
Visibility Constraints on Features of 3D Objects

Ronen Basri∗

Weizmann Institute and TTI-C
Pedro F. Felzenszwalb†

University of Chicago
Ross B. Girshick

University of Chicago

David W. Jacobs‡

University of Maryland
Caroline J. Klivans

University of Chicago

Abstract

To recognize three-dimensional objects it is important to
model how their appearances can change due to changes
in viewpoint. A key aspect of this involves understanding
which object features can be simultaneously visible under
different viewpoints. We address this problem in an image-
based framework, in which we use a limited number of im-
ages of an object taken from unknown viewpoints to deter-
mine which subsets of features might be simultaneously vis-
ible in other views. This leads to the problem of determining
whether a set of images, each containing a set of features,
is consistent with a single 3D object. We assume that each
feature is visible from a disk of viewpoints on the viewing
sphere. In this case we show the problem is NP-hard in
general, but can be solved efficiently when all views come
from a circle on the viewing sphere. We also give iterative
algorithms that can handle noisy data and converge to lo-
cally optimal solutions in the general case. Our techniques
can also be used to recover viewpoint information from the
set of features that are visible in different images. We show
that these algorithms perform well both on synthetic data
and images from the COIL dataset.

1. Introduction
To recognize three-dimensional objects it is important to

model the variations in appearance that can occur due to
changes in viewpoint. If we represent objects with the pop-
ular bag-of-features approach [14, 5] this variability primar-
ily takes the form of visibility constraints. Different subsets
of features are visible from different viewpoints, and there
are constraints on the set of features that are simultaneously
visible. For example, we might be able to see both eyes on
a face, or only one eye, but there are no viewpoints from
which both eyes are visible, and the nose is not visible.
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This paper addresses the problem of inferring which sets
of features in an object may be simultaneously visible based
on a limited number of 2D views of the object taken from
unknown viewpoints. We assume that an object contains
a fixed set of features and when we see an image of the
object we detect a subset of these features. The problem we
tackle assumes that each feature is visible from a fixed but
unknown set of viewpoints. For a subset of features we have
not seen together, we wish to infer whether it is possible for
this subset to be simultaneously visible.

The difficulty of this inference problem depends in part
on the possible sets of viewpoints from which a feature can
appear. If this set is arbitrary, no inference is possible.

Here we assume that each feature is visible from a disk
in the viewing sphere. This is a natural model that can be
motivated as follows. Suppose each feature comes from a
particular point in an object, and we see the feature if the
viewing direction is within some fixed angle of the object’s
surface normal at the feature location. This implies that the
set of viewpoints from which a feature is visible form a disk
on the viewing sphere. This disk is the intersection of the
viewing sphere and a half-space defined by the surface nor-
mal and the angle constraint. For a smooth, convex object
a feature could be visible if the viewing direction is within
90 degrees of the surface normal. Or we might imagine that
we can reliably detect a feature when the viewing direction
is within 30 or 45 degrees of the surface normal.

Note that while our visibility model is motivated in terms
of point-like features we do not make any specific assump-
tions on how features are detected in practice. In particular,
we can handle features that are not well spatially localized,
as long as they satisfy the disk assumption.

Our results are complementary to geometric constraints
that have been widely explored in the past (eg., [13, 6]).
Features detected in multiple images may be geometrically
consistent, but not satisfy the visibility constraints that we
develop here. Similarly, our visibility constraints do not en-
sure geometric consistency in well-localized features. We
note, though, that in the case of poorly localized features,
visibility constraints may be used even when geometric con-
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straints are difficult to apply.
Our work resembles, but differs significantly from past

work on aspect graphs (e.g., [4, 9]), which assumes prior
knowledge of a 3D model. In particular, our approach is
entirely image-based.

The disk assumption imposes strong constraints among
subsets of features that are simultaneously visible from dif-
ferent viewing directions. Any object with n features will
have O(n2) different subsets of features that are simultane-
ously visible, out of a total of 2n subsets of features. This
exponential gap demonstrates the potential value of visi-
bility constraints. For example, in object recognition, we
might detect a set of features in an image, and compare
these to the features that can be seen in a specific object.
It is much more likely that a distracter object will produce
one of the 2n subsets of features of a known object than one
of the O(n2) subsets that could be simultaneously visible.

The main problem we consider here is the problem of de-
ciding if a collection of subsets of features is consistent, in
the sense that each subset could be generated by looking at
the same object from different directions. When the subsets
are consistent we also want to build a model of the visibility
regions of each feature so that we can predict which features
would be visible from an arbitrary viewpoint. In particular
this allows us to estimate the viewpoint of an image based
on the set of features that were detected.

Our main theoretical result is an efficient algorithm for
a special case in which the viewpoints are coplanar. This
includes the situation in which objects are observed from
a camera at fixed height and distance. We also show that
the problem is NP-hard in the general case, when the view-
points are arbitrary.

Of course the disk assumption does not always hold in
practice. In particular, feature detection can be a noisy pro-
cess and features may not be visible due to self-occlusion.
Thus we also consider the problem of building visibility
models from “noisy” data. In this case we want to infer
visibility regions that can capture a set of observed images
as well as possible. We describe an effective iterative algo-
rithm that finds locally optimal solutions, and illustrate that
this algorithm works well both on real and synthetic data.

2. Visibility models

To capture the possible subsets of features that can be
simultaneously visible in a single image of an object, we
set up the following purely geometric problem.

Let Sd−1 = {x = (x1, . . . xd) : ||x|| = 1} ⊂ Rd be the
(d-1)-dimensional hypersphere naturally embedded in Rd

and V = {v1, . . . vm} a finite set of points on Sd−1. We are
primarily concerned with situations in which d ∈ {2, 3}.

Furthermore, let F = {f1, . . . , fn} be a collection of
half-spaces given by a normal direction and threshold; fi =

(hi, ti), where hi ∈ Sd−1, and ti ∈ R. If ti = 0 the half-
space fi is called central. An important special case occurs
when all the fi are central, in which case we have a central
arrangement.

We use the term sign matrix for an arbitrary {+1,−1}
matrix. We are interested in sign matrices M such that

Mij =
{

+1 if vT
i hj > tj ,

−1 if vT
i hj < tj

(or equivalently Mij(vT
i hj − tj) > 0), which record for

each point vi ∈ V and each half-space fj ∈ F if vi lies
in fj . To simplify the analysis we assume vT

i hj 6= tj .
Any matrix arising from a collection of viewpoints and half-
spaces in this way will be called a visibility matrix.

In this setup Sd−1 corresponds to the viewing sphere
when d = 3 and a circle of the viewing sphere when d = 2.
V is a set of viewpoints of an object that lies at the center of
the sphere. The half-spaces F define the visibility regions
for the features in the object. If a viewpoint v lies in the
half-space f then the corresponding feature is thought to
be visible from v. Thus the i-th row of M captures which
features are visible from viewpoint vi, and the j-th column
captures which views see feature j.

The fundamental problems we consider in this paper are
the following. Given a sign matrix M , can we efficiently
determine whether or not M is a visibility matrix? If yes,
can we find a set of defining viewpoints V and half-spaces
F? If no, can we find viewpoints V and half-spaces F that
leads to the “closest” visibility matrix?

The problem of identifying visibility matrices of central
arrangements in Rd is equivalent to determining if the sign-
rank of a matrix is at most d. The sign-rank of a matrix
M is the minimum rank of a real-valued matrix M̃ with
sign(Mij) = sign(M̃ij). The notion of sign-rank arises in
various contexts including communication complexity and
machine learning [7, 10, 12].

Let M be a visibility matrix generated from a set of
viewpoints V and central half-spaces F in Rd. Let Ṽ be
a d×m matrix whose columns are the viewpoints in V , and
H̃ be a d× n matrix whose columns are the normals of the
half-spaces in F . Note that M̃ = Ṽ T H̃ has rank at most d
and M̃ijMij > 0. Thus the sign-rank of M is at most d.

Now suppose M has sign-rank at most d. Then there ex-
ists a real-valued matrix M̃ with MijM̃ij > 0 and the rank
of M̃ is at most d. Now we can write M̃ = Ṽ T H̃ where Ṽ
is d×m and H̃ is d× n. We can take V to be the columns
of Ṽ normalized to length one, and F to be hyperplanes
with normals defined by the columns of H̃ . Then M is the
visibility matrix generated by V and F .

It is straightforward to show that M has sign-rank 1 iff
it has rank 1. Our results establish that deciding if M has
sign-rank at most 3 is NP-hard, answering a question posed
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in [7]. In addition we provide an efficient algorithm for
determining if the sign-rank of a matrix is at most 2.

3. Hardness
As a starting point we observe that determining whether

a sign matrix M is a visibility matrix of a central arrange-
ment in R3 is NP-hard. The key to this observation is a
connection to the theory of oriented matroids [3].

An oriented matroid is a finite combinatorial object de-
signed to capture the abstract notions of oriented linear de-
pendence. One axiom system for oriented matroids is moti-
vated by the geometry of a real central hyperplane arrange-
ment. Consider a collection of hyperplanes H ∈ Rd and
the sign vectors induced by the cells of the arrangement.
Namely, represent each hyperplane Hi by an orthogonal
vector ai ∈ Sd−1 and for each point x ∈ Rd\H form the
vector (sign(xT a1), . . . , sign(xT a|H|)). Any collection of
sign vectors formed as such defines an oriented matroid.

There exist collections of sign vectors which constitute
an oriented matroid but which do not come from any real
central hyperplane arrangement. These are known as non-
realizable oriented matroids. A fundamental problem in the
theory of oriented matroids asks, given an oriented matroid,
is it realizable, i.e. does it come from some real hyperplane
arrangement? The problem was shown to be NP-hard in
dimension 3 by an equivalence to the existential theory of
the reals [8]. Shor proves hardness via a reduction from
3-SAT using only planar incidence geometry [11].

Suppose we are given a sign matrix whose rows corre-
spond to a collection of sign vectors of an oriented matroid.
Then determining whether or not this matrix is a visibility
matrix of a central arrangement in R3 is equivalent to de-
termining whether or not the oriented matroid is realizable
in dimension 3. Thus determining if a sign matrix M is a
visibility matrix of a central arrangement in R3 is NP-hard.
Therefore determining if the sign rank of a matrix is at most
3, and thus computing sign rank, is NP-hard.

The argument above does not directly apply to the case
of non-central visibility matrices. However, hardness in
this case may also be established from the oriented matroid
framework (we omit the details here for lack of space).

4. 2D Arrangements
While the problem of deciding if M is a visibility matrix

in three-dimensions is NP-hard, we have developed efficient
algorithms for the case of two-dimensional arrangements.
This case occurs in practice when the collection of view-
points are coplanar.

First we consider the case of central arrangements, in
which each of the visibility regions spans a range of 180◦.
Next we address the case of arbitrary non-central arrange-
ments. The added complexity of the non-central case can
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Figure 1. A non-central arrangement and its H1-graph

be seen in the structure of the H1-graph of an arrangement.
Suppose we have an arrangement of n half-spaces in R2.
The arrangement induces a decomposition of the circle into
cells. Each cell can be labeled by the sign vector recording
which side of each line the cell sits on. We define the H1-
graph to be a graph with nodes representing the sign vectors
obtained in this way and edges connecting every two sign
vectors with Hamming distance one. In the central case this
graph is simply a cycle.

The case of non-central arrangements gives rise to more
complex configurations because the graph identifies cells
with the same sign vector. For example, two or more dis-
connected regions along the viewing circle may have the
same sign vector and a pair of cells with Hamming distance
one may not be neighbors on the circle, see Figure 1.

4.1. Algorithms

There are many arrangements, including combinatorially
different ones, that lead to the same decomposition of the
viewing circle into visibility cells. Figure 2 shows such an
example. These arrangements produce the same sets of vis-
ible features. Our algorithms avoid distinguishing between
them by working directly with the structure induced on the
viewing sphere.

In two-dimensions a decomposition of the viewing cir-
cle into visibility cells can be encoded by a cyclic order-
ing of In = {1, 1′, 2, 2′, . . . , n, n′}. The ordering specifies
the clockwise order of intersection points between the lines
defining visibility regions for each feature and the circle.
We say that the i-th feature is visible in the region formed
by going from i to i′ in clockwise order. For example, the
structure defined by the arrangements in Figure 2 is encoded
by (1, 3, 2′, 4, 1′, 3′, 4′, 2). Note that any decomposition of
the viewing circle induced by an arrangement of oriented
lines can be represented by such an ordering. Moreover,
any ordering defines a decomposition that can be realized
by an arrangement. An ordering defines a decomposition
that can be realized by a central arrangement if and only if
the position of i and i′ differs by n.
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Figure 2. Two different arrangements that induce the same decom-
position of the viewing sphere into visibility cells.

4.2. Central Arrangements in 2D

The input to the algorithm is an m by n sign matrix M ,
where each row is a sign vector representing the set of fea-
tures visible in a particular image. We would like to (1) find
a set of central oriented lines F = {f1 . . . , fn} and view-
points V = {v1 . . . , vm} such that vi is on the positive side
of fj if and only if Mij = 1, or (2) decide that this is not
possible. For the first case, the actual output of the algo-
rithm is a cyclic ordering, An, of In, capturing the relative
ordering of the intersection points of F with the viewing
circle, and an assignment, ρn, of viewpoints to the visibility
cells defined by such an ordering. A geometric arrange-
ment of lines and viewpoints consistent with M can easily
be produced from this data.

Our algorithm works in a greedy fashion, considering
one feature at a time. At the i-th iteration we determine the
relative position of fi with respect to the previously consid-
ered features. Below, Ai is a cyclic ordering of Ii (defining
an arrangement of the first i features) and ρi denotes a map
from viewpoints to cells defined by Ai. We construct Ai

and ρi by extending Ai−1 and ρi−1. This is done so that at
every iteration Ai and ρi represent an arrangement compat-
ible with the first i columns of M .

If M contains two identical columns or columns that are
opposites of each other we remove one of them. Further-
more for each row of M we add its opposite row if it was
not already in M . The new matrix is a visibility matrix of
a central arrangement if and only if the original matrix was.
This transformation ensures that an arrangement realizing
M has no empty cells. Because if there was an empty cell,
the addition of opposite rows implies the opposite cell must
also be empty. But a pair of opposite empty cells implies
the existence of either equal or opposite columns.

1. Without loss of generality we let A2 = (1, 2, 1′, 2′).
This decomposes the circle into four cells, according
to the four possible sign configurations on the first two
features. We define ρ2 by assigning each sign vector
to one of these cells according to its sign on f1 and f2.

2. At the i-th iteration, we look for a cell, C, induced by
Ai−1 which contains two vectors with opposite signs
on fi. If no such cell exists then M is not a central
visibility matrix. Otherwise fi must divide such a cell.
Because we are looking for a central arrangement, fi

must also divide the opposite cell, C̄. This defines two
places in Ai−1 where we should insert i and i′. All
vectors in cells between C and C̄ in clockwise order
should have the same sign on fi, and all vectors be-
tween C̄ and C should have the opposite sign. This
determines where i and i′ must be inserted or leads to
a contradiction, in which case we decide M is not a
central visibility matrix. If there is no contradiction
we place i and i′ to obtain Ai, and update ρi−1 by re-
assigning viewpoints in the two cells which are split by
fi according to their sign on fi.

The correctness of the algorithm is due to the uniqueness
of arrangements compatible with a subset of features, which
we prove by induction. Note however that A2 is only unique
up to a choice of orientation of two features. There are two
possible way to orient two features which simply lead to
arrangements that are related by a mirror reflection.

Now suppose Ai and ρi are unique (up to the choice of
A2) and let Ai+1 and ρi+1 represent an arrangement of the
first i + 1 features compatible with the first i + 1 columns
of M . There is a natural arrangement of the first i features,
A′

i, ρ
′
i induced by Ai+1, ρi+1 which simply restricts Ai+1

to those elements of Ii and coarsens ρi+1. Each cell in A′
i

is a union of cells of Ai+1 and ρ′i(v) is the cell containing
ρi+1(v). By our uniqueness assumption, A′

i, ρ
′
i must equal

Ai, ρi. Furthermore, there is a unique way to extend Ai, ρi

to Ai+1, ρi+1, since all steps in the construction above are
forced. Thus Ai+1 and ρi+1 constructed by the algorithm
represent the unique arrangement compatible with the first
i + 1 columns of M . By induction we conclude An and ρn

represent the unique arrangement compatible with M (up to
mirror reflection, depending on the choice of A2).

4.3. Non-Central Arrangements

Now we consider the case of non-central arrangements.
The input to the algorithm is an m × n sign matrix M
and we would like to find a set of arbitrary (possibly non-
central) oriented lines F = {f1 . . . , fn} and viewpoints
V = {v1 . . . , vm} such that vi is on the positive side of
fj if and only if Mij = 1, or (2) decide that this is not
possible. Again the actual output is a cyclic ordering cap-
turing the relative ordering of intersection points of F with
the viewing circle, and an assignment of viewpoints to cells.

The algorithm works in three phases. First, we identify
sets of features that must cross each other inside the view-
ing circle. We then construct sub-arrangements for sets of
features that form “connected components” of the crossing
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relationship. In the last phase we glue the sub-arrangements
together to form a complete arrangement.

Phase 1 We start by constructing a graph G where the
nodes are the features and there is an edge (i, j) if features
i and j must cross each other inside the viewing circle. Two
features must cross exactly when we see all four possible
sign patterns on columns i and j of M . Let S be the con-
nected components of G. While some pairs of features in
S ∈ S may not necessarily cross each other, there is an or-
dering of the features in S such that each feature must cross
a feature that appears before it.

Phase 2 In the second phase we construct a representation
of all valid arrangements of features and viewpoints for each
connected component S ∈ S. These are the arrangements
compatible with the columns of M indexed by S.

In the case of non-central features, a set of observations
might not fully constrain the ordering of intersection points
between S and the viewing circle. So we will want to par-
tially specify orderings, A|S| of {i1, i′1, . . . , i|S|, i′|S|}, so
that the relative position of some sets of consecutive in-
tersection points is arbitrary. This can be captured by an
ordering of subsets of intersection points, where each inter-
section point appears in exactly one subset. For example,
({1, 2′}, {3}, {1′}, {2}, {3′}) specifies two possible order-
ings: (1, 2′, 3, 1′, 2, 3) and (2′, 1, 3, 1′, 2, 3). We may think
of this construction as initially allowing multiple features to
intersect the viewing sphere at the same point. To form a
fully prescribed arrangement, we slightly perturb the fea-
tures (in any relative order) to create unique intersection
points between features and the viewing sphere. The cells
created between these features will all be empty.

Let (i1, . . . , i|S|) be the features in S in an order such
that each feature crosses a feature that appears before it.

1. Let A2 = ({i1}, {i2}, {i′1}, {i′2}). This decomposes
the circle into four cells, according to the four possible
sign configurations on the first two features. We define
ρ2 by assigning each sign vector to one of these cells
according to its sign on fi1 and fi2 .

2. At the j-th iteration, we want to determine where to
place ij and i′j in Aj−1. There must be a feature fik

with k < j such that fij must cross fik
. This fea-

ture defines two intervals in Aj−1: ik to i′k (where fik

is visible) and i′k to ik (where fik
is not visible). We

know fij must intersect the viewing circle in both in-
tervals, so that we can obtain all possible sign patterns
on the pair fik

and fij
. Consider the interval from ik

to i′k. There must be sign vectors that are + and − on
fij within this interval. There should be a single tran-
sition between + and− in the interval, and it can occur

within a cell or as we go from one cell to another (oth-
erwise M is not a visibility matrix). If the transition
is within the cell between intersection points a and b
we update Aj−1 by inserting {ij} or {i′j} between a
and b. If the transition occurs as we go from the cell
defined by a and b to the cell defined by b and c we
update Aj−1 by adding ij or i′j to the set b. This fully
determines where ij and i′j must be inserted or leads
to a contradiction, in which case M is not a visibility
matrix. If there is no contradiction we obtain Aj and
update ρj−1 by reassigning viewpoints in cells which
are split by fij according to their sign on fij .

Phase 3 In the last phase we “glue” together the arrange-
ments constructed for each connected component of fea-
tures to obtain a complete arrangement compatible with M .

For any pair of distinct connected components S and T ,
we can think of T as lying entirely inside a cell, CS,T , in-
duced by S. Namely all intersection points of features in T
with the viewing circle lie inside a single cell induced by S.
And conversely, we can think of S as lying entirely within a
cell, CT,S , induced by T . For each pair of connected com-
ponents we will identify these connector cells.

We form a complete arrangement by inserting compo-
nents one at a time, at each step placing a component adja-
cent to a component already inserted into the final arrange-
ment. Unlike the central case, this final arrangement will
be only one of many consistent arrangements. In order to
decide which components may be adjacent to each other we
check if two components are separated by a third using a
simple criterion on connector cells.

1. Let Si, Sj ∈ S be two connected components of G.
Consider each along with its ordering ASi and map-
ping ρSi as constructed in Phase 2. (CSi,Sj , CSj ,Si) is
the pair of connector cells between components Si and
Sj iff the following two conditions hold:

CSi,Sj ⊇ {v | ρSj (v) /∈ CSj ,Si}

CSj ,Si
⊇ {u | ρSi

(u) /∈ CSi,Sj
}

where CSi,Sj (CSj ,Si) is a cell induced by Si (Sj) and
u, v are rows of M .

2. A pair of connected components can be adjacent in the
complete arrangement if there are no components sep-
arating them. That is, @ Sk s.t. CSk,Si

6= CSk,Sj
. If

such a Sk did exist, then Si and Sj must lie inside dis-
tinct cells of Sk and thus are separated by at least one
feature of Sk.

3. LetO = (Si1 , . . . , Si|S|) be the components in S in an
order such that each component can be adjacent to at
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least one component that appears before it (in the sense
defined by step 2).

The final arrangement is represented by an ordering,
A|S|, of the intersection points between all features in
M and the viewing circle. We form this ordering iter-
atively. Let A1 = Ai1 . At step k, we insert Aik

into
Ak−1. By construction we know that Sik

can be ad-
jacent to some previously considered component, say
Sij

. We insert Aik
immediately following the appro-

priate boundary of the connector cell CSij
,Sik

.

Again we note that the arrangement induced by A|S|
is not unique. For example, there are many choices for
the orderO, and this can lead to different arrangements
that are compatible with M .

5. Dealing with Noise or Modeling Errors

Of course the assumption that each object feature is vis-
ible on a disk of the viewing sphere will not always hold
in practice. There are several sources of “error” that will
lead to inconsistent observations. First, feature detection is
a noisy process and we will not always detect exactly the set
of features that are visible in an image. Second, due to self-
occlusions some features may have visibility regions that
are not disks. Moreover, the disk assumption may be vio-
lated if an object has multiple copies of the same feature.

Suppose we have m images of an object with n features.
This will lead to an m by n sign matrix M , where each row
specifies the features that are visible in one image. Because
of noise and modeling error M will typically not be a visi-
bility matrix. A natural approach for dealing with this is to
look for a model that agrees with M as well as possible. In
particular, we can look for an arrangement of features and
viewpoints that lead to a visibility matrix M ′ such that the
Hamming distance between M and M ′ is minimized. We
define our problem as follows.

Given a sign matrix M , can we find viewpoints V and
visibility regions F that lead to a visibility matrix M ′ such
that the Hamming distance between M and M ′ is as small
as possible?

5.1. Iterative Local Search Algorithm

Let F = {f1 . . . , fn}, with fi = (hi, ti), be a set of
half-spaces defining the visibility regions for each feature,
and V = {v1 . . . , vm} denote a placement of viewpoints on
the viewing sphere.

Note that F and V define a visibility matrix that agrees
with M on entry (i, j) iff Mij(vT

i hj − tj) > 0. Thus the
error of F and V with respect to M is given by

errorM (F, V ) =
∑
ij

I(Mij(vT
i hj − tj) < 0),

where I is a 0/1 indicator function (equals 1 if the argument
is true, and 0 otherwise).

While the problem of finding the pair (F, V ) minimizing
errorM (F, V ) seems to be hard, we have found that good
solutions are produced by a simple local search algorithm.

We start with random placements of viewpoints on the
viewing sphere and repeatedly update one of F or V to min-
imize the total error while the other set of values is fixed.
Each update leads to independent optimization problems for
each feature or each viewpoint:

1. Given a fixed set of viewpoints V , pick fj = (hj , tj)
to minimize

∑
i I(Mij(vT

i hj − tj) < 0).

2. Given a fixed set of features F , pick vi to minimize∑
j I(Mij(vT

i hj − tj) < 0).

Both steps (1) and (2) could be solved optimally when
d ∈ {2, 3}, but we have found it more convenient, and in
practice just as good, to use the heuristics described below.

Note that (1) is equivalent to finding a set of linear clas-
sifiers with minimum 0/1 loss. That is, for each j we have
labeled points (vi,Mij) in Rd and we would like to find a
linear threshold function (a half-space) fj that minimizes
the number of misclassified points. In practice we use a
variant of the perceptron algorithm to solve this problem.

Subproblem (2) is similar to (1), but it cannot be solved
in the same way due to the constraint that ||vi|| = 1. In
principle, we can construct and search the arrangement in-
duced by F in polynomial time to find optimal placements
for vi, but instead we randomly sample points in Sd−1 and
pick the best sample point for each vi. When d ∈ {2, 3}
a relatively small number of sample points suffices to get a
good solution.

5.2. Synthetic Data

Figure 3 shows the results of using the local search algo-
rithm described above on synthetic data. We generate ran-
dom problems as follows. We start with a random arrange-
ment of features and viewpoints to obtain a visibility matrix
A. We considered both the case of arbitrary viewpoints on
the viewing sphere (the 3D case) and the case where view-
points are selected from a circle of the viewing sphere (the
2D case). We think of each row of A as a visibility vector
that indicates which features are visible in one view. We add
independent noise to the entries of A to obtain a sign matrix
B. We then run the local search algorithm to obtain a vis-
ibility matrix C that is close to B. Each graph in Figure 3
shows experiments with an increasing amount of noise per
visibility vector for a fixed number of views and features.
We can see that on average the number of bits we need to
flip to turn B into a visibility matrix (the distance from B to
C) is smaller than the amount of noise introduced. This is
an indication that the algorithm is working well. Moreover,
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Figure 3. Experimental results with synthetic data. In each experiment we start with a set of compatible visibility vectors A and randomly
flip each bit of each vector with some probability to get a set of (generally incompatible) visibility vectors B. We run our algorithm to
obtain a set of vectors C that is similar to B but compatible. The distance from B to C indicates the number of bits we need to flip to get
a set of compatible vectors. The distance from A to C indicates how well we are able to recover the initial set of visibility vectors.

if the amount of noise per vector is small, and the number
of views is large, we obtain a matrix C that is close to the
original visibility matrix A (see Figure 3).

6. Experiments with COIL images
We have also conducted experiments with images from

the COIL dataset [2]. In each experiment we have 36 im-
ages of a single object taken from uniformly spaced view-
points in a circle of the viewing sphere. We use half of the
images to build a set of features and a visibility model. The
feature set is constructed by clustering SIFT descriptors [1]
detected in the 18 training images. We then use our local
search algorithm to recover the visibility regions of each
feature. Note that the visibility model is learned in an unsu-
pervised manner since no image order information is used
by the local search algorithm.

After building a visibility model we can place each of
the 36 images, including those not used when building the
model, in the visibility cell that best captures the features
detected in that image. This lets us recover the relative
viewpoint of each image. Figure 4 shows the results of this
process on two different objects, where we display the im-

ages according to the order recovered by our algorithm. In
both cases the order we recover is very good. There are only
a few images that are slightly out of order. Note that if the
same set of features are detected in two images it is impos-
sible to distinguish among them using visibility constraints
alone. In this case our algorithm will place the images in
the same visibility cell in an arbitrary order.

In addition to recovering viewpoints the visibility model
can also be used to find, and potentially correct, inconsis-
tencies in the set of features detected in an image. Given a
visibility model for an object we can place an image of the
object in the visibility cell which best captures the features
detected in that image. We can then check which detected
features should not have been visible, and which features
should have been visible but were not detected. This could
be used to correct errors in the feature detection process.
Figure 5 shows an example of this for a feature that intu-
itively corresponds to the back of the cat. The visibility
model correctly identifies an image where the feature was
not detected even though the back of the cat is visible, and
several images where the feature was detected even though
the back is not visible.
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Figure 4. Experiments with objects from the COIL dataset. The label in the top left corner indicates the true viewpoint of each image. The
order shown was recovered using our algorithm by building a visibility model from a subset of the images (labeled by ?), and then placing
each image in the visibility cell which best matched it.
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Figure 5. (a) and (c) show images where a particular feature (blue
arrow) was detected. The visibility model learned for this object
classifies the detections in (a) as correct, and the detections in (c)
as inconsistent (the feature should not appear together with the
other features detected in these images). The feature was not de-
tected in (b) but should have been according to the model.
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