
tudes. Each variable in the selected variable
set’s complement is thresholded to zero.

III-B. Orthogonal matching pursuit (OMP). In
this method, we select the nonzero variables by
minimizing the reconstruction error between pa-
rameter blocks and their sparse coding approx-
imation subject to the constraint ‖α‖0 ≤ λ0.
In practice, we use orthogonal matching pursuit
(Mallat & Zhang, 1993) as implemented in the
SPAMS software package (Mairal et al., 2009).
This produces the same initial set of activa-
tion vectors as the baseline method (Song et al.,
2012). However, we then learn the selected vari-
ables discriminatively according to Eq. 6.

4. Implementation

We first focus on the application of our novel sparselet
activation vector learning approach to object detec-
tion with mixtures of deformable part models (Felzen-
szwalb et al., 2010a) in order to facilitate direct com-
parison with the results in (Song et al., 2012). In brief,
the deformable part model (DPM) from (Felzenszwalb
et al., 2010a) is specified by a root filter that mod-
els the global appearance of an object class and a set
of N part filters that capture local appearance. The
part filters are attached to the root filter by flexible
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“springs” that allow the model to match the image
with a deformed arrangement of parts. In practice,
several DPMs are combined into one mixture model
to better represent more extreme variation in object
class appearance.

A DPM is matched to an image by maximizing a score
function over latent variables z. Let z = (c, ρ0, . . . , ρN )
specify a mixture component c ∈ {1, . . . , C}, root filter
location ρ0, and part filter locations ρ1, . . . , ρN for a
model with C components and N part filters. The
score function can be written as

score(x, z) = wc +

N∑
i=0

wᵀ
ciψci(x, ρi)

+

N∑
i=1

dᵀ
ciδci(ρ0, ρi) = wᵀΦ(x, z),

(7)

where wci are the weights in filter i of component c,
dci are the quadratic deformation parameters specify-
ing the stiffness of the spring connecting the root filter
and part filter i of component c, and wc is a score bias.
The feature functions ψci(x, ρi) and δci(ρ0, ρi) are lo-
cal image features (HOG) and deformation features,
respectively. The score can be written as a single dot
production between

w = (w1, . . . , wC ,w
ᵀ
10, . . . ,w

ᵀ
1N , . . . ,w

ᵀ
C0, . . . ,w

ᵀ
CN ,

dᵀ
11, . . . ,d

ᵀ
1N , . . . ,d

ᵀ
C1, . . . ,d

ᵀ
CN )ᵀ

(8)

and a sparse cumulative feature vector Φ(x, z) that is
laid out with the same slots as w.

We apply sparselets to all filter slots of w, i.e., the
{wci}. The part filters all have the same 6× 6 shape,
but the root filters, both within a mixture model and
across classes, have a variety of dimensions. Unlike
(Song et al., 2012) and (Pirsiavash & Ramanan, 2012)
we decompose the root filters, not just the part filters.
To do this, we employ 3 × 3 sparselets and pad the
root filters with an extra one or two rows and columns,
as needed, to ensure that their dimensions are multi-
ples of 3. Summed over the models for all 20 object
classes (Felzenszwalb et al.) in the PASCAL VOC
2007 dataset (Everingham et al.), there are a total of
4954 3 × 3 subfilters. In our experiments below, we
represent all of these subfilters by sparse linear com-
binations of only 256 sparselets — effectively achiev-
ing more than an order of magnitude reduction in the
number of model parameters. The HOG image fea-
tures are 32-dimensional, leading to a sparselet size
of m = 288. Our dictionary is thus undercomplete —
which is desirable from a runtime perspective. Our ex-
perimental results confirm that the sparselets spans a

sufficient subspace to represent the subfilters in the 20
PASCAL classes (Sec. 5.1), as well as to generalize to
previously unseen classes from the ImageNet dataset
(Sec. 5.2). Our DPM sparselets are visualized in Fig. 1.

4.1. Latent SVM

The DPMs in (Felzenszwalb et al., 2010a) are learned
by optimizing a latent SVM (LSVM):

w∗ = argmin
w

λ

2
‖w‖2+

1

M

M∑
i=1

max

(
0, 1− yi max

z∈Z(xi)
wᵀΦ(xi, z)

)
.

(9)

The objective function in Eq. 9 is not convex in w and
in practice a local optimum is found by coordinate de-
scent on an auxiliary function that upper bounds Eq. 9
(see (Felzenszwalb et al., 2010a) for details). The coor-
dinate descent algorithm alternates between two steps.
In the first step, the set Z(xi) is made singleton — for
each positive example — by setting its only member
to be an optimal latent value assignment for example
xi. This step results in a convex optimization prob-
lem that has the same form as a structural SVM. It is
therefore straightforward to apply discriminative acti-
vation learning to a LSVM: we follow the same coor-
dinate descent scheme and apply the SSVM problem
transformation from Sec. 3.1 to the LSVM’s convex
optimization subproblem.

Our implementation is based on the voc-release4

source code from (Felzenszwalb et al.). To optimize
the transformed objective function Eq. 6 when R(α)
is either RLasso(α) or REN(α), we modified the de-
fault stochastic subgradient descent (SGD) code to
implement the truncated gradient descent update of
Langford et al. (Langford et al., 2009). This method
achieves actual sparsity by shrinking parameters and
then truncating small values every few SGD iterations.

4.2. Visualizing learned DPM sparselets

Each DPM sparselet can be visualized as a 3×3 filter.
In Fig. 1 (left) we show the positive weights of 128
of the 256 sparselets that we learned from DPMs for
the 20 classes from the PASCAL VOC 2007 dataset.
Regular structures, such as horizontal, vertical, and
diagonal edges, as well as arcs and corners, are visible.
We can order the sparselets activated for a particular
category model by sorting them by the magnitude of
their activation coefficients. Fig. 1 (right) shows the
top 16 sparselets for the motorbike category. Some of
the activated sparselets resemble circular fragments of
wheels.
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Figure 2. Mean average precision (mAP) vs. sparsity for object detection on the PASCAL 2007 dataset (left) and for 9
classes from ImageNet (right). Using the implementation in (Song et al., 2012), sparsity levels 81 ˜ 99% correspond to
speedup factors of 15 ˜ 25x over the cascade (Felzenszwalb et al., 2010b) algorithm on CPU. The dictionary learned from
the PASCAL detectors was used for the novel ImageNet classes. “Original” is the original linear model; “Reconstructive
sparselets” is the baseline method from (Song et al., 2012); the remaining methods correspond to discriminative learning
(our method) with each of the regularizers described in Sec. 3.2.

4.3. Image classification

To illustrate generalized sparselets applicability be-
yond DPMs, we evaluated our approach on the
Caltech-101 (Fei-Fei et al., 2006) (102 classes, includ-
ing background) and Caltech-256 (257 classes) (Griffin
et al., 2007) datasets. Since our aim is not state-of-the-
art accuracy, but rather to demonstrate our learning
method, we implemented sparselets atop a basic, pub-
licly available image classification framework. Specifi-
cally, we used the phow caltech101 method included
in VLFeat (Vedaldi & Fulkerson, 2008). This approach
trains one-against-all linear SVMs using bag-of-visual-
words features (600 word vocabulary, 2× 2 and 4× 4
spatial pooling, and an approximate χ2 feature map
(Vedaldi & Zisserman, 2011)). In Sec. 5.3 we experi-
ment with two block sizes, m ∈ {100, 200}. These val-
ues of m lead to 36720 (or 18360) blocks in total for
the 102 Caltech-101 classifiers, and 92520 (or 46260)
blocks in total for the 257 Caltech-256 classifiers. We
represent all of these blocks as sparse linear combina-
tions of d = 40 sparselets.

5. Experiments

We performed three sets of experiments, two with mul-
ticlass object detection and the third with multiclass
image classification. The first experiment was de-
signed to evaluate each of the regularization methods

described in Sec. 3.2. The second experiment was de-
signed to evaluate how well a set of sparselets learned
on one set of models generalizes to a new set of models
when learning the activation vectors in our discrimi-
native framework. In the final experiment, we demon-
strate generalized sparselets with their application to
a standard multiclass image classification problem.

5.1. Comparison of regularization methods

We evaluated the baseline reconstructive sparselets
(Song et al., 2012) and our discriminatively trained
activation vectors on the PASCAL VOC 2007 dataset
(Everingham et al.). Fig. 2 (left) shows the mean aver-
age precision (mAP) at various activation vector spar-
sity levels. We set the sparsity regularization constant
λ1 to {0.010, 0.015, 0.020} for the lasso penalty (“R-
Lasso”) and to {0.025, 0.030, 0.035} for the elastic net
penalty (“R-EN”). For the combined `0 and `2 penalty,
λ0 was set to {48, 32, 16, 8, 4, 2}.

The `1-based regularization methods were very dif-
ficult to tune. Adjusting λ1 to hit a desired spar-
sity level requires an expensive grid search. Addition-
ally, the ratio between hinge-loss and the regulariza-
tion term varied significantly between different classes,
leading to a wide range of sparsity levels. Ultimately,
these methods also underperformed in terms of mAP.
Combined `0 and `2 regularization (“R–0,2 ORT” and
“R–0,2 OMP”), in contrast, produces exactly the de-
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Figure 3. Average classification accuracy vs. speedup factor for Caltech-{101,256}.

sired sparsity level and outperforms all other methods
by a large margin. One interesting observation is that
the mAP margin grows as the activation vectors be-
come increasingly sparse.

5.2. Universality and generalization to
previously unseen categories

To test the hypothesis that our learned dictionary of
sparselets, in conjunction with the proposed discrim-
inative activation training, are “universal” and gen-
eralize well, we used the sparselet dictionary learned
from 20 PASCAL classes and evaluated detection per-
formance on novel classes from the ImageNet (Deng
et al., 2009) dataset. We selected 9 categories (sail-
boat, bread, cake, candle, fish, goat, jeep, scissors and
tire) that have substantial appearance changes from
the PASCAL classes. Fig. 2 (right) shows that our
method generalizes well to novel classes and maintains
competitive detection performance even in the high
sparsity regime.

5.3. Image classification with generalized
sparselets

Fig. 3 compares classification accuracy versus speedup
factor (averaged over 6 machines with different CPU
types). Generalized sparselets consistently provide
a good speedup, however only the discriminatively
trained sparselet activation models provide high accu-
racy, occasionally besting the original classifiers. In
these experiments, we used a fixed dictionary size
d = 40. We explored two block sizes m = 100 or
200. Each curve shows results at three sparsity levels:

0.6, 0.8, and 0.9. We trained and tested with 15 im-
ages per class on both datasets. As predicted by our
cost analysis, increasing the class count (from 102 to
257) magnifies the speedup factor.

6. Conclusion

In this work, we generalize sparselets beyond de-
formable part models to any structured output predic-
tion problem. We then show how to learn the sparse-
let activation vectors discriminatively using structural
SVMs with sparsity constraints. Our experiments
show that learning activation vectors discriminatively
significantly outperforms reconstructive learning in
benchmark object detection and classification tasks.
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