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Abstract. While deep neural networks have led to human-level perfor-
mance on computer vision tasks, they have yet to demonstrate similar
gains for holistic scene understanding. In particular, 3D context has been
shown to be an extremely important cue for scene understanding - yet
very little research has been done on integrating context information
with deep models. This paper presents an approach to embed 3D con-
text into the topology of a neural network trained to perform holistic
scene understanding. Given a depth image depicting a 3D scene, our
network aligns the observed scene with a predefined 3D scene template,
and then reasons about the existence and location of each object within
the scene template. In doing so, our model recognizes multiple objects
in a single forward pass of a 3D convolutional neural network, capturing
both global scene and local object information simultaneously. To cre-
ate training data for this 3D network, we generate partly hallucinated
depth images which are rendered by replacing real objects with a reposi-
tory of CAD models of the same object category. Extensive experiments
demonstrate the effectiveness of our algorithm compared to the state-of-
the-arts. Source code and data will be available.

1 Introduction

Deep convolutional neural networks (ConvNets) and their variants have led to
remarkable progress in computer vision. So much so that for the task of Ima-
geNet Classification, these methods have boasted better performance than that
of humans themselves [1]. However, computers are still far from attaining human-
level performance on perception for real-world scene understanding. Occlusions,
clutter, and the limited fidelity (resolution) of the visual signal are just some of
the many problems that make this an especially challenging problem to solve.
In literature, context has been shown to be an extremely important cue for
overcoming the problems mentioned above. Context has also been shown to lead
to impressive gains in ablative experimental analysis [2,3]. However, very little
work has been done on integrating context into the topology of deep neural
networks for the task of scene parsing and understanding. Research in context
reasoning is mostly disconnected from the rapid progress in deep learning. In
this paper, we propose a deep network topology that explicitly incorporates
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Fig. 1. Our deep 3D scene understanding pipeline. Given a 3D volumetric input
derived from a RGB-D image, our transformation networks align the scene template
with the input data. Given the initial alignment, our 3D context network estimates the
existence of an object and adjust the object location based on local object features and
holistic scene feature, to produce the final 3D scene understanding result.

contextual cues by tying them to particular sets of neurons and then defining
the relationships between these sets.

In a manner similar in spirit to the recent work of Jaderberg et al. [4], our
model tries to align the observed data into a canonical viewpoint. However,
unlike with MNIST digits or individual objects where an alignment to a canonical
viewpoint is quite natural, it is not clear what transforms are needed to reach a
canonical configuration for a 3D scene. To overcome this, our approach starts by
automatically constructing a set of 3D scene templates. Each template represents
a functional sub-region of an indoor scene, predefined with canonical furniture
arrangements and estimated 3D anchor positions of possible objects with respect
to the reference frame of the template. We encode these template anchors into
a 3D context neural network as a way to hard-code prior context knowledge. To
make use of the 3D context template, we design a transformation network that
aligns the input 3D scene (corresponding to the observed depth image) with the
template (i.e. the canonical furniture arrangement in 3D space). Unlike [4] where
the transformation used for the alignment of the observation and canonical view
is learned in an unsupervised fashion, we use supervised training by employing
the ground truth alignments available from our training data.

The aligned 3D scene is then fed into a 3D deep neural network that de-
termines the existence and location of each object in the scene template. This
3D context neural network contains a holistic scene pathway and a multiple
object pathway using 3D Region Of Interest (ROI) pooling in order to classify
object existence and regress object location respectively. Our model can recog-
nize multiple objects in a single forward pass of a single 3D neural network.
As our network is jointly trained for the whole scene and all objects within, it
incorporates both global and local information simultaneously.

Holistic scene understanding requires the 3D ConvNet to have sufficient
model capacity which is a problem as existing RGB-D datasets for scene un-
derstanding are all small in size. To overcome this limitation, we propose to
synthesize training data from existing RGB-D datasets by randomly replacing
objects in a scene with those from a repository of CAD models from the same
object category, and render them in place to generate part real part hallucinated
depth images.



1.1 Related works

The role of Context has been studied extensively in Computer Vision [5,6,7,8,9,10,11,12,1.
While most existing research is limited to 2D, there is some work on model-

ing context for Total scene understanding from RGB-D images [27,28,29,30,31].
However, most such approaches take object detection as the input and incorpo-

rate context models as a post-processing step. Our aim is to integrate context

more tightly with deep models for object detection.

Deep learning has been applied to 3D data but most of these works focus on
modeling objects [32,33,34]. There have been some recent success on applying
deep learning for inverse graphics [35,36]. Our approach goes one step further
to embrace the full complexity of the real-world scenes to perform holistic scene
understanding.

Related to our transformation network, Spatial Transformation Networks [4]
can learn the transformation of an input data to a canonical alignment in a
unsupervised fashion. Since we have the ground truth annotation and we are
solving a much harder task, we propose to supervise our transformation network
to look for the optimal alignment. In term of rendering synthetic data for training
(a.k.a, graphics for vision, or synthesis for analysis), recent efforts focus on mostly
object rendering, either in color [37,38] or depth [39,40]. We are the first to mix
CAD models with real depth map to generate hybrid data with valid context
and real-world clutterness.

2 Algorithm Overview

Our approach starts by constructing a list of 3D templates for typical scenes.
Each 3D template is defined as a unique set of 3D object bounding boxes and
their associated object categories. Each box indicates that a typical scene could
potentially have an object of a specific category roughly at a particular location.
Given a depth map of a scene as input, we identify the scene template to be used
for the scene!. The depth map is converted into a 3D volumetric representation
of the scene, using Truncated Signed Distance Fields (TSDF) [32,41]2.

The input 3D volume of the scene is fed through a transformation network
to align the scene with a template, and then fed again through a 3D context
network to recognize objects, as shown in Fig. 1. The transformation network
estimates the rotation and translation that aligns the scene to its template using
3D ConvNets. With this initial alignment, the 3D scene is fed through a 3D con-
text network that extracts both global scene features and local object features.
These features are then used to predict the existence of each anchor object in
the template, and per object regress an offset to adjust its bounding box for a
better object fit. The final result is a scene understanding with a 3D location and
category for each object in the scene, as well as room layout elements including
walls, floors, and ceilings which are represented as objects in the network.

! Note that while all the figures in the paper contain color, our system relies only on
depth as input without using any color information.

2 We use a 128 x 128 x 64 grid for the TSDF of a whole scene, with a voxel unit size
of 0.05 meters and the truncation set at 0.15 meters.
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Fig. 2. Four scene templates (top view) and example images.

3 Learning Scene Template and Transformation

Humans can recognize the category of a scene, (e.g. bedroom, living room) in
very short amount of time [42,43] even before localizing all of the major ob-
jects within the scene. This phenomenon indicates that scene understanding
follows a hierarchical coarse-to-fine information pathway. Given a new indoor
scene, humans instantly perform holistic recognition to understand the gist of
the scene (mostly in term of functionality), followed by a detailed local search
and localization for individual objects. Inspired by this hierarchical way of scene
understanding, we propose an approach that first matches the scene to one of
many predefined scene templates (presented in this section),and then recognizes
the individual objects inside (presented in the next section).

3.1 Data-driven Template Definition

To define a set of meaningful 3D scene templates, we observe that the major ob-
ject arrangements for that same functional scene area are usually consistent.For
example, a sleeping area is usually composed of a bed with one or two night-
stands on the side with optional lamp on the top. An office area, on the other
hand, usually includes a computer on a desk with a nearby chair. Limited by
functionality, objects have to be arranged in a relatively fixed position. We call
each such functional area with furniture in relatively fixed locations (anchor po-
sitions) as a scene template. The observed location of objects in the scene can
then be represented by their corresponding anchor locations plus their devia-
tion to the anchor location. The anchor location can be predefined as a way to
hard-code context into the context model. The part of the neural network that
is trained later for object localization needs only to estimate the deviation.

In this paper, based on the dataset that we are using, we identify four scene
templates: sleeping area, lounging area, office area, and table & chair set (for both
dinning and conference sets). Defined at a scene level, these templates refer to a
spatial area with a clearly defined functionality, and is visible from a typical field
of view (instead of the whole room). An example of each template can be seen
in Fig. 2. To define scene templates that can explain real data well, we leverage
training data composed of RGB-D scene images with 3D object bounding boxes.



Each template encompasses the bounding box and category information of all
possible objects that have ever appeared in the training set, such that all objects
per observation from the training data, and hopefully also from the testing data,
are a subset of the objects defined in the template.

We first manually classify each RGB-D image of the training set into one
of the four predefined scene template categories, and remove the images that
do not fit into any of these four categories. We use this ground truth to train
a ConvNets-based classifier from [44]. The ground truth scene categorization is
used not only for learning the aforementioned templates, but also for learning
the transformation networks and 3D context networks in the following sections.

To obtain the anchor positions (i.e., common locations) for each object type
in a template, we first manually choose one major object from the scene template
(e.g. the bed in the bedroom), and align all 3D scenes (belonging to this scene
template category) together using the center and orientation of this major object.
After that, we run a k-means clustering for each object type and use the top k
cluster centroids as the anchor positions, where k is user-defined. After the center
locations are fixed, objects are assigned to each anchor. We take the average box
size of all objects assigned to the anchor as the 3D box size of the anchor. In this
way, we learn 3D scene templates from the training data. Each scene template
has tens of object anchors in total for various object categories.

3.2 3D Transformation Networks

For a testing 3D scene, after identifying the scene template category, we need
to search for a transformation, consisting of a rotation and a translation, to
align the point cloud of the input scene with the 3D scene template as closely as
possible. The benefit from this alignment is two-fold. First, after the alignment,
the 3D context network will need to handle rotation invariance. Most indoor
scenes follow the Manhattan World assumption, in which the walls and bounding
box of objects are all globally aligned to three main directions. In our design,
we will rely on this alignment for the object orientation, and will not further
modify them in the 3D context network. Second, our 3D context network will
use the object anchor locations from the template to pool features based on their
3D regions to reason about the existence of the object and its position offset.
A good alignment is critical for the pooling operation to capture local features
from region closer to ground truth location of the object, which would be more
helpful for the regression. We estimate the transformation in two steps: first
rotation and then translation, because rotation is relatively easier to estimate
and a good rotation correction enables better translation predictions.

For the rotation, we assume that the gravity direction is given, e.g. from an
accelerometer. In our case, this gravity direction is provided by the SUN RGB-
D dataset [44] used in our experiments. Therefore, we only need to estimate
the yaw. We divide the 360-degree range of rotation into 36 bins and cast this
problem into a classification task. We respectively train a 3D ConvNet? to predict
the rotation. For training data, we align each training input scene to the center

3 The network architecture is described in the supp. material.



of the point cloud and add noise for rotations (+/- 10 degrees) and translations
(1/6 of the range of the point cloud).

For the translation, we also train a 3D ConvNet to identify the translation
after applying the predicted rotation. The goal is to predict the 3D offset between
the centers of the main objects of the input point cloud and its scene template
respectively,so that in the ideal case, all the scenes from the same template
category will be able to align to each other with respect to the center of the
main object. To achieve this goal, we discretize the 3D vector space into grid of
0.5m? range from [—2.5, 2.5] x [—2.5, 2.5] x [—1.5, 1] in meters, and formulate this
task again as a 726-way classification problem. We also tried a direct regression
with various loss functions, but it does not work as well as classification.

During training, we augment the training set to learn a more robust model.
For training the rotation estimation network, we rotate each input 3D scene
36 times in a 10-degree interval to create 36 times more training data. We also
apply random translation to the scene for each scene. For training the translation
estimation network, we also apply random translation to the scene with a small
amount of random rotation (less than 10 degrees) to augment the training set.

During testing, we further improve the alignment results by directly aggre-
gating the predictions from the rotation and translation networks. To predict
the rotation during test time, we rotate the input data 36 times (uniformly dis-
tributed over the 360-degree range) and retrieve predictions from the rotation
network. We then choose the rotation of the input data that produces a 0-degree
rotation classification from the rotation network. We found that this method of
rotation prediction consistently improves the performance of our alignments. For
the translation prediction, we perturb the 3D scene by translating it in 27 differ-
ent directions, and input the translated 3D scenes into the translation network
to estimate the center of the major object. We average the outputs by subtract-
ing the corresponding perturbation from the estimated values to obtain the final
output. The 27 perturbing translations are in a 3x 3 x 3 grid, whose size is
1/6 of the range of the point cloud in the three major directions, centered at
the original point cloud center. We also found that this aggregation consistently
improves the alignment estimations (Table 6).

4 3D Context Networks

We train one neural network for each scene template since they are essentially
independent and they don’t share many object categories among the different
scene categories. As shown in Fig. 3, each network has two types of pathways,
the global scene pathway and the local object pathways.

For the global scene pathway, given a 3D volumetric input in a coordinate
system that is aligned with the template, we first have 5 layers of 3D convolution
+ 3D pooling + ReLLU. The response after these layers continue to preserve the
spatial information from the input data. Down the scene pathway, we use two
fully connected layers to obtain a global feature vector for the whole scene.

For the object pathways, we take the spatial features from the scene pathway
as input, and pool the local 3D Region Of Interest (ROI) based on the 3D scene
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Fig. 3. 3D context network. The network consists of two channels for global scene-
level recognition and local object-level detection. The scene pathway is supervised with
scene classification task during pre-training only. The object pathways perform object
detection, and brings in local and global features from the scene pathway.

template for the specific object. The 3D ROI pooling is a max pooling at 6 X 6 x 6
resolution, inspired by the 2D ROI pooling from [45]. The 3D pooled features are
then passed through 2 layers of 3D convolution + 3D pooling + ReLU, and then
concatenated with the global scene feature vector from the scene pathway. After
two more fully connected layers, the network predicts the existence of the object
(a binary classification task) as well as the offset of the 3D object bounding
box (3D location and size) related to the input template locations (a regression
task using L1-smooth loss [32]). Including the global scene feature in the object
feature can provide some holistic context information to help identify the object
existence and location. The room layout elements, including wall, floor, ceiling,
are all represented as regular objects with predefined thinness. The existence
prediction will estimate for each object, such as the ceiling, whether or not it
appears in the scene. During testing, we threshold the existence scores at 0.2 to
obtain the final scene understanding results.

To train these four networks corresponding to the four scene templates, we
first train one network with only the global scene pathway without any objects
to perform a 4-way scene classification task. After this training converges, we
copy this scene pathway four times to create four different networks (containing
both the scene pathway and object pathway) for the four scene templates. Using
the pre-trained weights of the global scene pathway, each network is now trained
separately using only the data from that specific scene template. For each in-
dependent network, the global scene pathway is thereafter fine-tuned while the
object pathway is trained from scratch. We found that this form of pre-training
is crucial in our experiments. Without this form pre-training, training the four
networks independently cannot produce meaningful models.

To train these networks for object existence and location, we need to have
ground truth aligned with the template. Therefore, we need to convert the orig-
inal ground truth data from SUN RGB-D [44] dataset to our scene template
aligned ground truth. Fig. 4(a) illustrates the following procedure by an exam-
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Fig. 4. Converting annotation into the scene template.

ple. The procedure is as the following. First, we align the template with the
scene by using the 3D annotation from the dataset. Then, we find the major
object, translate its center to the origin of the coordinate system, and rotate
its orientation to align with that of the template. For the rest of the objects,
we have a bipartite matching between the dataset annotation and the template
anchors, using the center distance as the weight while ensuring that the objects
of the same category are being matched. Fig. 4(b) shows some examples.

To be very robust to the translation results from the alignment network,
during training, we randomly perturb the translation within 0.5m® of the ground
truth, and also add a small random perturbation on the locations and sizes of
object anchor boxes, to augment the training set.

5 Synthesizing Hybrid Data for Pre-training

A critical necessity for training from scratch is the availability of large scale
training data. However, it is far too impractical to capture and annotate RGB-
D images in 3D on a scale comparable to that of ImageNet [46] for images. In
contrast to recent 3D deep learning models [32,33], our network takes in the
whole scene with multiple objects as input. As such, it requires much more
training data. We initially tried to train our network using the existing RGB-D
images from SUN RGB-D [44], the largest annotated RGB-D dataset available.
But the training did not converge.

We propose to dramatically increase the size of the training data by replacing
the annotated objects from SUN RGB-D with same category CAD models. In
this way, we can generate context-valid scenes because the context still comes
from a real environment, while allowing us to change the shapes of the objects.
Pure synthetic scenes are typically overly clean, because it does not model the
clutter of the real-world environment, especially from small objects. By replacing
the annotated larger objects while keeping the full complexity of the areas outside
the annotated bounding boxes, we can generate more realistic hybrid data.

To search for similar CAD models for annotated objects in RGB-D images,
we need to define the distance between a CAD model M, and the 3D point cloud
P representing the object. In order to get a symmetric definition, we first put
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Fig. 5. Hybrid data synthesis: We first search for similar CAD model for each
annotated object. Then, we randomly choose models from good matches, and replace
the points in annotated bounding box with the rendered CAD model.

the model in the annotated 3D box, scale it to fit, render M with the camera
parameter of the depth image, and convert the rendered depth image to a point
cloud V. This is to mimic the partial view due to self occlusion. Then, we define
the distance between P and S as:

D(P,S) = % ;} ({Jrgg d(p, q)) - ﬁ 1%: (2%171; d(p, q))7 (1)

where d(p, q) is the distance between two 3D points p and ¢. After acquiring a
short list of similar CAD models for each object, we randomly choose one and
render the depth image with the original annotation as training data. Our CAD
models come from ShapeNetCore dataset [47]. Fig. 5 shows some examples.

To train the 3D context network, we generate a hybrid training set that
is 1,000 times bigger than the original RGB-D training set. For both the pre-
training of scene pathway and the actual training of 3D context network, we have
to train the models on this large hybrid dataset first, followed by fine tuning on
the real RGB-D depth maps. Otherwise, the training cannot converge. For the
alignment network, we use the pre-trained scene pathway from the 3D context
network as the initialization, Therefore, it also benefits from the hybrid data.

6 Experiments

We use the SUN RGB-D dataset [44] for this paper because they provide high
quality 3D bounding box annotations of objects. As described in Section 3.1,
we manually label the scene template categories and remove the images outside
our categories. In the end, we end up choosing 1,863 RGB-D images from SUN
RGB-D, distributed quite evenly across the four categories that we chose. We
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Rotation Estimation Accuracy Translation Error (in meters)
| Scene Sleeping Office Lounging Table & Scene Sleeping Office Lounging Table &
Method | Sym. Class Run Area Area Area Chair Set Method Class Rot. | Run Area Area Area Chair Set
3DPC | No | N/A | NJA | 75.6% 69.2%  58.5% 38.1% 3DPC | NA [N/A| NA | 0473  0.627 1019 0.558
3DPC | Yes | N/A | N/A 96.3%  89.0%  92.5% 75.3% )
. Network | Est | GT |Single| 0.379  0.373 0.397 0.454
Network | No | Est. | Single | 87.8% 87.9%  69.8% 39.2%
Network | Yes | Est |Single| 100% 94.5%  94.3% 76.3%  Network | Est | GT | Avg. | 0278 0246  0.336 0.346
Network | No | Est | Avg. | 92.7% 87.9% 71.7%  443%  Network | GT | GT |Single| 0368 0353  0.334 0.403
Network | Yes Est | Avg. 100%  93.4%  94.3% 73.2%
Network | GT | GT | Avg. 0.271 0.233 0.248 0.286
Network | No GT | Avg. | 91.5% 90.1%  77.4% 44.3%
Network | Yes | GT | Ave. | 98.8% 93.4%  96.2% 74.2%  Network | Est | Est | Avg. | 0.306 0278  0.606 0.332

Table 1. Evaluation of the transformation alignment networks.

use 1,502 depth images for training and the remaining 361 depth images for
testing. The accuracy of the 4-way classification of scene templates is 89.5%.
We implemented our algorithm using the popular 3D ConvNets framework
Marvin [48]. Because our 3D networks are very big, we use the half data type
that represents a floating point numbers by 2 bytes. With a mini-batch size of
24 depth images, we need 10GB GPU memory to train the networks. However,
our experiments show that this mini-batch size is too small to obtain reliable
gradients for optimization. Therefore, we accumulate the gradients over four
iterations of forward and backward without weight update, and only update the
weights once afterwards. In this way, the effective mini-batch size is 24 x 4, while
still able to fit into a GPU with 12GB RAM. We use 8 NVIDIA Titan X GPUs
(overclocked) in our experiments, with each GPU training a model separately
(no data or model parallelization). Training everything from scratch took about
a week. During testing, our model takes about 0.5 second to parse an image.
Fig. 9 shows some initial alignment and final parsing results. 3D context is
very helpful in some very challenging cases. For example, the night stand at the
5-th row is heavily occluded, but yet our model can still identify it using context
cue. The last two rows show some failure cases. For the second to last row, the
scene is a hotel room with both the sleeping area and office area visible from the
same image. Our model only recognizes it as a sleeping area and therefore cannot
detect the desk and chair for the office area. For the last row, although it is a
lounging area, the futon with blankets and clothes makes our system consider it
as a sleeping area. Therefore, our scene network recognizes the futon as a bed
and also predicts the wall and floor correctly, while ignoring the coffee table.

6.1 Evaluation on Transformation Alignment

Table 1 reports the evaluation of template alignment. For rotation, we show the
percentage of data within a 10 degree range to the ground truth. For translation,
we show the distance between the estimated translation and ground truth.

For rotation, since some scenes (especially for lounging area and table & chair
set) are symmetric with respect to the horizontal plane, a correct estimation of
the main direction would be enough for our purposes. Therefore, in the evalua-
tion, we report both accuracies with and without symmetry [Sym.]. We compare
the performance on using the estimation [Est.] vs. ground truth [GT] for scene
category and rotation [Rot.]. We also compare taking only a single pass of the
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Fig. 6. Example alignment results. For each scene category, we show three suc-
cessful alignment results and one failure case (in the right most dashed box). Below
each image, we show the point cloud overlaid with the ground truth in original camera
coordinates, followed by the aligned result according to the rotation and translation
estimated by our network. The red cross marks the origin of the new coordinates, which
is expected to be perfect if locates at the center of the major object of each scene.

network [Single] using the averaged result of multiple passes [Avg.], and we can
see that the latter consistently outperforms the former.

To compare with our neural network-based approach, we design a baseline
approach based on point cloud alignment (named [3D PC] in the table). Given a
point cloud from a testing depth map, we try to align it with the point cloud from
each image in the training set, by exhaustively searching for the best rotation
and translation, using Eq. 1. We choose the alignment with the best aligned
training depth map as our transformation. From the comparison, we can see
that our neural network based approach significantly outperform this baseline.

Fig. 6 shows some alignment results. Below each image is the original point
cloud in camera coordinates (top view), and the aligned point cloud, overlaid
with ground truth in the template coordinates. The red cross mark the origin of
the scene template coordinates, which is supposed to be at the center of the main
object. The algorithm sometimes make mistakes in recognizing the main object
(the failure cases in lounging area and table & chair set). Special view points
(the failure case for sleeping area) and situations that disobey the Manhattan
world assumption (the failure case for office area) also cause confusion.
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Sleeping Area Layout Estimation Accuracy

Layout Estimation Error (Mean/Median)

o Ceilng Il Layout Estimation |~ Sleeping Office Lounging Table &
Cotng Bredet (Mean/Median) Area Area Area Chair Set
- i Ceiling Initial | 0.571/0.559  N/A NA  0.844/0.705
é e Ceiling Estimated | 0.448/0.399 N/A N/A 0.724/0.439
E Floor Initial 0.304/0.254 0.281/0.238 0.252/0.234 0.219/0.198
Floor Estimated 0.104/0.088 0.091/0.057 0.218/0.161 0.078/0.048
Wall Initial 0.395/0.301 0.698/0.605 N/A N/A
‘ Wall Estimated 0.221/0.083 0.601/0.212 N/A N/A

Percentage of Images
Fig. 7. Evaluatigon ;n room layout estimation. Note that for some scene cate-
gories, the ceiling and wall may be often not visible from the images and therefore
there are no annotations. For example, most ceilings are not visible in office images.
For those situations, we put N/A in the table.

P, R, R,
Ren & Sudderth 2016 (color + depth) 66.93 50.59 47.99
Ours (depth only) 71.02 54.43 52.96

Table 2. Evaluation of 3D total scene understanding compared to [28].

6.2 Evaluation on 3D Scene Understanding

Layout estimation As part of our model, we can estimate the existence and
location of the ceiling, floor, and the wall directly behind the camera view. Fig.
7 (left) shows the error of wall estimation in a bedroom scene. The dotted line is
the performance of initial alignment while the solid line is the performance of our
scene parsing network. The table on the right shows more detailed quantitative
evaluation. We can see that the 3D context network can successfully reduce the
error and figure out a more accurate room layout.

Total scene understanding We use the standard metrics for evaluating 3D
Scene Understanding proposed in SUN RGB-D [44]. We compare our model and
Ren & Sudderth 2016 [28] on the intersection of our testing set and their testing
set. The authors of [28] kindly provided their results to us. The performance
is shown in Table 2, in which our model clearly outperforms theirs. Note that
our algorithm uses only the depth map as input, while [28] uses both color and
depth. Also note that these two models use a different training set. [28] uses
more real RGB-D images than us, while we use our graphics synthesis algorithm
to generate hybrid data for pre-training.

3D object detection We also evaluate in terms of detection. Table 3 reports
the average precision compared to the stand-alone 3D object detector Song &
Xiao 2016 [32] and also the 3D context-based approach Ren & Sudderth 2016
[28]. We reach a comparable performance with these state-of-the-arts.
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night- coffee  mirror end . .
Category bed stand dresser table  dresser table lamp monitor ottoman sofa chair table
Ren & Sudderth 2016 79.8  48.1 1.7 - - - - - - 558 729 584
Song & Xiao 2016 903 523 7.6 52.7 4.4 133 402 15.0 23.7 71.3 791 752
Ours 894 633 19.7 40.5 16.8 279 41.6 18.2 13.3 503 445 659
Initial 85.1 37.6 21.9 34.1 36.7 13.8 15.0 5.0 13.3 47.1 281 65.3
True Alignment 924 644 19.7 493 23.4 250 314 16.0 15.8 63.6  46.1 70.4
True Alignment + Scene | 94.1 66.3 19.4 489 23.4 21.7 314 16.1 15.8 746 502 740
Table 3. Average precision for 3D object detection.
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Fig. 8. Precision recall curves of some object categories. We compare our al-
gorithms with the very recent state-of-the-art standard-alone 3D object detector DSS
from Song & Xiao 2016 [32] and 3D context-based approach Ren & Sudderth 2016 [28].

Fig. 8 shows the Precision-Recall (PR) curves for some of the object cate-
gories. From the precision-recall curves, we can clearly see that our recalls are
not as high as that of the compared approaches that run in a sliding window
fashion to exhaustively cover the search space. It is because that our model can
only detect objects within the context of the scene templates that have only
tens of anchor objects. Instead of evaluating object recognition in 2000 boxes as
in [32], we only evaluate tens of boxes defined in the scene template. However,
our algorithm can maintain a very high precision and still achieve a reasonable
recall. For a scene understanding system to be used in practice, the algorithm is
supposed to work with very high precision. The long tail part of the PR curve is
typically not very useful since the precision is too low and false positives dom-
inate the results. For example, for bed and table, though our overall average
precision is not as high as [32], our system has a range of working states with
consistently higher precision. We could potentially increase the recall by sliding
our scene template in a sliding window fashion. But we choose not to do that
because it will slow down the computation and weaken the context signal.

6.3 Analysis and Discussion

The role of box regression To show the role of box regression in our model,
we disable the regression model and only take the classification score from object
detection, and the results are shown in Table 3. The mean average precision
drops significantly (a substantial 18% drop from the original mAP).

The role of alignment Since our alignment is not perfect, our model is trained
to tolerate alignment error. However, our model could still benefit from better
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alignment, which could reach better performance if the alignment is potentially
improved later. Table 3 also reports the performance of our model with the
ground truth alignment for the whole scene. 8 out of the 12 object categories
can achieve better performance. Especially for those objects in the scene with
comparatively poor alignment, e.g. table, sofa, the improve is significant.

The role of scene classification In addition to the true alignment, we further
set the perfect scene classification pipeline to always choose the correct scene
template. The performance becomes even better as shown in the last row of
Table 3. This experiment could be considered as the upper bound performance
of our system. We can see that for those objects in which object detection works
particularly well, our performance is comparable and even better than that. This
means that our 3D features on the object pathway is very powerful.

7 Conclusion

The paper has presented an approach to integrate 3D Context into 3D ConvNets
for scene understanding by guiding object recognition and detection through the
use of 3D scene templates. The experimental results validate the effectiveness of
this approach. There are a number of ways in which our work can be extended.
On the observation and feature front, the pipeline can be extended to use color
information in our pipeline. At the system level, we plan to investigate ways to
integrate the transformation alignment network and the 3D context network in
a jointly differentiable manner [4] to enable the end-to-end training.
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