EE447 Course Notes

Blake Hannaford

September 12, 2016
(C) Copyright 2012-16, Blake Hannaford, all rights reserved.

ii

Contents

{1 Introduction, Review|

1.1 Problem Statement and Learning Objectives|

1.3 Laplace Transform Review|

1.4 Partial Fraction Expansion|

1.5 Dinearizationl e
|2 Translational Dynamical Systems|
2.1 Problem Statement and Learning Objectives|
2.2 System Elements|o
2.2.1 Displacements and Derivatives|
222 Forces
[2.2.3 Mechanical Network Schematic Diagram|. 0.
2.3 Equations of Motion|
[2.3.1 Parallel and Serfes Combinations
12.3.2 Multiple Masses and EOMs| o oo
2.5 xamples| L
2.6 Finding Errors through Dimensional Analysis|o 0.
3 Rotational Dynamical Systems|
3.1 Problem Statement and Learning Objectives]
3.2 System Elements & constitutive relations.| L L oL
3.2.1 Torquel. e e
3.2.2 Elements of Rotational Dynamical Systems|
3.3 quations of Motion| L L e
3.4 Gears] e
3.4.1 Gear Kinematic Relationships|. o o
3.5 Rotary to Linear Motion|.
[4 Basics of State Space]

4.1 Problem Statement and Learning Objectives|
4.2 Introductionl. e
4.3 System Matrices from Equations of Motion| oo 0oL

4.4 State Space in Scilab|
4.4.1 Sources|

B_

Transient Response and Frequency Response
5.1 roblem Statement and Learning jectives|

5.3 The basic 2nd order dynamical system|

(.31

Pole Location and Step Response| o0 o

9.4 Frequency Response]

iii

= Ok R W W w W

iv CONTENTS

[5.4.4 Bode Plot Sketching) o oo 63
5.4.5 Combining Magnitude Plots|. 67

5.4.6 Bode Asymptotic Phase Plot| 70
[5.4.7 Poles or zeros at the origin] L 73
[5.4.8 Complex Conjugate Poles| 75

4. omplex Conjugate Zeros|o 7
[6_Feedbackl 79
6.1 Problem Statement and Learning Objectives| 79
6.2 Block Diagram Transformations|. 79
6.2.1 Signals vs. Energy Flows| 79
6.2.2 Block Diagrams|. 80
.23 Transformafions] . - - - - ¢ . . oh o e 81

6.3 Closed Loop Negative Feedback Gain|. 81
6.4 Sensitivity Analysis|.o 83
6.5 Disturbance Rejection|o Lo 85
6.5.1 Disturbance Rejection in the Frequency Domain| 88
6.5.2 Location of Disturbancel 89

6.6 Stability] 91
[6.6.1 Calculation of Rootsl 91

[6.7 Stability in the Frequency Domain| oo o000 oo 92
6.7.1 Gain and Phase Marging|. o 94
[7__Root Locus 97
[7.1 Problem Statement and Learning Objectives| 97
ion to Root Locus 97

[c2.1 Problem Definitionl 97
[7.2.2° SUummary]o e e e e e e e e 98

[7.3 Root Locus Examples| 100
... 102
7.5 Root Locus FAQ| e 102
. and Root Locus Examples|o 103
[[7 _Resources 106
[8_Introduction to Scilabl 107
8.1 Problem Statement and Learning Objectives] 107
3.2 uick Read| L e 107
RO DBASICH -« « o o o o e 107
8.4 Links and detailsl o 108
3.0 Root Locus Example| o 108
3.6 Plotting Ranges for high quality graphics|o 0. 109
[9 Closed Loop Control 113
9.1 Problem Statement and Learning Objectives] 113
9.2 System Type and Steady State Error|.o oo 113
9.2.1 Steady State Error Derivation|.o oo 114

9.2.2 Steady State Error Examples|o oo o000 oo 115

9.2.3 Steady State Error Summary|o oo oo 117

9.3 Time Domain Performance of 2nd Order Systems|. 118
9.3.1 Transient Performance Specifications| oo oL 118

9.3.2 S-plane Regions|. 119

9.3.3 S-plane Performance Region Examples| 121

9.4 1D Controller] o e 123
9.4.1 Closed Loop Design Problem| 123
9.42 Basics oL 124
943 Simulation of PID controllersl 125
9.44 Control Effortl. e 125

9.5 Manual Design of PID controller] o oo 126

9.5.1 Deriving Kp, K7, Kp trom controller zeros| 132

CONTENTS

[10 Search and Optimization with Scilab|

10.1 Problem Statement and Learning Objectives|

10.2 Design with Scilabl

10.2.1 Polynomials in Scilablo o o

T0.2.4 WEIgDTS| . . .« v o o e e

10.2.5 Gain Space Searching and Optimization| L.

10.2.6 Range Saturation|. L

0.3

sing the Scilab packages| L

110.3.1 optivis.SCe|o e e e e e e e e e e

10.4 Solving Design Problems|.

10.5 Description of Software Operation|

10.0.1 setup.scel o e e e e e

10.5.2 optigaln.scel L. e e e

10.5.3 stepperf.sce|l e

[0.6

xample Design| o

IicC . D Time: Tustin’s Method

11.1 Problem Statement and Learning Objectives|

[1.2 OVEIVIEW] . . . o o e et e it i e e e e

[L1.3 Discrete Time and Z transform review/introf L.

11.3.1 Discrete and Continuous Comparison Table| 0.,

11.4.1 Tustin’s method example 1| L

11.4.2 Tustin’s method example 2| o oo

11.4.3 Conversion by Computer| e

11.4.4 Conversion of discrete transfer function to digital filter{

11.5 Code Example] o e

11.6 Limitations and properties|.« . e e

Complex Numbers and Logs Review|

A1

Problem Statement and Learning Objectives|

A.2

Complex Number Quiz|. e

A3

Complex Number Concepts required for EE447 o .

A.4

Kahn Academy Videos| e

A.H

Logs| e

A.6

Logarithms Quiz| e

A7

Complex Number Quiz Answers|.

A8

Log Quiz ANSwWers| e e e e e e e e e e e e e e e e

135
135
135
135
136
136
137
137
139
139
140
140
141
141
141
142
142

145
145
145
146
147
147

vi

CONTENTS

CONTENTS

EE447 Autumn 2012

Lecture Schedule

Tustin’s Method

wk. | Date Topic Reading
1 25-Sep-2012 | Intro. / LODE and Partial Fraction Expansion Review Chapt 1.
1 LODE and Partial Fraction Expansion (ICP)

2 | 02-Oct-2012 | Translational Dynamic Systems Chapt 2.
2 Translational Dynamic Systems (ICP)

3 | 09-Oct-2012 | Rotational Dynamic Systems Chapt 3.
3 Rotational Dynamic Systems (ICP)

4 16-Oct-2012 | Bode Diagram Sketching and response of 2nd Order Systems Chapt 4.
4 Mid Term I

5 23-Oct-2012 | Bode Diagram Sketching and response of 2nd Order Systems (ICP)

5 Feedback Chapt 5.
6 | 30-Oct-2012 | Feedback (ICP)

6 Closed Loop Design: Root Locus Chapt 6.
7 | 06-Nov-2012 | Closed Loop Design: Root Locus (ICP)

7 Mid Term II

8 13-Nov-2012 | Closed Loop Design: Closed Loop Control Concepts Chapt 7.
8 Closed Loop Design: Closed Loop Control Concepts (ICP)

9 | 20-Nov-2012 | Closed Loop Design: Search and optimization Chapt 8.
9 Thanksgiving

10 | 27-Nov-2012 | Closed Loop Design: Search and optimization (ICP)

10

Chapt 9.

CONTENTS

10

15

20

Chapter 1

Introduction, Review

1.1 Problem Statement and Learning Objectives

Be able to

e Know pre-requisite mathematical concepts for the course including

Linear Ordinary Differential Equations

Laplace Transform

Partial Fraction Expansion

— Linearization

e Compute forward and inverse Laplace Transform of several basic time functions into the s = o + jw
domain.

e Convert a rational polynomial in s to the partial fraction expansion (for simple cases).
e Explain the envelope and sinusoidal components of the time response of a system with complex poles.

e Compute a linearized version of a non-linear function about a specified point where it is smooth and
differentiable.

e compute a LODE by linearizing a non-linear differential equation about a specified point where it is
smooth and differentiable.

1.2 LODE

1.2.1 Basic definition
A Linear Ordinary Differential Equation (LODE) is an equation of the form

N
10 = assa(t)
=0

The highest derivative, N, is referred to as the order of the LODE. For example,

1) = 0273 2t) + 6,73 2(t) — 0.001 L)

BT a” Tt

is a third-order LODE. Often we introduce some shorthand by omitting the time dependence “(¢)”, and by
using the dot notation for time derivatives:

4 CHAPTER 1. INTRODUCTION, REVIEW

So that the example above would be written

3

d .. .
ft) = 0'27?)@36 +6.732 — 0.001%

(you can use three dots for % if you wish.)

1.2.2 Solution of First Order LODE

A very basic first order LODE is
T+ Px=0

5 If we guess the solution is
z(t) = ePt i(t) = pet

we can easily check it by plugging in to the original LODE:
pePt + PePt = () — pePt = —PePt

giving
so the solution is

Because of the partial fraction expansion (covered below), this covers a very wide variety of real world
10 LODEs.

1.3 Laplace Transform Review

We will extensively use Laplace Transforms to manipulate the differential equations of control systems. As a
review, the Laplace transform is

LUf(1)) = F(s) = / T et it

where s is a complex variable, s = 0 4+ jw. Technically this is the “one sided” Laplace Transform because the
15 integral extends only to positive . The inverse of the Laplace Transform is

o+jT

1
=L F(s) = — 1i F(s)est
foy==L (s) o] Jim - (s)e®ds

For this course, we will not need to evaluate these integrals, because all of the LODEs we study will result
in just a few terms which have been worked out long ago and are widely available in tables (Table [1.1)).
When using this table we need to keep in mind a few limitations and assumptions:

e We are only considering ¢t > 0. One way to do this is to consider functions to be multiplied by the Unit
2 Step function, u(t)

e When using the differentiation relationship (last two lines of Table we must be careful about the

initial conditions (f(0), f(0)). Most often, we assume that all initial conditions are zero, but it is your
responsibility to verify that this assumption applies to a given problem.

1.3. LAPLACE TRANSFORM REVIEW

5
f@t) fort>0 L(f)
1
1u(t) 5
at 1
e
; s—a
tn %(n:O,l,...)
sin at %
s“+a
cos at SQ_F%
f() sL(f) = f(0)
f() s2L(f) — sf(0) = f(0)

(Where u(t) = {0,£ < 0;1,¢ > 0, f(t) = LB F(t) = LID)

dt dt?

Table 1.1: Table of some commonly used Laplace Transform pairs.

Example 1.1

Find the Laplace Transform of the following time functions: in all cases, assume the function is 0 for ¢t < 0
and that initial conditions are zero

L{55e~ 121}
Consulting the table and using the linearity property of the Laplace Transform integral:

55
s+1.2

L{55e~ 1"} =

24.32

L£{3.2sin(7.6t)} = 2+ 57.76

L£{2.6i — 3.524 + 120z} =
=2.6X(s)s? — 3.52X (s)s + 120X (s)
= X(s) (2.6s® — 3.52s + 120)

Note that we have assumed that z(0) = #(0) = Z(0) = 0. Although this seems restrictive, we often consider
physical systems starting from rest and this situation is well modeled by such zero initial conditions.

10

15

6 CHAPTER 1. INTRODUCTION, REVIEW

Example 1.2
Find the inverse Laplace transform of the following functions

10)
s+ 3.7
Consulting the table and using the linearity property of the Laplace Transform integral:

10
s+ 3.7

£

£ } = 10e727

144s
“H 2T Y — 144 cos(12¢
CE ! cos(12t)

3

d
L7HX(s)(s* +as® +bs+¢)} = 3% + ad + bk + cx

Here we have implicitly assumed zero initial conditions.

Let’s apply the Laplace Transform to the initial LODE above. First, we will modify the LODE to include
a “Forcing Function” on the right hand side. A forcing function is typically a physical input to the system
such as an applied voltage or force.

&+ Px = f(t)

Assuming zero initial conditions and taking the Laplace Transform of both sides (see the second to last line
of Table |1.1)).
sX(s)+ PX(s) = F(s)
X(s)(s+ P)=F(s)

X(s) 1

F(s) (s+P)

Here we have derived a ratio called the “Transfer Function” between position and the forcing function. Our
solution to the LODE was
z(t) = et = e P!

If we rewrite this using the solution, p = — P, then our transfer function becomes
X(s) 1
F(s) (s—p)

We call p the “pole” of this transfer function because the transfer function goes to infinity when s = p.

1.4 Partial Fraction Expansion

A very useful property of polynomials is the partial fraction expansion:

Hj(s—zj) . A;
[L(s—pi) 2 (s —pi)

In the form on the left, we have terms called zeros on the top because any time s = z; the ratio is zero.
We also have terms called poles in the denominator, because any time s = p;, the ratio is infinite.

%

1.4. PARTIAL FRACTION EXPANSION 7

The partial fraction expansion is very useful for ratios of polynomials in s (such as the left side above)
which we will encounter frequently because such a ratio becomes a series of terms which have an easy inverse
Laplace Transform

A;
(s —pi)

<~ Aiepit

For example,

s+5
s3 + 652 4 3585 + 400

G(s) =
does not have an obvious inverse Laplace transform. However if we can factor it to get

(s+5)
(s+2)(s+4)(s+50)

G(s) =

then we can use the Partial Fraction expansion to get it into the form

Ay N Ay N As
(s+2) (s+4) (s+50)

G(s) =

then we can immediately write

g(t) = Aje™ 4+ Age ™ + Aqe00

It is not obvious that the partial fraction expansion is always possible but we will derive a class of cases
and then perform some examples.

Assume

s) = (S_Z) _ Ay A As
) = o)G Gop) Gop) p)

Now we multiply through by (s — p1):

G(S): (8_p1)(8_2) _ Al(s_pl) A2(8—p1) A3($—p1
(s —=p1)(s —p2)(s —p3) (s —p1) (s —p2) (s —ps3)

Now we do two things: 1) cancel terms where possible, 2) solve for the special case s = p;
1)

(s—2) _ Ar | As(s—p1) | As(s—p1)
(s=p2)(s—ps) 1 (s —p2) (s —ps3)
2) let s = pr:
(s—2) _ AL A —p1) | As(pr—m)
(p1—p2)(p1 —p3) 1 - (p1 —p2) * (1 —p3)
642,

(pl - 102)(191 - pg)

8 CHAPTER 1. INTRODUCTION, REVIEW

We have just solved A;. If we multiply through by each denominator in turn, we can get all the A;.

Example 1.3
Expand
50(s + 1)
G =
() = T 010 + 10)(5 1 567)
by the Partial Fraction Expansion.
A, Ay As
G =
O =Gron T x0T Groon
B (54 0.1)50(s + 1) _ 50(s+1)
YT (54 01)(s+ 14)(s +567) | __o, (s + 14)(s + 567)
50(0.9)
= —0.00571
13.9 x 566.9
L (54 14)50(s + 1) _50(=18) e
S 1)(s S _ —13.
(s +0.1)(s + 14)(s + 567) | ,__,, 13.9 x 553
567)50(s + 1 50(—566
Ay = (5 +567)50(s +1) __D0(=566) oo
(s +0.1)(s+ 14)(s + 567) | ,_ 55, —566.9 x —553
O(s) = 0.00571 0.0846 _ —0.090
C (s+0.1) (s+14) (s+567)
Example 1.4
Use the Partial Fraction Expansion to find the inverse Laplace Transform of
27
G =
(%) = 555070 7 3000)
A (s+3000)27 _ 2T o005
1= = = —U.
(5 +50)(s +3000) |, 4000 —2950
Ay = (5450027 = 2T 000915
> (s +50)(s+3000)|,__., 2950
g(t) = 0.00915(e > — ¢=309%%)

In the case that poles are complex conjugatesﬂ-]7 there are further simplifications possible after the Partial
Fraction Expansion.

1Recall that complex poles always come in complex conjugate pairs.

1.4. PARTIAL FRACTION EXPANSION 9

Example 1.5

Find
(s+5)
(s+6)(s+2+5)(s+2—7)

L7YG(s) = }

Using the techniques above we can get:

Ay =—-1/17=—-0.059 As = 0.029 4 0.385 Az =0.029 — 0.38j

(note that it is not necessary to compute As because it will always be the case for complex conjugate poles
that Az = A35.)

—0.059 0.029+40.385 0.029 — 0.385
G(s) = + ~— + -

O=6r0) T Grery) | r2-))

Applying the inverse transform to each term:

g(t) = —0.059¢ % + (0.029 4 0.387)e 27 4 (0.029 — 0.385)e(2

First, let’s approximate ‘
0.029 + 0.385 ~ 0.38¢77/2

by 1) ignoring the small real part and 2) converting to Magnitude-Angle form.
g(t) = —0.059¢ 5 4 0.38¢7™/2e(~2=9)t 4 (.38 IT/2(2HI)
g(t) = —0.059¢~5t 4 0.38¢ 2 (eﬂ—t”/ 2) 4 omil—thn/ 2))

Now we use Euler’s famous equality
0

e’? = cos(0) + jsin(0)

as follows:
g(t) = —0.059¢ % 4 0.38¢ 72! (cos(—t + m/2) + jsin(—t + 7/2) + cos(—t + 7/2) — jsin(—t + 7/2))
Since cos(f) = — cos(0), and cos(0 — /pi/2) = sin(h)
g(t) = —0.059¢ % 4 0.38¢ 72" (2 cos(t — 7/2))
g(t) = —0.059¢ % 4 0.76¢ " (cos(t — 7/2))
g(t) = —0.059¢ 5 + 0.76e % (sin(t))

10

CHAPTER 1. INTRODUCTION, REVIEW

Example 1.5 cont.
By throwing a few values of ¢ into the calculator, we can generate a sketch of the second term is shown
below:

0.76

T T d b +
S - 2

o+

For a more accurate plot, let’s use the computer (including both terms):

Example step response from Partial Fraction Expansion with CC terms.

08
\
4 \\
0.6 \
\
\
4
\
0.4 \
\
\
J \.
0.2 AN
S
0.0 . ——
T
e
0.2 /
/
0.4 /-'l
/
4 /:
/
0.6 | !,'
1 ,"
/
-08 T T T T T T T T T
0.0 05 10 15 20 25 3.0 35 4.0 45 5.0

Another situation comes when a pole is repeated (i.e. ﬁ) In this case the trick we use for the partial

fraction expansion no longer works! But instead we can still solve for A; by differentiating the partial fraction

10

1.5. LINEARIZATION 11

expansion.
Example 1.6
Apply the Partial Fraction Expansion to
(s+5)
G(s) = ——=
() s%(s+3)

(note that there is a repeated root in the demoninator (repeated pole)).
We start by setting up the problem with two terms for the repeated pole:

A A As

G(S)istr s (s+3)

All
s2(s+5) A n 52 A, n 52 A3
s2(s+3)|,_, &2 s (s+3)
giving
Al == 5/3
Ajz is also straightforward, giving Az = 2/9. But working through Ay we find:
s(s+5) sAq sAs
- =——+4+A4
s2(s+3)|,_g 52 + 2Jr(s—&—3)

We now have the problem that we cannot cancel the s? in the denominator of some terms (which we need
to do!). Instead differentiate the A; expression with respect to s:

d (s+5) d s
— = Ag+ ———A
ds(s12) Ot gy
-2 s(s+6)
e PRI S s
Grag 2T srae™
evaluating at s = 0,
Ay = -2/9
Note that we have used:
d (x+a) 1 (x+a)

dr (x+b) (z+b) (x+0b)?

and
d z? 2x x?

de(z+a) (r+a) (z+a)?

technique or can fall back on numerical methods.

This gets even more unweildy when the repeated pole is non-zero but fortunately we rarely need this

1.5 Linearization

Laplace Transforms can only be used on linear equations. In most of this course we focus on linear differential
equations but often real world applications involve non-linear functions. All is not lost if we can usefully
approximate our non-linear function with a linear one. Our approach to linearization is to model the original
function with a straight line.

Consider a nonlinear function, f(x). The linearized version is always constructed about a specific operating
point, xg.

12 CHAPTER 1. INTRODUCTION, REVIEW

f(@) = $(a0) + = flao)a — o)

f () is a linear function of x which is most accurate in the neighborhood of zg. It is also the first two
terms of a Taylor series. It is very helpful to visualize this process graphically by plotting the linearized
function on top of the original function.

Example 1.7

Consider the nonlinear function
fi(z) = 0.42% — 0.12% + 3sin(x)

and linearize twice, once about © = —6, and again about = = 1.

First evaluate f;(z) for the two linearization points:
f1(—6) = 36.84 fi(1) =2.824
Then let’s get the derivative:
f(z) = 0.8z — 0.322 + 3cos(z)
and evaluate it at the two points:
f(=6)=—-1272 f(1)=2121

Now we get:

fia = 36.84 — 12.72(x + 6) = —39.48 — 12.72x fip = 2.824 + 2.121(x — 1) = 0.703 4+ 2.121x
Plotting using Scilab:

A nonlinear function linearized at two different points

150
1001

507

The blue line is f(x), the green line is fi,(x) and the red line is fi(x). The linear approxmations are
reasonably accurate in the neighborhood of their operating points, but become very bad as we move away.
The size of the “neighborhood” for which a degree of accuracy can be obtained depends on the function
and the selected operating point.

1.5. LINEARIZATION 13

Some functions are really easy to linearize.

Example 1.8
Linearize
faz) = 0.7232 — 4.372% + 67z

about the point x =0

f2(0) =0
f(x) = 2.16922 — 8.74x + 67
f2(0) = 67
fa(x) = 672

Note that we are simply taking the linear term of f(z). However we only could get away with this because
1) we linearized about z = 0 and 2) the function was a polynomial.

Example 1.9
Linearize fo(x) from the previous example about = 5.7

f2(5.7) = 373.81
f2(5.7) = 87.6521
faa(z) = 373.81 + 87.6521(x — 5.7)
foa(x) = —125.81 + 87.6521x
This is quite different from f5(z).

When the equation to be linearized is a differential equation, we introduce a slightly strange notion: taking

14 CHAPTER 1. INTRODUCTION, REVIEW

the derivative with respect to a derivative:

Example 1.10
Linearize the differential equation

f3(t) = &(t) — 0.422(t) + 0.01(t)* + 162(2)

about &(t) = 0.

f3(B)] g = £(t) + 162(1)

d
Mfg(t) =0—0.42 4+ 0.032(t)* + 0
for #(t) =0,
d
a0, =0

The linearized differential equation is then
fa(t) = &(t) + 162(t) — 0.42(t)
re-writing in traditional LODE form and dropping the (t) for convenience:

fa(t) = & — 0.42% + 162

10

15

20

25

Chapter 2

Translational Dynamical Systems

2.1 Problem Statement and Learning Objectives
Be able to

e Name system elements and write/graph constitutive relations for the basic elements of a translational
mechanical system.

e Write the Equations of Motion for a translational system with any number of masses, springs, and
dampers.

e Convert to Equations of Motion to a Transfer Function

2.2 System Elements
Translation refers to motion in a straight line. We will first consider systems which only contains elements
moving along a single direction. Sometimes it is useful to think of this diection as a set of different but
parallel axes, but this distinction does not change the physics. We only consider such systems which operate
in an inertial frame such as the surface of the earth (to a good approximation at least) or in a vehicle moving
at constant speed and direction.

We will analyze systems consisting of

e Mass The property of matter which resists acceleration, is acted on by gravity, and which stores kinetic
energy.

e Stiffness The property of matter which resists displacement, and which stores potential energy.
e Damping The property of matter or interactions of matter which converts motion to heat.

Some properties of the various elements are summarized in Table

2.2.1 Displacements and Derivatives

We shall analyze the state and the motion of translational systems in terms of
Position, z(t), Velocity, £(t), and Acceleration, &(t). Where each dot represents a time derivative:

. d L d?
T = %x(t) i = Em(t)

Often we will omit the time dependence, i.e. & = @(t).

15

10

15

16 CHAPTER 2. TRANSLATIONAL DYNAMICAL SYSTEMS

Name Physical Realization | Symbol Equation Notes

[
Inertia Point Mass M f(t) = MZ | & is with respect to the inertial frame.

B EX‘ > %2 f(t) = Kz

f is same on both sides. Assume zero rest
length

Stiffness | Massless Spring

ixj
Damping | Shock Absorber K X X2 | f(t) = Bi | This is a linear model for friction.

Table 2.1:

> X | 6

s, /A\‘l — i

L+

Figure 2.1: Each mass has an associated displacement.

2.2.2 Forces

Each system element generates forces according to well known physical laws:

e Mass: F' = ma.
e Stiffness: F' = K(x — xo)
e Damping: F = B(& — 4g)

In the case of stiffness and damping, the force is generated by the difference of two displacements or
velocities. In the case of Mass undergoing translational motion in an inertial frame, the force is generated
only by accelerations with respect to the inertial frame. An inertial frame is one which is not accelerating.

2.2.3 Mechanical Network Schematic Diagram

We must usually simplify the mechanical system into a purely translational one to apply the analyis of this
chapter. To do so, we identify the mass for each moving part and draw it as a box labeled M; (Figure .
What each box actually represents is a point mass. Each point mass has a displacement, x; which indicates
its location along the axis of linear motion.

Springs and dampers are then connected between the moving parts. Alternatively, one end of a spring or
damper may be connected to ground (a point at which x = & = & = 0).

2.3. EQUATIONS OF MOTION 17

Example 2.1

Convert the tire, wheel, and suspension elements of a typical car to a linear mass-spring-damper model.

n
A

s
e
g
&)
3

H

- &
Sus passiors

(,J‘an. Mass

o -
s;.
~~J by\)\»/w'\\)

ok

|
v«\

\\/
et
’. R\
-4
]

7777
In this conversion we have used lots of knowledge about cars including the following facts:

e Tires are elastic and filled with a low mass material (air) and thus could plausibly be approximated
by a spring.

e The weight of the wheel and tire can be combined into a mass.
e The suspension spring goes between the suspension beam and the car’s body.
e Cars have four wheels so the mass of the body should be approximated by 1/4 of the car’s total mass.

e The shock absorber is a damper which connects between the suspension arm and the car body (in
parallel with the spring)

e The suspension arm is long enough compared to the tire’s motion such that we can approximate the
tire’s motion as a straight vertical line.

None of this knowlege is required to excel at control systems design with one exception, The control system
designer must have enough knowlege of the application system or access to enough model validation data to
make sure that the simplified model is good enough for all application requirements. To the extent that
these “facts” are true, our model is accurate, and to the extent that this model is an oversimplification, our
model will not work.

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic
elements as simple and as few as possible without having to surrender the adequate representa-
tion of a single datum of experience.”

Albert Einstein

2.3 Equations of Motion

Let’s assume a system componsed of multiple masses connected by springs and dampers among each other.
A force F; acts on each mass, M;. D’Alembert’s Principle equates the famous inertial force f = mi to all
the other forces acting on a body. In a form that we will use:

Miii+ Y Bj(d: — iy) + Y Ki(a: — ax) = F; (2.1)
J k

where there are several viscous elements connected between the mass M; and other masses indicated by 7,
and there are several elastic elements connected to some other masses indicated by k. We write this equation
for each mass in the system.

18 CHAPTER 2. TRANSLATIONAL DYNAMICAL SYSTEMS

Equation is refered to as an Equation of Motion (EOM).

F' indicates external forces imposed on the mass from sources other than springs and dampers in the
system such as an actuator. If the translational system is vertical, the force of gravity would be one such
force, FF = Mg.

5 The signs in equations of motion can be tricky. There is really no “correct” sign for each term, because
the equation is valid if you multiply both sides by —1. However if we stick with the following rules, we can
write equations of motion in a consistent way so that we can easily keep signs straight:

e The positive term in each subtraction associated with B and K must be the displacement of the mass
for which the current EOM is being written.

10 e Keep all position sign conventions consistent. For example, all displacments positive “to the right” or
positive “facing up”.

e Keep the sign convention of the external applied force the same as for the displacements and keep it
alone on the right-hand-side.

Example 2.2

Ly ™%

- %‘}

—%—M

B |

¢

71k

/

|

writing the EOM for this one mass:

M + B(i — 0) + K(z — 0) = f(t)

The spring and damper are each connected to ground. Ground is a point defined by z = 0, and = 0.
Here we have shown —0 for completeness. Normally when we have springs and dampers grounded we can
skip the subtraction step and the EOM is simply:

Mi + Bi + Kz = f(t)

15

2.3. EQUATIONS OF MOTION 19

Example 2.3

Here we have still a single mass, but multiple dampers are connected. Note that it makes no difference if
the “ground” symbol is located to the left or right of the mass, it still represents = 0,% = 0.

EOM:
Mi + By (% — 0) + By(¢ — 0) + K(x — 0) = f(t)
Simplifying

Mi + (By + B2t + Kz = f(t)

2.3.1 Parallel and Series Combinations

We were able to simplify the EOM in Example 2J3|in a way which added the two dampers together. If you
s think about a simple modification to Example 2J3] you can see that the same could be done with springs as
well. The general principle is that springs and dampers combine (like capacitors in electric circuits) (Figure

as follows:
Springs and dampers in parallel can be combined by addition.
Springs and dampers in series can be combined like parallel resistors:

e =
Ko

K\ KLV
I, ey K+ Ka

Figure 2.2: Springs in parallel and series can be combined (like capacitors).

10 Proof: Consider two springs in series. The force, f is the same throughout all elements of a serial chain,
and both springs independently obey Hooke’s Law:

f = Klel = KQALEQ
The total change in length due to the applied force, f, is

Ar = Az + Axg

20 CHAPTER 2. TRANSLATIONAL DYNAMICAL SYSTEMS

_ o f
Az e
Kr / ! _ MOk (2.2)

T Az UK +1/K; K1+ K

An almost identical proof can be made for series connected dampers.

However, Mass, M is different (Figure [2.3)) because of the unique property that the force on a mass
depends on the acceleration only with respect to the inertial frame:

Thus

g

[
i3
.
1
% ~
L

"

Figure 2.3: Add two masses which ever way they are combined.

5 What about the case where a spring and damper are connected in series (Figure [2.4])7
Using a similar analysis based on the fact that f is the same in both elements of a serial chain:

f:K(SCl 7I2) = B(l‘g 7I.3)

The difference here is that we have a new unknown x,. This new unknown requires a new EOM however
mgy = 0. The EOMS for the system of Figure 2.4 are thus:

K(ry —x2) = f
Ol"'z-‘rK(l‘z—l‘l)—l-B(jl‘z—i‘?,) =0

10

Bl(is —i9) =0

2.3.2 Multiple Masses and EOMs

When there are multiple independent masses (who’s displacements, x; are not the same) then we need a
separate EOM for each mass (Example 2. In a general system with multiple masses, dampers or springs

Figure 2.4: If a spring and damper are connected in series, a new EOM must be constructed for the node in
between (z2).

2.4. CONVERSION TO TRANSFER FUNCTION 21

can be connected between any two of the masses. This is why we used the subscripts and the subtractions
in Equation [2:1}

Example 2.4

% Xa

/

¢ "\:lf:)

By applying Equation to each mass,

(M) My + B(iy — d2) + Ko = f(1)
(Ms) Msiq + B(dig — 1) =0

Note that each EOM for mass ¢ always begins with m;%; and that in the B, K terms, x; is always taken
positive.

s 2.4 Conversion to Transfer Function

EOMs are Linear Ordinary Differential Equations, LODEs. As such, we can easily apply the Laplace Trans-
form. Using the EOMs of Example 2[]

M, X1(s)s*> + BX1(s)s — BX2(s)s + KX1(s) = F(s)

Note that we have assumed zero initial conditions. What does this assumption mean? Mathematically it
means

10 and physically this corresponds to the system being at rest and having no kinetic or potential energy.
We will use the Laplace transform to solve for Transfer Functions. Transfer functions are ratios between
the Laplace Transforms of two physical variables. Examples:

Xa(s) Xi(s)

F(s) Xg(s) etc.

Often we need to analyze a system when we know its input (say X (s)) but do not know its output (say
Y (s)). If we can obtain the transfer function

Y(s)
G =
15 then we can get the Laplace transform of the output by

The transfer function is obtained by algebraically manipulating the Laplace transform of one or more

22 CHAPTER 2. TRANSLATIONAL DYNAMICAL SYSTEMS

EOMs.
Example 2.5
For the system of Example 2[3] let’s find the transfer function
X(s)
G =
(s) Fs)

Using this transfer function we can compute the displacement as a function of the input force. Starting
with the EOM

First take the Laplace Transform:

(LT) MX(s)s* + (B1 + B2)X(s)s + KX(s) = F(s)
then we factor out X (s) from each term giving
X(s) (Ms®+ (B1 4 Ba)s+ K) = F(s)
dividing through we get the transfer function

_ X(s) _ 1
~ F(s) Ms2+ (B + By)s+ K

G(s)

We will find it useful to normalize each transfer function before further analysis. This means that we will
s manipulate each polynomial in s so that the coefficient of highest power of s is 1. This is accomplished by
just dividing through by the coefficient of the highest power of s as a final step.

Example 2.6
Normalize the transfer function of Example 2[5
Dividing through top and bottom by M,

2.5 Examples

2.5. EXAMPLES 23

Example 2.7
Two sliding masses.

Xout—

(Note that in this diagram, we used hatching between the mass and ground to indicate damping (B1, Bs).
This symbol is commonly used because it visually suggests sliding friction.
Find

6=
EOH:
Koo MK e B(6=0) ¢ K (X =Xu) ¢ K (XKt = 0
nz; Mo Koo + Ba(X,20) # K (Yor %) =0
LA(L«, (Aot
et xRSt Bk, f-k\)+ Xor®(~k2) # Xt (-K.) = O
L AN s XK@k =0

E limimake. X (s>
(I’\zs + B,\s +Kz) Kot (D

A
- Km:!?(K ‘>[/’\th ¢ MBas® + Mk st s MBS ng *@«Mlsj
+ @Jri(z)BLS + (K +E2) Ky i B'Ka

boXet ((= KX 6

Kﬁ‘*‘(t,\ _ Ko Ka
o (5 T sty (MEe BT (A + BB lria)m)s™

L (Bnk,“F @g*hgg\g S + (Kl'f’KL) K, - KLL

K. K,
M A .
MBy + NP\ 3 E}_ + E__‘Bi + (‘-"’ﬁz) 2
st (BBl (F 0 AR SR

RERD K. K2
T G«nz Are S TAfe //

24

CHAPTER 2. TRANSLATIONAL DYNAMICAL SYSTEMS

2.5. EXAMPLES 25

Example 2.8
Car Suspension Example

Q_"‘Caf bwlg

Bs

< Wl ko‘x&fdf

- roal pfu‘pf‘e

Xi Find the transfer function from road (z1(s)) to body (z3(s)).
EonM®
Mw" Mwi(.L +B$<)&Z‘X3> + /<5 (Xl""xs}*i %{X;"‘X:) = O
My : Al ;(‘3 + B¢ (;(; ‘X-LS + Ks (Xg"’XL\ =0

Gollect varikles X9 X) X 65y
o Mo, + E. X, 4{(,%5).(;(1) + Bs€X3) +/<s(')‘3*l<(-><b £ O

me: MuX; r Bs X; - B X, 4 ke (X=X =0
Lo place T forn }

M X2(5) (Pus®+ BgS + Kroks) + %) Bs =-i<s) + Xelb) 6
My X365) (f"w s*+ Bgs+ Ks>+ Xols> (—BS - K;) =0

Sub % els:hfmie X5 ()

Xa(6) = Xabs) (oS+ Byg +Ks)
B, s+ks

26

CHAPTER 2. TRANSLATIONAL DYNAMICAL SYSTEMS

Example 2.8 cont.

MmKu s ﬂw Bs S-5

LMJ%

4

Mw KS

+ i;ig«*?ﬁ;;p‘vﬁ ‘*?};E 51%3§

« s (e £k

-Bis™
Eall i)
— B el

TR E

K B { S

oI G,

X 4 = Ke X0 (Bos k)

- &)

A j B

Xf‘“’

AT .,..f’ 5 . a&m—f@\

[T

zs Ks
LS gk

2.6 Finding Errors through Dimensional Analysis

Once the numerator and denominator of the transfer function are normalized, we can exploit dimensional
s analysis to check our work for errors. We rely on the fact that for quantities to be added together they must

have the same units. What are the units of s?

s represents frequency and so has the units of inverse seconds, sec ™

units.

The MKS system has only three fundamental units, meters, kg, and seconds.

. Also each physical parameter has
Assuming the MKS

system, each physical parameter has the units given in Table

Name

Fundamental Units

Table 2.2: Fundamental MKS units for s and the physical parameters.

10

Now suppose the denominator of a transfer function has been normalized and then begins with s*

. Then

through dimensional analysis, we know that all the subsequent terms in the polynomial must have the same
units, namely sec™*. This can often be an easy way to find an error in the transfer function without checking

2.6. FINDING ERRORS THROUGH DIMENSIONAL ANALYSIS 27

each step.

Example 2.9

We have derived the following transfer function:

B s+ K/M

6o = (32 :
MiMs) st + M0l Bod 4 (1/My 4 1/Ms)2BK 82 + £55-s + 35

Check for errors using dimensional analysis.

We can safely ignore the normalizing term ﬁ because it is outside the additions.
Numerator:
s+ K/M

First, we have s. The units of s are sec™!.

fundamental units and multiply them:

Checking the next term we convert each term into its

K
M

K | 1M |

szgz ‘ 1/kg ‘ = selc2 ?é sec™!
The units do not agree with sec™! so this is an
ERROR!

Denominator: The first term is s*. Therefore, all terms in demoninator must have net units of sec™.

The next term is

M+ M, s
M,y My
In the first term, the units reduce to 1/M by cancelation. Therefore we can break it down as
/M| B | & |
1/kg | kg/sec | sec™® | =sec™?
CORRECT

Continuing in this manner:
(1/My + 1/M3)2BK s*

/M| 2B | K | § |
1/kg ‘ kg/sec ‘ kg/sec? ‘ 1/sec? ‘ = 5254 # sec™4
ERROR!
2BK
MM
I/M*| 2B | K | s |
1/kg* | kg/sec | kg/sec? | 1/sec | = o5 =sec™?
CORRECT
3K?
My M,
1/M? | 3K* |
1/kg? | kg*/sec’ | = 5 =sec™?

CORRECT

28

CHAPTER 2. TRANSLATIONAL DYNAMICAL SYSTEMS

10

15

20

25

30

Chapter 3

Rotational Dynamical Systems

3.1 Problem Statement and Learning Objectives

Be able to

e Name system elements and write/graph constitutive relations for the basic elements of a rotational
mechanical system.

e Write the Equations of Motion for a rotational system with any number of masses, springs, and dampers.

e Write EOMs for rotational systems containing gears

3.2 System Elements & constitutive relations.

Rotation is a different type of motion than translation and it makes subtle differences in dynamic analysis.
One of the most prominent difference is that if a body is rotating, every point in the body has a different
velocity and acceleration. This complex situation can be considerably simplified by assuming a single axis of
rotation, and representing a body by its inertia instead of its mass. The axis of rotation is a line along which
points in a rigid body do not move when it is rotated about the axis.

Computation of the inertia of a rigid body is beyond the scope of this book, but it is a quantity which
can be measured by rotational tests, or calculated from information such as a CAD model.

3.2.1 Torque

Torque (also called moment) is a vector quantity relating a force and an associated moment arm through
which the force acts to rotate a body around an axis. The simplest case is a force which is perpendicular to
both the axis of rotation and a radius connecting the axis and the point through which the force is acting on
the rigid body (Figure Left). In this case, the magnitude of the torque is

7| = |r[|F]

and the full magnitude and direction of the torque vector will be obtained by the right hand rule
T=rxF

(where x indicates the vector cross product.

If the force vector is not applied at a right angle (Figure Right), it must be resolved into perpendicular
and radial components, F},, F;., and then the torque magnitude is

7| = [r[|F
the full torque vector can still be obtained by the vector cross product above. When the axis of rotation is
fixed, for example by a shaft mounted in bearings, then only the component of the torque vector which is
parallel to the axis causes rotation about the axis.
In most of the problems we will study however, we will assume that a torque value is a known or measured

quantity and not worry about the radius or moment arm. In a very common control system application, a
DC electric motor is applied to a shaft and the torque is simply proportional to the current

7(t) = Kpni(t)

29

30 CHAPTER 3. ROTATIONAL DYNAMICAL SYSTEMS

o~ T
/
Axes

. r =
('Pf*;;) @w

Figure 3.1: An applied force F' generates a torque if it acts through a point having a radius, r from the axis
of rotation. Left: force is applied perpendicular to the moment arm. Right: force is appled in a general
direction. (see text).

Name Physical Realization Symbol Equation | Notes

Inertia | Flywheel J (t) = Jb

ML D

7(t) = KO0 | 7 is same on both sides. Assume zero rest
length

Stiffness | Coil Spring

[~

Damping | Fan, rotary damper, friction 7(t) = B | This is a linear model for friction.

Table 3.1:

3.2.2 Elements of Rotational Dynamical Systems

We will analyze systems consisting of

e Inertia The property of a rigid body which resists angular acceleration, and which stores kinetic energy.

e Stiffness The property of a rigid body which resists angular displacement, and which stores potential
5 energy.

e Damping The property of a rigid body which resists change in angular displacement and which converts
motion to heat.

Some properties of the various elements are summarized Table

3.3 Equations of Motion

1 Similarly to translational motion (see Equation [2.1]), there is an Equation of Motion (EOM) for each inertia
in the system:

Jtheta + > B;(0—0;) + > K(0 — 0)
j k

J

The use of this EOM is similar to that of translational dynamical systems as illustrated in the following

3.3. EQUATIONS OF MOTION 31

examples

Example 3.1
Find the equation or equations of motion for the following system

Zig

B

o
There is one inertia (J) so there is only one EOM:

J6+ B(6—0) =1(t)

Or . .
JO + Bl = 7(t)

Example 3.2
Find the equation or equations of motion for the following system

()
There is still only one EOM but it has an additional spring element:

JO+ B0 —0)+ K(0—0=r1(t)

or

JO+ B+ K0 =1(t)

32 CHAPTER 3. ROTATIONAL DYNAMICAL SYSTEMS

Example 3.3
Find the equation or equations of motion for the following system

T8,
This system has two masses. Although they appear to be on the same axis, they are separated by a spring

and thus they can have different displacements depending on the deflection of the spring. As a result we
have two EOM:

J101 + K1(91 — 02) = T(t)
Joby + K1 (03 — 01) + Ko0y + Bobla =0

These usually need to be solved simultaneously as with translational systems.

Once the OEMs are available, transfer functions can be derived in the same way as with translational
systems.

s 3.4 Gears

Figure 3.2: Meshing spur gears (http://www.emersonindustrial.com/). The large gear has 40 teeth and
the small has 16.

10

15

3.4. GEARS 33

Figure 3.3: Two meshed gears.

3.4.1 Gear Kinematic Relationships

A common system element in rotary systems is gears . The corresponding element in translational
systems, levers, seem to appear less often in control systems.

Consider two meshed gears, gear 1 and gear 2 (Figure . Each gear has N, teeth. The size of each
tooth is 27r; /N;. The number of teeth which pass when a gear is rotated by 6; is Nig—jr. Since the teeth must
be the same size for the gears to mesh, we can write

Ni16y Nabs
or 27
or
01 . Ny
b N

differentiating we also have
O _Na 01 _ N
g, N 6, N
Commonly we define n = Ny /Nsy. Thus
9.2 = nél
etc.

There is a force exerted by one tooth on the other in the tangential direction, f (Figure|3.3). Since it is
tangential, we can relate it easily to the torques:

T1=r1f T2 =712 f
This gives
1
T1 = —T2 = NT2

T2

1
Tg = —T1

n

Simplification of Geared Systems

We can use the properties of gear transmission of rotation and torque to simplify the process of writing EOM.
Consider a damper driven by a set of gears (Figure
We have .
Tg = B@Q

34 CHAPTER 3. ROTATIONAL DYNAMICAL SYSTEMS

v/

Figure 3.4: A viscous load (damper) driven by a set of gears.

Using the relationships above we have
1 .
—T1 = Bn01
n

or

T = anél

Suppose the system “beyond” the gears had some mass and spring in addition to the damper of Figure
[3:4] The argument above would be very similar:

5 We have
Ty = Jég +Béz + K6,

Using the relationships above we have
1 .. .
—71 = Jnbi + Bnb; + Knb,
n

or

T = JnQél + Bn291 + Kn26,

Let

The EOM becomes
T = j01 +B01 + }%01

10 This is the EOM of a simpler system (Figure [3.5).

3.4. GEARS 35

1>

T, .2,

1

Figure 3.5: Simplified equivalent system of the system in Figure [34]

Example 3.4
Transform the following geared system into an equivalent non-geared system and write the EOM.

20

n=—=04
20 50
- Ip J=0427=0.16 x 10 = 1.6
. 0 7 =1.66

)
&

CHAPTER 3. ROTATIONAL DYNAMICAL SYSTEMS

Example 3.5
Transform the following system into an equivalent system without gears
50
=—=25
" 20

J=252x%x10 = 62.5
K =252 x50 =3125

T = 62.50 + 312.50

3.4. GEARS 37

Example 3.6
Transform the following system with two rotational inertias and gears to eliminate the gears, and then write
and solve EOMs to get the transfer function

7.8
First, develop the transformations (by n?) to change Jo and Bs so as to eliminate the gear set:

20

= =01 2=0.01
n 200 0.1, n 0.0

Jo =0.01Js, B =0.01B

Also, the displacement of the second inertia is changed by
A 1
0y = —65 = 100,
n
tions in Section 1l Also note that s is not the same as 6; because the spring K7 can have an arbitrary

deformation.
The transformed system is

5, T

Note that the displacement 65 is transformed differently from the elements J,, By according to the deriva-
h

yé

CHAPTER 3. ROTATIONAL DYNAMICAL SYSTEMS

38

Figure 3.6: Rack and Pinion drive system (Stober, www.stober.com)

Example 3.6 cont.
Solving, using the techniques in Chapter 2:
EONM

N

Igr + K/G."éz> = /&7/1#)

JA'Z gz + K(é;é,) + 'Lg@;) = 0

fen 4
e S Gi6) ((Tys* + K) + 6,0 (k) - T, ()

éz(g} (jis"*ﬁs * "() + 9:C§7(.L> =0

/ .
T
'é‘ ; E‘lf‘\ ";;,"SE
h (‘, é /- = é KB
| 2(3) | T8+ s+
L)y = =— —
; /// @' S) K
{
-\ A [~ 4 Ay " 2 &)%’ AN
L 9“7<‘(“S} (T%s + TBs + Tiks™ v [Ks™+ kb= ££7)-0 S'm
61{3) = x 7 Ka A A
T J. 3.8 ¢ J-;BSS "’(:T‘+ T;\)K$1+ K Bs »
contsts B2 Bg
o.0) = ":?&T_ ,h‘“/
L6 PR és, + (T'*:f"—‘}’(e ® 4 Ké s
" w ; :’.45-"' //

3.5 Rotary to Linear Motion

Sometimes the second gear in a chain is straightened out to ro = co. The case of infinite radius corresponds
to what is called a rack - a set of gear teeth arrayed in a straight line. The gear which meshes with a rack is

5

10

15

3.5. ROTARY TO LINEAR MOTION 39

Figure 3.7: Rack and Pinion gear system converts rotary to linear motion and force to torque (and vice
versa).

called a pinion (Figure . Such systems contain a combination of rotating and translating elements and

they can be analyzed by careful application of the principles developed in this and the previous chapters.
Consider the rack and pinion shown in Figure Assume the gear can rotate about it’s fixed axis and

the rack is free to slide back and forth in the z direction. The force applied by the rack to the gear must be

F=r/r
because of the tangential contact constraint. The displacements are related by
x=rfl

by the basic geometry of circles.

In a combined system we write translational EOM(s) for the sliding components and rotational EOM(s)
for the rotating components, but by substituting the relationships above, we can transform one of the EOMs
so that both are in terms of rotary (or translational) variables.

When a component lies after a rotary to linear transformation, the net effect is a transformation from
linear to rotary by r2. Consider the rotary-linear system shown in Figure Writing equations of motion:

T=Fr+Jb
F=Mz
Applying x = r0,)
F=Mro

substituting . .
T =r(Mrf)+J6

= (J+r*M)0

Note that the mass has been transformed to a rotational inertia by r2.

40

CHAPTER 3. ROTATIONAL DYNAMICAL SYSTEMS

Figure 3.8: A system containing a rack and pinion coupled to rotary and linear masses.

Example 3.7

For the system below, find 2.2

T1(8)

T, o

The initial EOMS are .
Ji101 +rF =1

M1£1+K(IL’1 — X9 =F
Mg.fg—i-K(xg —$1) =0

Combine { ad 2 : T, 6 + FrMX, + rKx, — rkK x, = T,

Uda . o
X=r@ T8 + N8 +rid -r'Ko, =t @

Convtse s ML Xy b K (X -\ =D
R S G @
LT O+@, 2t = r'fla, K=r'K | T= Tk
O o0 (T +R)-& Kk - 2w
® o.60(%he +) -~ Kk = ©

3.5. ROTARY TO LINEAR MOTION

41

Example 3.7 cont.

Selve e,\IMm;ﬂe, @, .

A
& K
& P
®g () TusT+ K
sukl A
ow (T +8) - 25— = 7.6
a LS
Oy (Fds" s £Fsm+ kdhst s L) - 0" = TO(ESK)

SHON. 1S ¢ K
T TRsts k(TrT)E” L
% * A K=l‘ l(
= .-'!&" S T2 fﬁ!‘zﬂl
I Sq*(+'~'?3!‘2 52 // E%T’LMNFT.
T I

42

CHAPTER 3. ROTATIONAL DYNAMICAL SYSTEMS

10

15

Chapter 4

Basics of State Space

4.1 Problem Statement and Learning Objectives

Most of this course will cover control system design using system transfer functions (rational polynomials in
s which describe the input-output relationships of system blocks). However when we write the equations of
motion, it is an ideal time to introduce a couple of concepts from the “modern control theory” introduced in
the 1960’s which has supplanted the s domain methods in some applications.

Learning Objectives Be able to

e Understand the basic system equations to represent a linear dynamic system in state space.
e Convert equations of motion (EOMs) into state space representation.

e Use the computer to plot step response and state trajectories from the state space model.

4.2 Introduction

In “modern” control theory, the system is represented as a first order linear differential equation in a high
dimensional space known as state space. Each point in state space represents a unique dynamical state of the
system. For example, a system with one mass could be described by a 2-dimensional state space consisting
of the position, x and the velocity, @ (Figure [4.1).

One way to define the dimensionality of a system’s state space is to identify all system variables which
describe an energy. Each one is a dimension of state space. In our single mass example, energy is stored in
the spring and mass:

1 1
Ex = (K1 + Ky)x? By = §Mm'2

%
X(%)
1 —
—_r -
“’—"“J“,\fu}’\ DA
Ky X - [i]
/ 5
/
X

Figure 4.1: Translational dynamic system for state space example.

43

10

15

20

44 CHAPTER 4. BASICS OF STATE SPACE

So for this system we would use x and & as state variables. We use a vector, X, to define a point in state
space such as:
X = H
T

Then the dynamics of the system are represented in a matrix first order LODE:
X = AX + BU

Where X is the state vector, X is the first derivative of the state vector,

-l

A is a matrix of constant coefficients, U is the system input (like an applied force, f(t)), and B is another
matrix. This form can represent systems with multiple inputs (the elements of U), but here we will restrict
ourselves to a single input so only one element of U is non-zero.

Sometimes the output of the system, Y, is not one of the state variables, but instead a linear combination
of the state variables and possibly the input. In this case there is another equation

Y =CX+ DU

where C, D are additional matrices of constant coefficients. There is no Laplace transform and the equations
come directly from the equations of motion. In many realistic systems, many elements of these matrices are
ZETO.

4.3 System Matrices from Equations of Motion

Lets see how EOMs turn into the State Space representing using the example system of Figure Writing
the EOM:
Mz + Bz + (Kl + KQ)J) = f(t)

rearranging to solve for Z:

L1 .
i = 2 [Bi — (K + Ka)x + f(1)

. B, K +K;
f=——f— — =

M M
Converting this to a matrix equation is just rearranging according to

xzm X:m U:{f J

- s 3166 100

This is the state space description for the system of Figure [4.1

@+ %f(t)

=

then we have

5

4.4. STATE SPACE IN SCILAB 45

Example 4.1
Consider the car suspension Example 2[T] and Example 2[8] Derive the state space representation.

The EOMs were:

Mwiz + Bs(i‘g — Ig) + KS(JL‘Q — 563) + Kt(iEQ — ZEl) = 0
M,Ui‘3 + Bs(ig — CEQ) + Ks(l‘g — 1‘2) = O

Note that the input to this system is z1, the displacement of the road. We can re-write the EOMS to put
the input on the RHS:

My&o + Bg(de — &3) + Ks(22 — x3) + Kz = K2
Mvi'g + Bs(ibg — .’EQ) + Ks({Eg — 1’2) = 0

Let the state vector be:
. . T
X = [ZL’Q T2 I3 xg}

(where T indicates transpose to make X a column vector) and its derivative is
X =[2y &y 43 @3]

Rearranging the EOMS:

1 1

;'52 = m [—(KT + KS)JCQ — Bsig =+ KSZZZ3 =+ Bsi'g] + mKtIl
1

I3 = i [—FKSJJQ + Bgio — Ksx3 — stig]

We then have the 4x4 state equations:

o KO p 1 0 0 o 0 0 0 0 0
o |E2| _ — el 2B Koo B | g L]0 i 00 T
T3 0 0 0 1 3 0 0 00 0
T Ks Bs _Ks _Bs r
T3 e e s el Ls 0 0 00 0
Note that we have trivial equations for rows 1 and 3:
T = j?g Ir3 = I3

Once your parameter values are known, you can plug them in and it is easy to evaluate the response to any
input using the computer.

4.4 State Space in Scilab

Scilab (and Matlab as well) has many functions to manipulate and study systems in state space. In fact when
you represent a transfer function in the Laplace domain in Scilab with the syslin command, it is internally
converted into state space. The following Scilab code sets up the state equations for Example 4[T]

46 CHAPTER 4. BASICS OF STATE SPACE

16

1.4

1.2

0.8 4

0.6 o

0.4

0.2

4]

T T T T T T T T T T T T T
[+] 02 04 08 08B 1 12 14 1s 18 2 22 24 285 28 3

Figure 4.2: Step response of the car suspension system (worn out! time for new shocks!).

statespace.sce X
State . -space -exanmple

o R
,

Tire-stiffness. (vertical) -N/m
Suspension-Spring-constant- -N/m- (Z000-3000)
* Shock -Absorber -s/m

/ Maszs-(1/4) - kg
Typical -wheel - and-tire mass, kg

Es
Es
v
Nw =

[T = R N T S
=
[ad
T R
+ o
E
5

- (Et+Es) /Mw
-Bs/Mw
Es/Mw

Es/Mw

Es/Mv
Es/Mv
-KEs/Mv
-Bs/Mv

J

iy

L
I

= [0, L, 0,

22 a, b, ¢, d;
23 e e Uy .
24 e, £, o, h]

26|B = [0,Et/Mw, 0,0 1°

2g|C = [L,0,0,0.]
29 0,0,1,0-:-]

31|D = zeros(4)

33|susp = svyslin| A,B,C) D.is.optional
34| t= H

35|y = csim| SEpsusp)

36|scE(l)

37|plotit,¥)

In lines 5-9 we enter some approximate parameter values for a Toyota Camry using MKS units. Then
lines 11-19 compute the elements of A based on the equations derived in the example. Finally A, B, C, D are
put together in lines 21-31. Note that for a Single-Input-Single-Output system (the only type in this course),

s B must be a column vector (apostrophe (’) indicates matrix transponse in line 26), and C' a row vector (no
apostrophe).

In line 33 we create a linear system object named susp which contains the full system equations. Finally
the step response is plotted using the Scilab csim() function (Figure [4.2)).

Let’s visualize the step response in state space instead of the time domain. We’ll choose a plane which is
10 a subspace of state space: [xg,Z2]. We add the following lines to the script:

4.4. STATE SPACE IN SCILAB 47

50

40

30 H

20 o

10 H

-10

-20 T T T T

Figure 4.3: Step response of the car suspension system in state space. X axis is x4, the position of the wheel,
and Y axis is &3, the velocity of the wheel’s vertical travel.

20

39|scfiz)

40

0 now-we' re +.2 £a + +
42|C-=[1,0,0,0.;

43 ,1,-0,-0] this 'C' -matrix gives both X2 and Xdot2
a4

45|susp = syslin(JA,B.C)

46|yl = csin Lt.suspf]]

47

ag|plot (y1il, :),y1(2,)]

49

The result (Figure shows the position, z2, on the x axis and velocity, &2, on the y axis. The system
trajectory is an interesting spiral from the inital point (z2 = 0, @9 = 0), to the final point (zo =1, &2 =0).
Time is not explicitly shown but the spiral indicates the overshoot in the step response and its convergence
to the steady state value (1.0).

Converting Transfer Functions to State Space and Back Computer mathematics packages have
functions to easily convert back and forth between transfer functions and state space system descriptions.
For example, suppose we have the transfer function:

s+ 2
s2 4+ 20s + 96

we can easily use Scilab’s t£2ss() function to convert this to a state space representation as follows:
y

48 CHAPTER 4. BASICS OF STATE SPACE

Scilab 5.5.2 Console

--=sys = (s+2) /(5" 2+20%s+96)
sys =

968 + 205 + s
-->tf2ss(sys)
ans =
ans(1) (state-space system:)
Ilss A B C D X0 dt !
ans(2) = A matrix =

- 19.7684706 - 7.05BB235
12.941176 - 0.2352941

ans(3) = B matrix =
- 1.6803361
0. 4200840
ans(4) = C matrix =

- 0.5951180 8.327D-17

ans(5) = D matrix =

ans(6) = X0 (initial state) =

ans(7) = Time domain =

[1

Scilab returns a linear system object which contains all four matrices A, B,C,D. In the computation
above, the matrices A ... D are not necessarily the same as those you would derive using the system EOMs.
However they describe an equivalent dynamical system. It turns out there are many SS representations for

s each transfer function or dynamical system.

A full treatment of this issue requires a course in modern control theory, but a few interesting observations
are worth noting.

The eigenvalues of the system matrix A, are the same as the poles of the transfer function. In the example
above,

s+ 2 _ s+ 2
s24+20s+96 (s+8)(s+ 12)

1 has poles s = {—8, —12}. The function to compute eigenvalues in Scilab is spec (). Using it on the matrix A
computed above:

4.4. STATE SPACE IN SCILAB

-->A = ans(2)
A =

- 19.764706
12.941176

-->spec(A)
ans =

- 12,
- 8.

Note that the eigenvalues are the same as the poles.

4.4.1 Sources

- 7.058B235
- 0,2352941

For Toyota Camry Suspension Parameters:

49

e R.K. Taylor, L.L. Bashford, M.D. Schrock, “Methods for Measuring Vertical Tire Stiffness,” Transac-
tions of ASAE, vol 34, p 1415-1419, 2000

e M.D. Rao, S.Gruenberg, “Measurement of Equivalent Stiffness and Damping of Shock Absorbers,”

e J. Iwaniec, “Identification Of Car Suspension System Parameters On The Basis Of Exploitational
Measurements,” Diagnostyka, V14, N2, 2013

50

CHAPTER 4. BASICS OF STATE SPACE

10

15

20

25

30

Chapter 5

Transient Response and Frequency
Response

This chapter starts with fairly detailed analaysis of second order linear systems and the concepts of magni-
tude and frequency of steady state sinusoidal response. Computer techniques easily create highly accurate
frequency response plots. We then develop techniques for hand drawing reasonably accurate frequency re-
sponses. While the hand techniques initially seem rather involved, after performing a few practice problems
(and checking the results on the computer) they can be executed very rapidly with low effort.

5.1 Problem Statement and Learning Objectives

Be able to

e Use the partial fraction expansing and basic Laplace Transform pairs to solve the step response of a
2nd order system.

e Explain how the location of poles of a 2nd order system in the s-plane affects the envelope and oscillation
frequency of the step response.

e Explain the meaning of “steady state sinusoidal response”.

e Evaluate the steady state sinusoidal response magnitude of a transfer function at a specified frequency
w.

e Evaluate the steady state sinusoidal response phase of a transfer function at a specified frequency w.

e Express a positive quantity in decibels (dB) and rapidly perform basic manipulation of logarithmic
quantities.

e Use dB to rapidly compute the state sinusoidal response magnitude of a transfer function at a specified
frequency w.

e Hand sketch a Bode asymptotic magnitude plot with “+3dB” corrections.

e Hand sketch a Bode asymptotic phase plot with smooth approximations, and explain relationships
between the Bode magnitude and phase plots.

e Make detailed corrections to asymptotic Bode plots for systems containing complex conjugate poles
and zeros.
5.2 Introduction
This chapter will introduce calculation of the response of systems which we have described by transfer

functions. First we consider step response of a 2nd order system in the time domain. Step response of higher
order systems requires numerical evaluation but we can build much intuition from considering 2nd order

51

10

52 CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

systems. Second we develop methods to hand-sketch magnitude and phase response of a system transfer
function for any order.

Although it is easier to do both of these computations with the computer, basic hand skills are studied
because they develop better intuition and understanding of systems and system response results. The basic
analytical approach is to understand the big picture by hand sketching these responses first, and then easily
create very accurate plots with the computer for detailed analysis .

5.3 The basic 2nd order dynamical system

A dynamical system is said to be “second order” if the highest power of s in its denominator is 2. An example
of such a system is

1 1
Gls) = (s—a)(s—b) - s2—(a+b)s+adb

a and b are roots of the polynomial in the denominator. When s equals a root, the denominator = 0 and

Because G(s) goes up to infinity at these locations, a,b, in the complex plane, we call a and b “poles” of
the transfer function G(s).

5.3. THE BASIC 2ND ORDER DYNAMICAL SYSTEM 53

Example 5.1

Find the poles of the transfer function and use the partial fraction expansion and the computer to evaluate
the step response output, Y (s).
Y (s) 1
X (s) (s2+13s+30)

By either simple factoring or use of the quadratic formula,

1

¢ = TG 10
Thus the poles of G(s) are s = {—3,—10}. Multiplying by
U(s)=1/2

1

Y =UE60) = e

The partial fraction expansion is
G(s) = A1/s+ Ay /(s +3) + A/ (s + 10)

SOlVng for Al, 1427 Ag,
A; =0.0333 Ay = —0.0.0476 Az =0.0143

A

Applying the inverse transform for % and Gra)

g(t) = 0.0333u(t) — 0.0476e 3" 4-0.0143¢ 10

Plotting the function g(t) by computer:

0.035

0.030

0.025

0.020

0.015 -

0.010

0.005 -

0.000 T
0.0 0.5 10 15 20 25 3.0 35 4.0

5

o4

CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

Example 5.2
Find the poles of the transfer function,

- 400
T 12.7s2 + 304.8s + 2641.6

G(s)
and plot the step response by computer.

Applying the quadratic formula to get the roots of the denominator:

_ —304.8+v/304.82 — 4 x 12.7 x 2641.6
- 2 x12.7
{a,b} = {(=12+;8),(—12 - j8)}

In this case the poles are complex numbers.
Note that these numbers were kind of messy. This illustrates a good reason to normalize the denominator
polynomial. Lets do the problem again but with a normalized denominator:

3.15
G e ————
() = 5245 + 208
Applying the quadratic formula to get the roots of the denominator:

24 + /242 — 4 x 208
2

{a, b}

{a, 0} =
This is simplified because the s2 coefficient is one. The result is the same.
{a,b} = {(—12+;8),(-12 — j8)}
Plotting the step response by computer:

Step response: p=-12+-§j

20

18-

1.6

1.4

1.2+

1.0

T
0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

There are lots of ways we could express the simple polynomial in the denominator of G(s) and we’ll play

around with a few:

1
s2+us+v

G(s) = (u=—(a+0b), v=ab)

Now let’s introduce a parameter w,, (pronounced “omega-n”):

Wn:\/azm

10

15

5.3. THE BASIC 2ND ORDER DYNAMICAL SYSTEM %)

. T
x \/ Qi(/\)m
‘ &/'//‘9%55(05@
=y -
2 S o
b /,,)(X

Figure 5.1: Complex conjugate poles in the complex plane can be represented in Cartesian Coordinates
(r 4+ jm) or polar coordinates {¢,wy}

and another one, ¢ (“zeta”):
_u _—(ath)
2Vv 2vab

if we make these substitions, our transfer function becomes

¢

1
82 4 2Cwps + w2

G(s) =

So far this is just playing around with notation. The point however is that ¢ and w,, called the damping
ratio and natural frequency respectively, give important insights not obvious from the poles (a,) themselves.
If the poles are complex, we know that they must be complex conjugates of each other. In other words,

Re(a) = Re(b) Im(a) = —Im(b)

Using the properties of complex numbers, and the fact above, it is simple to show

wn = /Re(@ + Tm{@)? = la| = |
¢ =—Re(a)/w

If we plot these points on the complex plane (Figure[5.1)) we can see why these parameters give a different
view from the poles.

5.3.1 Pole Location and Step Response

The location of poles in the complex plane determines the characteristics of the dynamic response to system
inputs. One input which we care about a lot is the step function

0 t<O0
Mﬂ—{]t>:0
The Laplace transform of the step input is U(s) = l
The response to a step input determines what the system will do when we “change our minds” about
what the output should be. For example, you walk into a room and turn the thermostat from 50° to 68° or
you press “Resume” on your cruise control.

When we take a 2nd order transfer function of the form G(s) M

= GTa)GF) and multiply it by the step

input, we get the output
1 M

Y(s)=-—
() s(s+a)(s+b)
we can expand it using the partial fraction expansion (Section [1.4)) into the form

1Jr Ay N Ay
s (s+a) (s+Db)

10

15

20

25

56 CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

Step Response of Complex Conjugate 2nd Order Poles

600\

500

400 o

300

200

100

Figure 5.2: Step response of a typical system (w, = 0.4,(= .124) with complex conjugate 2nd order poles.
The envelopes (red and green) are also shown.

and further that the inverse transform of each term in the partial fraction expansion is

y(t) =1+ Aje® 4+ Age?® (t >=0) (5.1)

It can be shown that for a 2nd order system with a pair of complex conjugate poles, {a, b}, this solution
takes the form

y(t) =1~ e ! cos(wat + ¢))

In this response, the exponential term multiplies the sinusoid term. Since the sinusoid cannot exceed the
range —1 <= sin(wt) <= 1, the response will be bounded by the exponential and we will call it the “envelope”
since it “contains” the sinusoidal part of the response. Let’s look at some examples of this function. For
wn, = 04, and ¢ = .124 (corresponding to the poles: s = —0.05 4+ 0.45), we get the step response shown in
Figure 5.2

Now, let’s place these responses according to the location of their complex poles. Figure [5.3] represents
the top half of the complex plane. Each plot is the response of a 2nd order system having one of its complex
conjugate poles in its rough location. Note that the last two columns have positive real parts to their poles.

Looking at Figure there are two key patterns. First, the frequency of the sinusoid increases as the
imaginary part of the pole increases. Second the envelope grows with time when the real part is positive,
and shrinks over time when the real part is negative. The larger the magnitude of the real part, the faster
the envelope changes.

5.4 Frequency Response

Another important way to analyze systems is in the frequency domain. In particular, we are interested in
the steady state response when the system is driven by sinusoids of differing frequencies.

Drawing frequency response plots by hand is still an important skill for control engineers. Hand drawing
skill enables much deeper engineering insight into the behavior of systems and enables design work in a
meeting or at the white-board. A hand sketch done prior to a computer plot gives you confidence that you
entered everything correctly to generate the plot. Of course, our emphasis in hand drawing is on a balance
favoring quick results which accurately plot the major qualitative features of the system. When detailed
accuracy is required (later in the engineering cycle) we rely on the computer.

w
52 + w?

When a system is driven by a sinusoidal input, the output is derived by multiplying the Laplace transform
of the sinusoid with the transfer function,

x(t) = sin(wt) & X(s) =

5.4. FREQUENCY RESPONSE

pole: -0.50 +}0.50

pole: -0.05 +]0.50

pole: -0.01 +{0.50

pole: 0.01 +0.50

57

pole: 0,05 +]0.50

30 30 30 30 30
25 25 25 25 25
20 20 20 20 20
15 15 15 15 15
10 10 10 10 10
os 05 05 o0s os
00 00 00 00 00
05 05 05 05 05
00 To 20 3 40 %0 6 70 8 %0 100 00T I0 20 30 40 50 0 70 80 %0 100 0 To 20 30 40 %0 6 70 80 50 100 00 To 20 30 40 % 6 70 8 %0 100 90 To 20 3 40 %0 € 70 8 %0 100
pole: -0.50 +0.30 pole: -0.05 +0.30 pole: -0.01 +0.30 pole: 0.01 +0.30 pole: 0.05 +0.30
3 3 3 3
25 25 25 25 25
20 20 20 20 20
15 15 15 15 15
10 10 10 10 10
os 05 05 0s o0s
00 00 00 00 00
05 05 05 05 05
00 10 20 30 40 % 6 70 80 50 100 1000 20 30 40 30 60 70 80 %0 100 1000 20 %0 4 30 60 70 80 %0 X 100 20 %0 4 0 6 70 80 %0 100 93 1o 20 30 40 % 6 70 8 %0 100
pole: -0.50 +0.15 pole: -0.05 +0.15 pole: -0.01 +0.15 pole: 0.01 +j0.15 pole: 0.05 +j015
3 3 3 3
25 25 25 25 25
20 20 20 20 20
15 15 15 15 15
10 10 10 10 10
asV 05 05 05 05
00 00 00 00 00
05 05 05 05 05
0010 2 30 40 %0 € 70 80 50 100 10T I0 20 30 40 50 0 70 80 50 100 1000 20 30 4 S0 60 70 80 S0 100 90 10 2 30 40 50 60 70 80 50 100 90 10 2 30 40 %0 € 70 80 50 100
pole: -0.50 +]0.05 pole: -0.05 +0.05 pole: -0.01 +0.05 pole: 0.01 +0.05 pole: 0.05 +0.05
30 30 30 30 30
25 25 25 25 25
20 20 20 20 20
1s 15 15 15 15
10 10 10 10 10
os 05 n.s/ o5 0s
00 00 00 00 00
05 05 05 05 05
1 a 10

10
0 10 20 30 40 S0 60 70 80 90 100

0 10 20 30 40 S0 60 70 80 0 100

0 10 20 30 40 S0 60 70 80 S0 100

EY
0 10 20 30 40 S0 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

Figure 5.3: Step responses of 2nd order systems with the pole locations labeled above each plot. The array
of sub-plots represents part of the upper half of the complex plane.

10

15

o8 CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

w
82 4+ w? G(s)

The pole corresponding to the sinusoidal input is the root of s2 +w? which is s = jw. Since the magnitude
of sin(wt) is always 1 (i.e. does not vary with frequency, w), the key quantity of interest is the magnitude
of the transfer function, |G(jw)|(which does vary with frequency). If the amplitude of the input sinusoid
changes from

Y(s) =

sin(wt) — Asin(wt)
The frequency response can simply be scaled by A due to the linearity property.
Y (jw)| = |GGw)| = [Y (jw)| = |[AG(jw)| = A|G(jw)|
Thus we can focus on |G(jw)| and get the response for any amplitude or frequency sinusoid.
We can show that the steady state output is also a sinusoid using the partial fraction expansion as we did
above with the step response. Suppose
w M
5% +w? (s +p1)(s +p2)(s + ps3)
Then the partial fraction expansion would be
A A A A
Y (s) = — 0 _+ LI 2 3
s2+w? (s+p1) (s+p2) s+ps

The last three terms each transform into exponentials like Equation We assume that the real part of
each pole is negative so that the exponentials decay with time. We can thus neglect those terms since we are
focused only on the steady state solution:

Y(s) =

Ao
y(t) = A/wsin(wt + ¢)

Where A and ¢ are quantities to be determined. This section is about efficient ways to determine how A and
¢ change as a function of w.

Y(s) =

Example 5.3
Obtain the sinusoidal steady state response of the following system

50
(s + 0.05 + j0.4)(s + 0.05 — j0.4)

for w = 1.25 (the units of w are radians per second).

G(s) =

Response to sin(wt)u(t)

100

50

There is a substantial transient response, but for ¢ > 80 or so we see the steady state response.

5.4. FREQUENCY RESPONSE

59

10

60 CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

Example 5.4

The system
50

(5 +0.05 + j0.4)(s + 0.05 — 50.4)

is driven by an interrupted sinusoidal function

G(s) =

x(t) = sin(1.25¢) (u(t) — u(t — 100))

Recall that u(t), the unit step function, is required for single sided Laplace Transform analysis with zero
initial conditions. The second term, —u(t — 100), when combined with u(t), “Turns off” the sinusoid at
t = 100 because for ¢t > 100, u(t) — u(t — 100) = 0. Numerically solving this system on the computer gives
a response (below) which changes amplitude dramatically at both the turn ON transient (¢t = 0) and the
turn OFF transient (¢ = 100), but settles to a constant sinusoidal output (the steady state response) for
80 < t < 100. Note that if the sinusoid continued forever instead of shutting off at ¢ = 100, the steady state
response would also continue forever.

It is also worth noting that the frequency of the response changes when the input turns off. This is because
the steady state response is a “forced” response (i.e. of the same mathematical form as the input), while
the turn off transient is a “natural” response, i.e. determined by the w,, (of the system.

Response to snft)(t)-u(t-100))

: T -

Left: Input signal. Right: System response includes transients both when the sinusoid turns ON (¢ = 0)and
when it turns OFF (¢ = 100). Eventually the ON transient dies out to a steady state response (75 < ¢ < 100).

Frequency response analysis ignores the transient response (both ON and OFF type) and focuses entirely
on the forced, steady state response. Since the steady state response is always of the same mathematical form
as the input, we need only concern ourselves with differences in amplitude and phase (between the input and
output sinusoid).

Each root of the denominator of a transfer function is called a pole. Each root of the numerator is called a
zero. Fach pole and zero is a real or complex number which affects how the system response to both transient
and steady state inputs.

5.4.1 Magnitude

As we focus on steady state sinusoidal response, we will concern ourselves only with the magnitude and phase
of the response at each frequency.

In summary, the first task of frequency response analysis of a system described by G(s) is to compute
|G(jw)| over some frequency range of interest, wmin < W < Wmaz- |G(jw)| is computed by 1) plugging in

5

5.4. FREQUENCY RESPONSE 61

s = jw and 2) evaluating the magnitude of each pole and zero term, and 3) combining the terms.

Example 5.5
Compute the magnitude of
10°(s + 12.7)

(s +0.1)(s + 10)(s + 5000)
for w = 100 rad/sec. Express the magnitude in dB.

G1(jw) =

Plugging in
10°(12.7 + 5100)
(0.1 4 5100)(10 + 4100)(5000 + 5100)

|G1(j100)] =

Evaluating the magnitude of each term:

10°(v/12.72 4+ 1002)
(v/0.12 + 1002) (v/10% + 1002)(1/50002 + 1002)

|G1(5100)| =

10°(100.8)

12100 = 7356.600005) (100.5) (5001)

Combining

|G1(5100)| = 0.20056

Some observations about this computation follow:

1. The computations have been carried out to excessive precision. Practical control plants are rarely
known to even 1% accuracy.

2. Another reason for excessive precision above is that we did not neglect any terms. In practice, a term

like [0.1 + 5100| can be instantly replaced with 100 since we know the 0.12 is going to be insignificant.
(Don’t do this when the real and imaginary parts are close in magnitude!)

3. In an application where highly accurate numerical values must be obtained, we can use computer
software. In modern engineering, hand calculations (even with a calculator) should only aim at quick
approximate results.

5.4.2 Phase

Phase shift between the input and the output is represented by the angle of the complex transfer function
evaluated at frequency w. Phase is computed by a similar procedure to magnitude: 1) plugging in s = jw

10

15

62 CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

and 2) evaluating the phase of each pole and zero term, and 3) combining the terms.

Example 5.6
Compute the phase angle of
10°(s + 12.7)

(s +0.1)(s + 10)(s + 5000)

for w = 100 rad/sec. Express the angle in degrees.

Gi1(jw) =

Plugging in
10°(12.7 + 5100)

£G1(j100) = /
1(7100) (0.1 + j100)(10 + j100)(5000 + j100)

Evaluating the angle of each term:

tan=1(0/10%) + (tan=1(100/12.7)

£G100) = =T 00/0.1)) + (tan-1(100/10)) + (tan-1(100/5000))

0° + 82.76°
/ i1 =
G1(5100) 89.94° + 84.30° + 1.146°

Combining

£G1(j100) = 82.76° — 89.94° — 84.30° — 1.146° = —92.626°

The observations of Example 5[] apply almost exactly to the phase computation as well.

5.4.3 Decibels

Decibels are a logarithmicﬂ unit which are widely used for the analysis of frequency response. If we have a
quantity, x, then

dB(x) = 201og, ()
where dB(x) represents the decibel representation of x.

Because decibels are logarithmic units, we will make frequent use of the following properties (which are
easily proved using basic properties of logarithms)

dB(ab) = dB(a) + dB(b)
dB(a/b) = dB(a) — dB(b)

dB(a)
2

dB(/a) =

etc.
Some handy dB values, when memorized, give you very quick and accurate hand calculation results:

3.16 = v/10 = 10dB 10 = 20dB, 100 = 40dB
2=6dB, V2=3dB

1/2=—6dB, V?2/2=-3dB

1Take the quiz and review logs if necessary: Section

10

15

20

5.4. FREQUENCY RESPONSE 63

etc.

Example 5.7
Convert the following quantities to dB.

dB(1000) = 2010g(1000) = 20 x 3 = 60dB

dB(6000) = 2010g(1000 x 6) = dB(1000) + dB(6) = 60 + 15.6 = 76.6dB
dB(X/100) (where X =40dB) = 40 — 201og(100) = 40 — 40 = 0dB

Example 5.8

quick approximate answer:
Plugging in
105(12.7 + 5100)
(0.1 + 5100)(10 4 4100)(5000 + 5100)

Quickly evaluating the magnitude of each term by neglecting the small parts :

|G1(5100)] =

10°(100)
(100)(100)(5000)

|G1(j100)] =

Converting to dB

|G1(j100)| = 100dB + 40dB — 2 x 40dB — 60dB — 201og(5) = —14dB

Taking into account the points raised in Example 5[5 Let’s redo the magnitude computation and get a

Example 5.9
Convert the magnitude calculation of Example 55 to dB and compare it with Exercise 58
Converting to dB:

dB(2.0056) = —14dB

which is the same result.

5.4.4 Bode Plot Sketching

The Bode asymptotic magnitude plot (named after famous Bell Labs engineer Hendrik Bode, 1905-1982) is a
log-linear plot of magnitude vs. freqency, and is usually used with the Bode asymptotic phase plot which is a
linear-linear plot of phase vs. frequency. Bode’s key contribution was to understand that the key properties
of |G(jw)| and ZG(jw) can be obtained by sketching straight line asympotes which are easily identified from
the transfer function. In the 1930s, this replaced hours of tedious hand calculation. Today, we get an accurate
Bode plot from the computer in seconds, but the asymptotic hand sketch has two key remaining insights:

1. We can quickly estimate frequency response on the back of an envelope or at the white-board during
group work.

2. We gain key insights about which parameters of the transfer function are responsible for which features
of the frequency response.

Bode Asymptotic Magnitude Plot (BAMP)

Single Pole We start by looking at a simple transfer function consisting of one pole:

-
15

20

25

64 CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

In all frequency response analysis we assume that Re(p) < 0. For now we assume Im(p) = 0.
We consider s = jw and there are three values of w which are relevant.

1. w<<|a
2. w=lal
3. w>>|a

Rages 1 and 3 are “asympotic” because they become more and more true as |w| — co. Value 2 is an exact
value because we can easily compute an “anchor point” for the graph. For each region, as we plug in s = jw,
we can approximate |G(jw)| as

1. |G(jw)| = 1/a

Q=

S

— 1l
V2

w
Q
<.
E

%

|

Il

€=

Importantly, the Bode Magnitude plot is logarithmic in the Magnitude and we express Magnitude in dB.
Therefore we can re-write the approximations as

1. |G(jw)| = —dB(a)

2. |G(jw)| = ‘dB(#) = —dB(a) — dB(V2) = —dB(a) — dB(2)/2 = —dB(a) — 3dB

a+ja

3. |G(jw)| ~ ‘dB(j%)) — —dB(w)

If we plot this we get Figure
It’s important to note a couple of things.

1. The low frequency asymptote is horizontal because it is constant with respect to w (—dB(a)).
2. The high frequency asymptote intersects the low frequency asymptote at w = a, |G(ja)| = —dB(a).

3. The actual curve is smooth and intersects the point {a, —dB(a)—3dB} in accordance with the calculation
for w = a.

4. As omega gets greater than a, the magnitude drops with frequency according to

M = —dB(w)

In log-log coordinates, —dB(w) is a straight line with a slope of -1. When we say “slope of -1”, we
mean the magnitude drops a factor of 10 for every factor of 10 increase in w. We express this slope as

choaddg . The term “decade” refers to an order of magnitude change of frequency.

5.4. FREQUENCY RESPONSE

le\é‘tB

Pt
Rien(s) s

/ - 20 A%w,ge
Ty
™~

Figure 5.4: Bode Magnitude Plot of a single pole.

Single Zero Now we consider the case of a system represented by

As before, we assume Re(p) < 0. For now we assume I'm(p) = 0.
The same three ranges of w are relevant:

1. w<<|al
5 2. w=|al
3. w>>|al
For each region, as we plug in s = jw, we can approximate |G(jw)| as
1. |G(jw)| =~ a
2. |G(jw)| =~ |a + ja| = a2

10 3. |G(jw)| = |jw| = w

Again, the Bode Magnitude plot is logarithmic in the Magnitude and we express Magnitude in dB.
Therefore we can re-write the approximations as

1. |G(jw)| = dB(a)

2. G(jw)| ~ |dB(:257)

— dB(a) + 3dB
s 3. |Gljw)| ~ ’dB(j%)} — dB(w)

If we plot this we get Figure

The zero plot is identical to the pole plot except inverted (reflected around the line || = 0dB). The slope
of the high-frequency asymptote is now +1 or +20dB/decade.

Note that these graphs are generic for any value of a. If they are multiplied by any different amplitude,
20 A, then they can be decomposed as follows:

1

— 4] ‘(Ha)‘ — dB(A) +dB<

Galo) = |

A
o

(s +a)

65

CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

|che P
/ (/é - (Ua (w}
/"{I 20 &b/o(e“&o.
//
7\!)\6%(&\ » ,,-"'//
N »j" “P43db
/
. log ()

Figure 5.5: Bode Magnitude Plot of a single zero.

In other words they are shifted up or down by dB(A).

Example 5.10
Plot the Bode Asymptotic Magnitude Plot for the following single-pole transfer function:

2000
@ G200
As above we can decompose this into
dB(|G2|) = dB(2000) + dB(|1/(s + 200)|)
Thus the Bode plot of Figure directly applies as long as we add dB(2000) = 66dB and we have

1. The intersection of the two asymptotes is at w = 200.
2. The low frequency (horizontal) asymptote is at
|G2(w)| = 66dB + (—46dB) = 20dB

Where 66dB comes from the factor of 2000, and —46dB comes from 201og(1/a). Drawing the asymp-
totes and drawing the smooth curve through 20dB — 3dB,

40+

i

ol
AO +—r
N
N
\\
o) ——-—.~...~.~“,._.mA»F._.-.‘..,,A_ﬂ,,n...ﬂ_‘m,_‘ ,’w__.ﬁ_,_,_MM?“ - ‘
I foo 2 ffm\ i0?

2D -

10

15

5.4. FREQUENCY RESPONSE 67

5.4.5 Combining Magnitude Plots

Consider the more realistic transfer function which has one zero and two poles:

(s+0b)
(s+a)(s+c)

We will define a feature of the transfer function to be the combination of poles and zeros. In Gj3 for
example, a, b, ¢ are all features of G3(s).

To make a Bode Asymptotic Magnitude plot of this more interesting function, we recognize that it is the
product of two poles and one zero:

Gs(s) =

1 (s4+a) 1
(s+b) 1 (s+¢

Ga(s) =
and since we are plotting in a dB scale that

1
(s+)

1
(s+¢)

(s +a)

4B(|Ga(s)]) = dB(] \) T aB()+ dB()

In other words, we can just add the three Bode plots together. This is a valid way to do it but is still a
bit time consuming because four total plots have to be made. To find a simpler way let’s constrain the first
asympotic frequency range slightly so that it is below the lowest feature, i.e.

w << min(a, b, c)

For this case
(Ga(w)| = dB(a) — dB(b) — dB(c)

at this point we know where the low frequency (horizontal) asymptote intersects the dB axis. Assume that
in G3(s) the smallest feature is a. An important way to look at the basic plots of Figures and is that
they are horizontal for w < a and sloped (either down for poles or up for zeros) for w > a. Thus, the quickest
way to draw the Bode Asymptotic Magnitude plot is to start from the horizontal asymptote and then to add
in a component of slope as w gets to each pole or zero.

CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

Example 5.11
Hand draw the Bode Asymptotic Magnitude Plot for

(s40.1)

Gils) = 5396+)

for the frequency range 0.01 — 1000 rad/sec.
Follow these steps:
1) Compute the magnitude for w << min(0.1,2,25) i.e. w << 0.1.

|G4(s)] = dB(0.1) — dB(2) — dB(25) = —20dB — 6dB — 28dB = —54dB
2) Draw your log-log axes.

E

O-—4

T
o { 10 10D (0D /«‘5: (o

Notes about the axes:

1. It is important to make the size of a factor of 10 the same on both horizontal and vertical axes. Verify
that this property holds for the above axes (keeping in mind that 20dB = 201og(10)).

2. It can be tricky to choose the ranges of dB and w to plot.

For w start with wy,, = 0.1min(p;, 2;) (where p; and z; are your poles and zeros) and wpee =
10 max(p;, 2;).

For dB range, try to guess if your plot will slope upward (zeros first) or downward (zeros at higher
frequencies than poles). Then place your value obtained in step one near the bottom or top of the
range respectively.

5.4. FREQUENCY RESPONSE 69

Example 5.11 cont.

3) Mark the zero and pole frequencies on the log(w) scale. Don’t forget to take the log of w before you mark
it down.

4) Starting from the left, draw the low frequency horizontal asymptote (at —54dB) to the left through
w = 0.1. At that frequency, the slope changes to positive due to the zero so draw an asymptote intersecting
the horizontal at w = 0.1 and extending up at +45°.

Next at w = 2, the first pole becomes active. This pole contributes a negative slope and thus cancels the
positive slope. Draw a new horizontal asymptote (slope =0) intersecting the upward line at w = 2. Finally,
at w = 25, we have two negative slopes due to the two poles and still the one positive slope from the zero.
The net result is -1 slope for frequencies above 25.

o-.—

-20 -+

\GH(@\&'& —

-40

-5 J

— P

5) Mark corrections: —3dB at w = p;, +3dB at w = z;

6) Draw a smooth curve through each 3dB point. For a pole, start at p; /10, draw a smooth curve through
the —3dB correction, and merge smoothly back into the asymptote at 10p;. Some artistic skill helps here.
When poles or zeros are closer than a factor of 10 apart, you have to blend the smooth curves. See the
range 2.0 < w < 25 in the final plot below.

10

15

70 CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

Example 5.11 cont.
The final plot looks like:

O.—

~-4D
s
000 Loy (o
-50 ¢
~ o 4
A

— P

5.4.6 Bode Asymptotic Phase Plot

We will derive the Bode Asymptotic Phase Plot the same way as the magnitude: by considering three values
of w relavtive to the pole or zero.

Single Pole Again, we start by looking at a simple transfer function consisting of one pole:

1
(s +a)

In all frequency response analysis we assume that Re(p) < 0. For now we assume Im(p) = 0. We consider
s = jw and there are three values of w which are relevant.

G(s) =

1. w<<|q

2. w=|al

3. w>>|a

For each region, as we plug in s = jw, we can approximate |G(jw)| as

1. LG(jw) =0

2. LG(jw) = L5, = —45°

3. LG(jw) ~ LL = —90°

Jw

10

5.4. FREQUENCY RESPONSE 71

W=o. /2612 (L»\
N

Z_&\(\yﬂ)

~45°

‘390

Figure 5.6: Bode Phase Plot of a single pole. Three approximations of increasing accuracy are given. 1)
Straight line (step) asymptotes. 2) linear approximation between 0.la < w < 10a, 3) Smooth curve passing
through 45° at w = a.

The Bode phase plot uses a linear vertical axis for the phase angle (but uses the same log(w) horizontal
axis).

If we plot this we get Figure [5.6] The figure shows three increasingly accurate approximations to the
true phase curve. Based on the asymptotic approximations above, we get asymptotes which look like a step
function which changes from 0° to —90° as w increases past a. A better approximation is a linear relationship
passing through the points

{w=0.1a,¢ =0°},{w = a,¢ = —45°}, {w = 10a, ¢ = —90°}

Finally, by making a smooth curve first above, and then below the linear approximation we can get quite
close to a numerically accurate phase curve. In manual plotting, the intent is not high numerical accuracy,
just quick insight. For precise phase curves, the computer is better.

Single Zero By very similar arguments, you can show that a zero such as

G(s)=(s+a)
Contributes the same type of phase curve except flipped above the 0° horizontal axis.
Combining Phase Curves Just as we can add the Bode Asymptotic Magnitude plots of several poles and

zeros (due to the log() nature of dB), we can add asymptotic phase curves from the different poles and zeros
of a transfer function because the angles of two complex numbers add together when you multiply them.

CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

Example 5.12

Draw the Bode Asymptotic Phase Plot for the system of Example 5[T1]

For w < 0.1 the two poles and the zero each contributes 0°. The zero will begin first and contribute +90°,
then, as w increases, the poles will each contribute —90°. Starting from the left at ¢ = 0°, and drawing
only the “step function” asymptotes,

70° -
qgc -4 < L.
L6
Ou! A o 1 iéo on el
<
- l{ Sb.. E
-0

Adding in the linear approximations

?Do & =

45° A N

L&
/0§ Ol i 2N 5'9 3= i;i?) :-«;m /@3(@)

-45"4 N

-9 -

and finally, using a bit of artistic license, the smooth curves can be drawn in:

70°

oo Lol

~NJ

10

5.4. FREQUENCY RESPONSE 73

L .

SRS R s

Figure 5.7: Bode Magnitude and Phase Plots of G(s) = s™. Left: The magnitude plots all pass through the
point {1,0}. Right: Each term of s contributes n x 90°.

5.4.7 Poles or zeros at the origin

It is slightly trickier to draw the Bode plots when there are one or more poles at s = 0 because the first
asymptotic approximation w << a does not apply. In this case, there is a multiplicative term 1/s™, where n
is negative for poles at s = 0 and positive for zeros at s = 0. For each value of n, the slope changes. However,
in all cases

[s"|=1 for s=j1

Figure (Left) shows several Bode Magnitude plots of s”. Each plot is a straight line passing through
the point, {0dB,w = 1}.

For transfer functions containing poles or zeros at the origin, we need to choose a specific frequency
(often w = 1) at which to evaluate the magnitude of the transfer function. We also compute the slope of
the low-frequency asymptote at w ~ 0 by looking at the exponent of the pole or zero at w = 0. The phase
contribution of poles or zeros at the origin (Figure Right) is easier because it is just a constant 90° for
each power of s in the numerator and —90° for each power of s in the denominator.

74

CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

Example 5.13
Sketch the BAMP of the following transfer function

B (s +0.31)
G08) = ST 10-7)(s £ 500)

First, we note that there is a single pole at s = 0. In order to find the vertical range of the plot, we need to
compute the magnitude at some frequency below the non-zero poles and zeros. Since the smallest feature
is s = 0.01, we choose s = 1072, Computing the magnitude (to one or two significant figures)

. 0.31
IGO0~ 105 T % 10-2 x 500

|G(j0.001)| ~ —10dB + 60dB + 39dB — 54dB = 35dB

The slope at this frequency is going to be —20dB/decade (Figure Left) because the non-zero poles and
zero do not contribute to the slope at w = 1073. The magnitude will go down from there and the slope will
change as the poles and zero become “active”. Plotting from the point {0.001, 35d B} with slope -20d B /dec,
and continuing with increasing w we get

16l3e @1

AN

lo-'}

~20 4

-~ 40

—L0 -

80

~{UD -

- 120

- Y0 o

Since this transfer function has 3 poles and only one zero, it’s magnitude drops sharply with frequency.

10

15

20

5.4. FREQUENCY RESPONSE (0]

5.4.8 Complex Conjugate Poles

The BAMPs above were restricted to real-valued poles and zeros. In this section we consider the BAMP of
transfer functions having at least one pair of complex conjugate poles:

pi =a =+ jb

As before, we are only interested in the case where a < 0 so that the response is stable (does not grow
with time). A more typical system has a mixture of real and complex poles such as

(s+5)
(s+0.1)(s+1+35)(s+1—3j)

G(s) =
we will see that it is more convenient to do the BAMP as well as the phase plot when the complex conjugate

poles are represented in polar form, that is in terms of w, and (. For the example above,

(s+5)
(s4+0.1)(s? + 2s + 10)

G(s) =

Note that using the standard polar form for the second order pole we have

(s+5)
(s +0.1)(s2 + 2Cwns + w?)

where w, = /10 =3.1 and (= —Re(—1 + 3j)/w,, = \/%70'
Let

G(s) =

1

Ple)— — —
2(s) 52 + 2Cwns + w2

The key idea is to analyze the asymptotes of the 2nd order pole, P»(s), as we did above, and also to consider
the region w = w,.

1. w<<wy

2. w=uwy

3. w>>w,

which give us for the magnitude:
1. |P(jw)| ~ é

2. |Pa(jwn)| = WM (We'll consider the signficance of this for plotting below.)

3. [Py(jw)| = &

For case 1,
1
dB(]—|) = —2dB(w,) (a constant)
wn
For case 2,
. 1
| P2 (jwn)| = 2 (also a constant)
wn
in dB .
dB(|=—|) = —dB(2) — dB({) — 2dB(w,
(155521 = ~d4B(2) ~ dB(C) ~ 24B(wn)
For case 3,

dB(|1/w?|) = —2dB(w)

76 CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

Case 1 and case 3 correspond exactly to the system

1
(s 4+ wn)(s+ wn)

G(s) =

For case 2, The key is to realize that 0 < ¢ < 1 and therefore —dB({) > 0. The w >> w,, asympotote (3)
slopes down at a -2 (-40dB/dec) slope. Consider case (2) for different values of . For ¢ =1, (db(¢) = 0),

dB(|Py(jwn)|) = —dB(2) — dB(¢) — dB(w?) = —6dB — 2dB(w,)

This is exactly like two real poles:

1
(s 4 wn)(s+ wn)

Py(s) =
for ¢ = 0.001

dB(|Py(jwn)|) = —dB(2) — dB(C) — dB(w?) = —6dB — (—60)db — 2dB(w,) = 54db — 2dB(w,)

The magnitude is increased by 54dB. Thus, while the complex conjugate pole pair has two asymptotes
which act just like two real poles at w,,, the behavior at w ~ w,, depends on (.

Example 5.14
Use the computer to plot the BAMP of

Gls) = 8.7 x 10%(s +0.1)
(54 1.0)(s2 +2¢100s + 104)

For ¢ = {0.05,0.1,0.25,0.5,0.75,0.99}. Make all the plots superimposed on the same axes.

A system with CC poles
40

30—

20—
10 1

. 1—

Magnitude (d8)

-10 —

-20 —

-30 g 1
10 10 10 10 10
Frequency (rad/sec)

100 7

50— _—

-50 -

Phase (degree)

-100 —

-150 T

10- 10 10 10 10

Frequency (rad/sec)

5.4. FREQUENCY RESPONSE 7

Example 5.14 cont.
Observations:

1. As ¢ approaches zero (dark blue), the magnitude plot has a sharper and sharper peak near w = w,,.

2. As ¢ approaches 1.0 (magenta), the magnitude plot smoothly curves through the point 6dB below the
intersection of the two straight line asymptotes.

3. The high frequency asymptote has a slope of —40dB/decade.
4. The Phase plot goes from 0° to —90° as w increases beyond w;,.
5. As ¢ approaches zero, the phase plot has a sharper transition 0° — —90°.
6. As ¢ approaches 1.0, the phase plot acts like two real poles at w = w,.
7. When plotting the magnitude peak by hand, just make the height roughly according to the table
below (taken from these examples)
¢ | Peak (dB)
.001 +54dB
.05 +20dB
0.1 +12dB
.25 +6dB
b 0dB
1.0 -6dB

8. Notice also that the location of the peak shifts a bit lower than w,, when ¢ — 1.

5.4.9 Complex Conjugate Zeros

A system can also have complex conjugate zeros. For example

52 4+ 40s + 40,000
(s+0.1)(s + 1000)2

G(s) =

s This system with three poles and two zeros has complex conjugate zeros at
z1 = —204 7199 25 = —20— 5199

Zeros can also be expressed in terms of w, and ¢ which in this case are

wn = |zi] = V=202 41992 = 200.0 ¢ = —Re(z;)/wn = —(—20)/200 = —0.1

The frequency response of a complex conjugate pair of zeros is the inverse of a complex conjugate pair of
poles. Instead of a peak, there is a dip in the magnitude response and instead of a phase change of —180°,

78 CHAPTER 5. TRANSIENT RESPONSE AND FREQUENCY RESPONSE

there is a phase change of +180°.

Example 5.15
Use the computer to plot the BAMP of

(s? 4 2¢100s + 10%)
(5 + 10)(s + 30)(s + 500)

G(s) =

For ¢ = {0.05,0.1,0.25,0.5,0.75,0.99}. Choose a frequency range which shows all the features of G(s) (all
the poles and zeros). Make all the plots superimposed on the same axes.

A system with CC poles

207

30
-40

50

Magnitude (dB)

60

-70

-80
10

=50

Phase (degree)

-100 —|

-150 .
10 10 10 10 10
Frequency (rad/sec)

10

15

20

25

Chapter 6

Feedback

6.1 Problem Statement and Learning Objectives

Be able to

e Explain the difference between signal and energy flows in dynamical systems.

e Explain the precise meaning of a block in a signal flow block diagram and perform basic block diagram
transformations.

e Derive the end-to-end closed-loop gain of a system with negative feedback.
e Explain the “loop gain” of a system with negative or positive feedback.

e Define Sensitivity Analysis and be able to numerical compute sensitivity of a defined perfromance
parameter to a system parameter.

e Define Disturbance Rejection and explain how Disturbance Rejection depends on loop gain.
e Compute and Bode Plot Disturbance Rejection for disturbances at various locations in the system.

e Numerically compute poles and zeros (with software) of the open and closed loop gains and determine
whether or not the system is stable.

e Evaluate gain and phase in the frequency domain to determine system stability.

e Compute (graphically from hand drawn Bode plots) and explain significance of Gain and Phase Margin.

6.2 Block Diagram Transformations

6.2.1 Signals vs. Energy Flows

A key distinction in understanding systems is that between signals and energy flows.

e A signal is a variable which carries information but does not directly regulate the exchange of energy.

For example, a voltage, V(t) which varies with time, carries some information. This voltage may be
applied to a system component as an input but we will only call this a signal if the corresponding input
current is zero (or negligible). In this case the input power is always zero.

e An energy flow is the case where a non-zero power flows into or out of the connection.

79

80 CHAPTER 6. FEEDBACK

X3 G{g} 3 Y (53

Figure 6.1: A single block,

Example 6.1
Classify the following situations into signals vs. energy flows:

1. A voltage Vi (t) is connected to a resistor of 50 2.

Vi(t) is part of an energy flow since the current in general is non zero.

2. A voltage V5(t) is connected to an amplifier with a high impedance input (;,, = 0).
Va(t) can be considered a signal since there is no power flow (P = Va(t) X i2(t) = 0).

3. A force, fs(t) is applied to a translational dynamical system consisting of intertia, damping, and
spring, and the system responds.

f3(t) is part of an energy flow since the velocity, 4(t) is non zero, and therefore the mechanical power,

P = f(t) x i(t) # 0.

While it is possible to simulate energy flows using signals, and block diagrams, this case will not be
considered further.

6.2.2 Block Diagrams

The basic idea of a block diagram is familiar to most people but there are a few subtleties. A block maps
one signal to another. A single block (Figure , has an equivalent equation

Y(s) = G(s)X(s) or G(s) = (6.1)

In other words, the block is a graphical representation of multiplication of a Laplace Transform of a signal
by the Laplace Transform of a transfer function.

Example 6.2
Find the expression for Y (s)

ey ——3 o

(=22 H -

§ B,
| Z

5

15

20

6.3. CLOSED LOOP NEGATIVE FEEDBACK GAIN 81

]

I)
ool &

—"1
<11_—'|l> —= Ay + By >

Figure 6.2: Series and parallel connections of blocks.

Example 6.3
Find the expression for B(s) and b(t)

A = (5409 L——? B sy

(s+0.1)(S+16v)

_ A(s)(s+10)
~ (s +0.1)(s + 100)

. A(s)(s+10)
b(t) =L {(5 +0.1)(s + 100)}

One consequence of these definitions, is that there is no influence of the output of a block on its input.
Put another way, there is no “loading” of an output by any number of subsequent inputs.

6.2.3 Transformations

When blocks are combined into block diagrams, the definitions above can easily be applied to figure out the
meaning of the particular combination. Connections include (Figure [6.2)):

Series: the output of the first block is connected to the input of a second block.

Parallel: The output is the sum of the outputs of two blocks with the same input.

Some tranformations are slightly less obvious, but arise easily from Equation [6.1]| as well as the properties
of linearity.

The simple relationships

A(s) (x(s) +y(s)) < A(s)z(s) + A(s)y(s)

and
yi(s) = A(s)a(s), w2(s) =y1(s) & yi(s) = A(s)z(s), ya(s) = A(s)z(s)

Can be used to manipulate block diagrams as shown in Figure

6.3 Closed Loop Negative Feedback Gain

One block diagram has supreme importance in control systems design (Figure . This is called the “closed
loop negative feedback system.” As implied by its name, the connections of the diagram form a loop, the
loop contains a minus sign, and the output is “fed back” to be subtracted from the input.

Even though this diagram is fairly simple, it is slightly more subtle to figure out an equivalent single
block. In other words, can we figure out an expression for Y'(s)/X(s) from the block diagram of Figure
The key is identifying the output of the summation and giving it the name, F(s), which stand for error. This

82 CHAPTER 6. FEEDBACK

\/l ‘A(S)t_—__} Y
X ’—- Q:-[D x—r

3

T it

Figure 6.3: Block diagram transformations.

X —0=+ G g

o S

Figure 6.4: The closed loop negative feedback system.

term is called “error” because it is the difference between input and output. For example, if the closed loop
negative feedback system were used to model a temperature control system, and the input was 68 degrees
but the output (room temperature) was 72 degrees, then (with the frequently used assumption that H = 1)
the error would be -4 degrees. Thus

E(s) = X(s) = Y(s)H(s)

s Using block diagram relationships and dropping the (s) for convenience
Y =GE = G(X — YH)
Y =GX - GHY
Y(1+GH) =GX

ro_ ¢ (6.2)
X (1+GH)
This expression is called the closed loop transfer function. It was discovered by H.S. Black of Bell Labs in
w0 1927.

A common application of Figure is a feedback control system in which G(s) represents a combina-
tion of a controller and a plant. The controller (typically implemented today with a microcontroller and
associated I/O devices) generates a command signal to the plant which is the system to be controlled. The
feedback element H is usually some kind of sensor which measures the output such as a temperature sensor

15 or tachometer. In many control systems H = 1 since the objective is eliminating error betweeen the desired
output (X) and the actual output (V).
An important case is when |GH| >> 1. Applying this to Equation

Y
—~1/H
X /

The quantity GH (s) is called the loop gain. In more complex block diagrams, the loop gain is the product
of all blocks around the loop. Expressed as a block diagram transformation, HS Black’s equation (Eqn
2 is shown in Figure [6.5]

10

6.4. SENSITIVITY ANALYSIS 83

= @b’k‘wy x c L.
__,ﬁ =>] Tren T-‘
L] B

A x.,,a,{ e [y

— " b s

Figure 6.5: Equation [6.2] expressed as a block diagram transformation.

Example 6.4
For the following system,
+ F

v
~

X~———% &= 56D

Find ¥
Y G 50

X 13CH 1+01x50 o3

What if G = {100,500, 10°} ?

G V/X GH

500 20 —=9.80 50 > 1
5

10° | g =9.9999 | 10* >> 1

As GH gets larger in magnitude, Y/ X gets closer and closer to 1/H.
In this example, H < 1. While H = 1 is more typical for control systems, the situation where H < 1.0 is
very used in amplifiers such as audio amplfiers (HS Black’s application).

As we will see in detail in the next sections, the behavior of closed loop negative feedback systems when
GH >> 1 has major engineering advantages including:

o Reduced sensitivity to parameter variations.

e Ability to reject external disturbances.

6.4 Sensitivity Analysis

The performance of a system depends on all of its parts, but which parameters are most important in deter-
mining performance? Sensitivity analysis is a way to answer that question. Often a low precision component
costs much less than a high precision version of the same component. If the sensitivity of performance to a
parameter is low, then use of a low precision component should have a small effect on performance and cost
can be saved. Conversely, if sensitivity of performance to a different parameter is high, then a variation of its

84 CHAPTER 6. FEEDBACK

parameter value will make a big impact on performance which might justify the addtional cost of a precision
component.

We will call some measure of system performance, P. If a system has multiple performance measures, we
use P; to designate one of them. The parameters of a model of the system will be p;. With these definitions,
we define Sensitivity of performance measure ¢ to parameter j, about the current values, pjo, Pio, as

_ APipjo
Apj Py

Sij (6.3)

This is like a derivative, but it is normalized by the values of the parameter and performance measure.
Qualitatively, sensitivity can be though of as

g % change in performance
ij =

% change in parameter

Although sensitivity can be derived analytically, we will concentrate here on using a numerical method.

Example 6.5

One aspect of performance is the gain or magnitude ratio, |§‘ Find the sensitivity of P; = |§| to the
parameter G. In other words, compute sensitivity for

Y

Choose A = 10%. We’ll tabulate values of G, H, and P; in order to compute S;;.

G H P
80— 80 _

80 1 i — g — 020922

88 4 s = 0.24929

Now we compute AP; by subtracting the numerical results (note that we need to use 6 significant figures
to get a non-zero result).

AP; =0.24929 — 0.24922 = 0.00007 = 7.0 x 10”5

Therefore,
_ 7x107°/0.24922

S =
Y 8/80
Since sensitivity values are normalized by the nominal values of parameter and performance, we can judge

them on an absolute scale where S;; = 100% indicates strong sensitivity. In this case we can see that
sensitivity of closed loop gain to G is small.

=281x1072=0.3%

10

6.5. DISTURBANCE REJECTION 85

Figure 6.6: A closed loop system with a disturbance.

Example 6.6
Find the sensitivity of the system of Example 6[5| to H

G H P,

80 4 % = 0.24922

80 44 - = 0.22662

AP; = 0.22662 — 0.24922 = —0.02259
Therefore,
—0.02259
Si = 24922 — 0,906 = —91
0.4/4 %

the parameter goes up.

This is a high degree of sensitivity. A negative value for S;; means that the performance goes down when

The important point of the previous two examples is that performance of the closed loop negative feedback
system depends strongly on H but weakly on G (especially as |GH| >> 1).

6.5 Disturbance Rejection

Another important aspect of control system performance is rejection of external disturbances. External
disturbances are unwanted inputs injected from the environment into a system. Disturbance rejection is the
amount by which a disturbance input to the system is reduced at the system output.

Example 6.7

the disturbance signal.

in temperature is a disturbance.

Give two examples of disturbances in control systems. Identify the inputs and outputs and explain what is

1) Consider an automatic pilot on a commercial aircraft. The input to the automatic pilot is the desired
heading in degrees relative to North. The output of the system is the plane’s actual heading, for example as
sensed by a compass. Gusts of wind which blow the plane off its heading constitute an external disturbance.
2) Consider the temperature control system for a refrigerator. The input is the desired temperature (such
as a constant value of 38 deg F.). The system output is the actual temperature inside the refrigerator.
When the door is opened there is an input of warm air which increases the air temperature. This increase

The block diagram of Figure is a representation of a closed loop negative feedback system with a
disturbance, d(t). Let’s calculate the output, Y.

Y =D+ EG
Y =D+ G(X —YH)

5

10

86 CHAPTER 6. FEEDBACK

Y(1+GH) =D +GX

D G

Y = X 6.4

(11GH) '~ (1+GH) (64)

The output thus consists of two components, one due to the disturbance, D, and one due to the input,
X. Note what happens however when GH >> 1. In that case

1
Y~D/GH + X—
[GH + X5

The disturbance input is reduced by the loop gain, GH.

Disturbance Examples There are many phenomena which can be treated as disturbances in analysis of
a control system and thus reduced by Equation Some frequently encountered disturbances include:

e Electrical Noise (additive)

Unmodeled mechanical effects such as non-linear friction, or effects of temperature on mechanical pa-
rameters.

Parameter value changes

Vibrations

Unmodeled flexibility or mechanical resonance.

6.5. DISTURBANCE REJECTION 87

Example 6.8
Illustrate how a non-linear spring could be broken down into a linear spring plus a disturbance.
Suppose our spring obeys

f(z) = Kz +0.1Kz?

Notice that this can be broken down into a linear part (Kx) and nonlinear part (0.1Kz?). One approach
might be simply to separate the linear from the non linear terms above. As shown in the plot below, a
different split gives a higher stiffness to the linear term in such a way as to make a smaller non-linear term.

Non linear spring.

30

25 -

This computer plot shows the nonlinear spring given by the equation above and K = 1.5 and also (in green)
a linear fit:
fz) =272

The difference
fve = Kz +01K2? — 2.7

is shown in red.
Suppose the system goes through a trajectory,

x(t) = 5 + 5sin(5t)
Then this nonlinear spring would generate the following forces:

force developed by nonlinear spring with sinusoidal input

Here the sinusoidal force output is nonlinear (blue) but can be broken down into a linear part (green) and a
non-linear part (red). The linear approximation is pretty good (for this system at least) and the non-linear
forces (red) can be treated as a disturbance (which is then attenuated by Equation [6.4))

88

6.5.1 Disturbance Rejection in the Frequency Domain

CHAPTER 6. FEEDBACK

Example 6.9
. 46
X t (Do | ;&’ ¥
- < - SUD + }
Hz) j
Find ¥(s)
S
W for X(S) =0
and sketch the BAMP of GH (jw) and EE%)
Y(s) 1 s+500 (s+500)
D(s) 1+GH s+500+1000 (s+ 1500)
and 1000
GH(s) = —
(%) = 55500

The disturbance rejection is -9.5dB for frequencies below 500 rad/sec (not counting the +3dB correction

at 500 r/s). There is no more disturbance rejection above about 1500.

6.5. DISTURBANCE REJECTION 89

O\(f)
O R

Figure 6.7: A closed loop negative feedback control system with a disturbance injected at the input.

&(f)
X hx S ‘ré' Cz >’

(Cmﬂvvua—«.) (P(Mf)

Figure 6.8: A closed loop negative feedback control system with a disturbance injected between the controller
(G1) and the plant Gs).

6.5.2 Location of Disturbance

Disturbances can enter the control loop at different locations besides summing with the output. First consider
the disturbance injected into the error computation (Figure [6.7)).

Y=GE=G(X+D-YH)
Y(1+GH)=GX +GD

G G G
Y= 1+GHX+1+GHD_ 1+GH

(X+ D)

In this case the disturbance and the input are treated exactly the same. There is no disturbance rejection
at all. In retrospect this makes sense since it would be impossible for the controller to distinguish between
the disturbance and the desired input.

Now we consider a case in which “G” is split into two systems and the disturbance is injected between

10 the two (Figure . As mentioned above, this is an important case where G consists of a controller coupled
to a “plant” such as an industrial machine or a vehicle.

This time we have
Y =G2(D+ GLE)

— Gy (D +Gi(X — YH))
Y =G3yD +G1Go X - YG1GoH

Y(l + G1G2H) = G9D + G1G2 X

o GQD GlGQX
- 1+G1G2H 1+G1G2H

90 CHAPTER 6. FEEDBACK

Considering the case of a large loop gain, G1GoH >> 1, we have the situation where the disturbance is
reduced by G H, which can be more or less disturbance rejection than reduction by G1G2H.

Example 6.10

dey: 20w

Xcs) _Aﬁ———ﬂ Gy yzg)

As a final example, for the system above, find Y (s) and y(t) = L™ {Y(s)} for z(t) = 0, X(s) =
d(t) = 20u(t).

G 1

Yis) = 1+ GHX(S) + 1+ GHD(S)
Since X (s) = 0, and the Laplace transform of 20u(t) is 20/s,
1 (s+1)
Y(s) = ——-D(s) = ———==20
(=) 1+ 2%,)= G100 2/
Expanding this with partial fractions
20(s+1) Ay Ao
s(s+101) s = (s+101)
A, = D6+DE 200
(s+101)|,_, 101
A — 20(s+1) _ —2000 ~ 90
s s—101 —101

Applying the inverse transform,
y(t) = 0.2u(t) + 20e~ 101

Disturbance rejection response to step disturbance

20}

157

104

o T
0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

a significant amplitude (20). Disturbance rejection cannot react instantly!

The disturbance is reduced by about a factor of 100! Note however that the second term is a transient
arising from the step input of the disturbance. Although this transient is over very quickly (e=191%) it has

10

15

20

25

6.6. STABILITY 91

Figure 6.9: A closed loop negative feedback system with stable poles in the feed-forward path. K is a positive
real constant, a gain.

6.6 Stability

We've seen many systems like that of Example 6]I0, which contain transient solutions with exponential terms.
The time coefficient on the exponential terms comes from the real part of poles. As long as the poles have a
negative real part (i.e. they are in the left half of the complex plane) the system will converge to a steady
value. Because of the negative term, all the exponentials fade out to zero with time.

On the other hand, if the time coefficient (real part of the pole) is positive, even for only one of the
exponential terms arising from the partial fraction expansion, the output will grow exponentially without
limit. In almost all practical systems this is unacceptable and undesirable.

6.6.1 Calculation of Roots

At first glance it seems stability is trivial to assess. If any poles have positive real parts, the system is
unstable. The tricky part comes from closed loop negative feedback systems. Consider the system of Figure

In our terminology,
K

(s+1)(s+2)(s+3)

where K is a positive real constant (we refer to terms like K as a gain) and H = 1. Clearly G(s) is stable
since the poles are s = {—1,—2, —3}. But what about when we consider the closed loop gain

G(s) =

K
Y(s) _ GG+
X(s) 1+

K
(s+1)(s+2)(s+3)
? Multiplying through by the poles of G(s) we gets

B K
s+ D)(s+2)(s+3)+ K

The denominator (s+1)(s+2)(s+3) + K is called the characteristic equation and it has different roots than
the poles of G(s). For our closed loop transfer function, the poles are solutions to

$24+682+11s+6+K =0

Below are the roots of this characteristic polynomial, solved by computer for various values of K:

K=0.0

-3. - 2. -1.
K=2.0

- 3.5213797, - 1.2393101 - 0.85787361i, - 1.2393101 + 0.85787361
K=4.0

- 3.7963219, - 1.101839 - 1.19167081, - 1.101839 + 1.19167081
K=6.0

-4 - 1. - 1.41421361, - 1. + 1.41421361
K=8.0

- 4.1663127 - 0.9168436 - 1.5873511 - 0.9168436 + 1.5873511
K-10.0

- 4.3089073, - 0.8455463 - 1.7315571, - 0.8455463 + 1.7315571

10

15

20

25

30

35

40

92 CHAPTER 6. FEEDBACK

K=20.0

- 4.8371387, - 0.5814307 - 2.24432991i, - 0.5814307 + 2.2443299i
K=30.0

- 5.214468, - 0.3927660 - 2.5979998i, - 0.3927660 + 2.5979998i1
K=40.0

- 5.5173935, - 0.2413032 - 2.87733261, - 0.2413032 + 2.87733261
K=50.0

- 5.7744943, - 0.1127528 - 3.11209021i, - 0.1127528 + 3.1120902i
K=60.0

- 6., 1.665D-15 - 3.31662481, 1.665D-15 + 3.3166248i
K=70.0

- 6.202156, 0.1010780 - 3.49908371, 0.1010780 + 3.49908371
K=80.0

- 6.386221, 0.1931105 - 3.66458751, 0.1931105 + 3.66458751
K=90.0

- 6.5557795, 0.2778897 - 3.81658811, 0.2778897 + 3.81658811
K=100.0

- 6.7133977, 0.3566988 - 3.95753561 0.3566988 + 3.95753561

Notice two main points:

e When K = 0 (first line) the closed loop poles are the same as the open loop poles.
e At K = 2.0 two of the poles become complex conjugates (CC) whereas they were all real for K = 0.
e When K = 60 the real part of the CC poles is essentially zero.

e The real part of the CC poles becomes positive for K > 60.

From these observations we can conclude that the system is stable for gains below 60 but unstable for
gains above that. While this is a simple analysis to perform with the computer, in the early days of control
engineering, predicting stability of a closed loop system was a major challenge because of the lack of practical
manual methods for solving polynomials above order 2. This was true even when each block was fully and
accurately modeled. In response, some clever manual techniques were developed for stability analyis and
some of those are still important today, especially during design.

6.7 Stability in the Frequency Domain

The following is a very basic derivation of closed loop stability. It applies only to systems whos blocks have
only poles with negative real parts or poles at the origin.

Consider the closed loop system of Figure Left. Recall that any function of s has a complex value
which in turn has an angle and magnitude. Suppose we look at the steady state sinusoidal domain (s = jw,
see Section and further suppose that for some w,

LA(jw) = 180°

This would have the effect of changing the negative sign on the feedback loop.

Suppose on the other hand that A is real (i.e. ZA = 0) but we add a term of H = —1 to the feedback
loop (Figure [6.10] Right). In both of these cases the total angle around the loop (the angle of the loop gain)
is 180°. Analyzing the closed loop gain

Y = A(X — (=Y)) = AX + AY

for the case A =1,

6.7. STABILITY IN THE FREQUENCY DOMAIN 93

g 7
- .] ! NIV {

|
; !
{ | ,.E}__ 4

Figure 6.10: If the phase angle of A(s) is 180°, the gain around the loop becomes positive.

X

Thus, if the loop gain is M (s) = C(s)P(s)H(s), a condition on the loop gain for instability is
IM(jw)| =1, /M(jw) = 180°

Using the BAMP we should be able to detect this combination.

Example 6.11
A system has the closed loop transfer function

3.9 x 10*
G(s) = (s + 1)(s + 22)(s + 100)

Use the Bode magnitude and phase plots to check the closed loop stability.
Drawing the Bode plots,

40

70] w»

?)
A

7 ~(

- o

~270 -

We first identify the point where the BAMP crosses 0dB (magnitude = 1), then we find the phase angle
by reading the phase plot at the same frequency (about 10.5 rad/sec). This is illustrated graphically by a
vertical line dropping down from the 0dB axis to the phase plot. Reading that value we get a phase angle
of about 120°. This is well short of 180° so the system is stable.
Another way to evaluate stability is to look at where the phase curve crosses 180° and evaluate gain. In
this case we find that the phase curve crosses 180° at about w = 60. Going straight up from the phase to
the magnitude curves, we find the magnitude at w = 60 is about —16dB, also indicating a stable system.

10

94 CHAPTER 6. FEEDBACK

6.7.1 Gain and Phase Margins

In Example 6[11] when we looked at the frequency where magnitude was 1, we had a phase of 120°. The
criterion for instability is 180° so we have a margin of 60° before stability is lost. Similarly, when we look
at the frequency where angle was 180°, we got a magnitude of —16dB so our margin is 16dB before gain
magnitude is 1. These margins are important because they are the degree of safety we have in the face of
possible changes in magnitude or phase due to changes in parameters which might happen due to real-world
factors such as wear and tear. We thus define

e Gain Margin at the frequency where ZCPH(s) = 180°, the difference in dB between the BAMP and
0dB.

e Phase Margin at the frequency where |CPH(s) = 1|, the difference in degrees between the phase plot
and 180°.

Example 6.12
For the system and Bode plots of Example 6]I1] find the Gain and Phase Margins.

40
AN e
20 - N, -2
\\ n
o
1 1] T LI 7 QL T T
» 0! L i /0 \ /0D o
] _\49 -7\ Gare f"aro!f./u
-720 -~ ! AN
20 6 dS (17.208)
=10 -

T . 1\ T v L i T
9o — ™~
Plta.s?, —%\\

‘ —
—-1g° - eré(n

| Qéo° K
=2 7 (6‘2,3\)

The gain and phase margins are simply added on to the Bode Magnitude and phase plots.

6.7. STABILITY IN THE FREQUENCY DOMAIN 95

Example 6.13
Find the Gain and Phase Margins for

4 % 10°
(s +1)(s + 31.6)(s + 100)

Ga(s) =

Carefully drawing the Bode gain and phase plots by hand:

Lo =
N i IR
20 1 N !GH - DCQ(“
|Gl A%
AR O T \: 3 n I
H) %3 n I]
z §\ £ 103 w
~76 4 \
%‘;
£ X\
[4
\
,‘\
\‘«
. + # ;
1 14 {00 mé‘*‘ ;,)‘f ‘OS D

&gi \ ‘ Pl ,
- 1%0 b Z Y
i B\“ Lo { 5
AN GH=OLR
\ k\..\
- 270 \)

Using pencil and paper we get Gain and Phase margins of 0. This means the system is right on the edge.
Certainly with the limited precision of pencil work, we would be safe to consider this unstable. Using
Scilab’s g margin() and pmargin() functions we get more precisely:

GM = 0.69dB PM =2.0°

Because we never know the system parameters with high accuracy, these margins would not be considered
safe.

96

CHAPTER 6. FEEDBACK

10

15

20

25

Chapter 7

Root Locus

7.1 Problem Statement and Learning Objectives
Be able to

e Explain the significance and identify the parts of a Root Locus diagram.

e Use the computer to plot Root Locus diagrams

e Hand draw a Root Locus diagram for a given open-loop transfer function (for positive gains k > 0 using
the first 5 rules.

7.2 Introduction to Root Locus

In Section F we examined roots of the characteristic polynomial of a closed loop negative feedback system
(Figure[6.9) as a gain, K was varied in increasing values from zero. Root locus (invented by Walter Evans in
1948) is a graphical method to visualize the movement of poles of the closed loop system as gain is increased.
Since the location of the poles determine the stability and step response dynamics, the root locus is extremely
useful for design.

Back in 1948 it was very labor intensive to compute roots of a polynomial, especially to do it over and
over for every value of K. Like the BAMP, the Root Locus plot can be sketched by hand (with practice it
becomes quick) and significant insights are gained. As with BAMP, precise Root Locus diagrams are quickly
obtained by computer so we don’t have to worry about precision and detail in our hand sketch.

7.2.1 Problem Definition

What problem is Root Locus trying to solve? Consider the simple system of Figure There is one unkown
parameter K which we will assume is positive and real which represents a design parameter. Up until now, we
have mostly focused on analysis of existing systems. Here we have the chance to design our system response
(closed loop gain pole locations) by choosing our parameter K.

We know how to write two transfer functions from Figure The loop gain (also called open loop gain)
is the total gain around the loop:

Gp(s) = CPH(s) =

(s+3)

- Y(s)

Figure 7.1: A very simple closed loop control system.

97

10

15

98 CHAPTER 7. ROOT LOCUS

T(s)
. 33
1 7
K Lo
& :‘/(< /z. %
-~ S0 -5 3 Rels)
435

Figure 7.2: The closed loop pole of the simple system of Figure as it moves according to different values
of K.

Figure 7.3: A slightly more complex closed loop control system.

Loop gain controls key properties of a closed loop control system (for example we saw in Chapter 5 that the
amount of disturbance rejection was controlled by the magnitude of the loop gain). However, the end user
of our system only cares about the gain from X to Y which we will call the closed loop gain,

Y(s) K/(s+3) K

Gowls) = X(s) 14+4K/(s+3) (s+3+K)

As engineers we need to fiddle with the loop gain, but the “customer” only cares that their cruise control is
accurate, stable, and rejects disturbances etc.

While the loop gain has a known pole: s = —3, the pole of the closed loop gain depends on K, s = —(3+K).
For this very simple system therefore it is easy to find the closed loop pole. Not only that, we know where
the pole goes as K changes from 0 — oo, it moves to the left along the real line (Figure .

But consider a slightly more complex (but still simple) system of Figure ﬁ Here, the loop gain is
obtained by multiplying together the two blocks:

0.2K(s+1)

G15 = v o)s 1 20)

and it is trivial to see its poles, but the closed loop gain is

02K (s+1)

Ger(s) = 21 (22 + 0.2K)s + 40 + 02K

Now as K changes, it is not at all obvious what are the poles or where they move. The Root Locus method
was invented by Evans to figure this out (without manually solving the denominator polynomials for each
value of K).

7.2.2 Summary

Some key points about the Root Locus computation are

7.2.

INTRODUCTION TO ROOT LOCUS 99

. Closed loop poles are not the same as the poles of the individual system blocks.

. Closed loop poles predict the time response of closed loop system.

. Closed loop poles predict the stability of the closed loop system.

. The controller introduces parameter K.

. The Root Locus diagram is a plot of how closed loop poles change with K.

. We usually consider 0 < K < oc.

. Scilab command: > evans(sys) .

. Matlab command: > rlocus(sys) .

100 CHAPTER 7. ROOT LOCUS

7.3 Root Locus Examples

Example 7.1
Use the computer to plot a Root Locus diagram for the system of Section [6.6]
K

G(s) = CPH(s) = G5+ 1)(s5+2)(s+3)

Using Scilab, by default enter the system with K = 1.

K
d

1;
(s+1)*(s+2) *(s+3);

sys = syslin(’c’,K/d);

evans (sys) ;

title("Root Locus Diagram");

a=get("current_axes");//get the handle of the newly created axes
a.data_bounds=[-10,5, -10, 10];

a.grid=[1,1];

Imagindry axis

This plot shows first the three “open loop poles” as X’s. A black, green, and blue line shows the path of the
poles as K — oo. Notice that the blue and green lines cross the imaginary axis, at about +3.55, a result
consistent with the computation of Section The straight lines are asymptotes that the poles eventually
follow, and the curved lines (in two cases) are the actual paths.

7.3. ROOT LOCUS EXAMPLES 101

Example 7.2
< P
3 {
X K (se DN TS NATREN =
J (SH%%;}QFUﬁQ ;

H=t
Use the computer to plot a Root Locus diagram for the system above.
Here we have two blocks around the loop. C which represents a controller, and P which represents a plant.
The closed loop system does not care how many blocks are in the loop, just the “loop gain” which is the
product of all blocks around the loop.

K(s+4)(s +5)
(s+1+35)(s+1-—3j)

G(s) = CPH(s) = C(s)P(s) =

Using Scilab, by default enter the system with K = 1.:

K=1;

n = Kx(s+4)*(s+5);

d = real ((s+1+3xj)*(s+1-3%j));
cph = syslin(’c’,n/d);

evans (cph) ;

title("Root Locus Diagram");

a=get ("current_axes");//get the handle of the newly created axes
a.data_bounds=[-10,5, -10, 10];

a.grid=[1,1];

Imaginary axis

This time the closed loop poles migrate toward the two zeros in the controller. First they leave the loop
gain poles (x’s) and then join up at the real axis. After that they split again and migrate along the real
axis until they hit the zeros.

15

20

25

30

102 CHAPTER 7. ROOT LOCUS

7.4 Root Locus Steps

Evans figured out a set of rules, based on the mathematical properties of the closed loop characteristic
polynomial, that allow us to sketch the Root Locus diagram quickly. Recall that the “loop gain” is the
product of all transfer functions around the loop. For a simple system like that of Example 7[2] the loop gain
is KC(s)P(s)H(s) (where we have assumed that the controller has a constant gain term K and separated it
out). Now we solve the closed loop gain using Equation

Y (s) _ KC(s)P(s)
X(s) 14+ KC(s)P(s)H(s)

Poles of this closed loop transfer function are values of s where its denominator is zero. In other words
1+ KC(s)P(s)H(s) =0
giving
KC(s)P(s)H(s) = -1
Since the transfer functions are complex, we have
|[KC(s)P(s)H(s)| =1 and LKC(s)P(s)H(s) =180°

These two conditions are called the magnitude condition and the angle condition respectively. All points
on the Root Locus are poles of the CLTF for different values of K. Since K is positive and real, it always
contributes 0° to the angle, and can be dropped from the angle condition. Thus all points on the Root Locus,
for any value of K (0 < K < 00), must observe both conditions.

The following Root Locus drawing rules derive from either the Magnitude Condition, the Angle Condition,
or fundamental properties of polynomials.

Root Locus (RL) Drawing Steps:

1. RL Starts (when K = 0) at the roots of CPH(s) so start out by plotting these poles and zeros (as x’s
and 0’s).

2. Find which parts of the real line contain parts of the RL. For each point on the real axis, if the total
number of poles and zeros to right is ODD, that part is ON the RL. Conversely, if the total number of
poles and zeros to the right is EVEN, that segment is OFF the RL.

3. The number of asymptotes (diverging branches which go out to infinity) is n, — n,, where n, is the
number of loop gain poles and n, is the number of zeros.

4. If n, —n, # 0, the intercept of the asymptotes with the real line is:

_ Ypoles — Yzeros

Oq
np — N,

5. The angles of the diverging branches are:
m(1+2m)

Ny — N,
where m is the integers 1,2,

6. Poles which do NOT diverge circle back to zeros.

7.5 Root Locus FAQ

This FAQ refers to the system of Figure [0.1] where K is a real number > 0.

Q: What is the point of the Root Locus?
A: The point is to predict how closed loop pole locations and corresponding performance will
change, knowing only the open loop properties, as the gain constant, K, changes.

to the right. Therefore RL goes on real line for
T < —5H.
3) # of diverging asymptotes: n,—n, =1-0=1

Gu_Jt — {x}

)
4) Angle of Asymptotes:
5) Intercept of asymptotes: N/A (because 7 is par-
allel to the real axis).

7.6. HAND ROOT LOCUS EXAMPLES 103
Question Answer Reason
Fact 1. What is true for any value of s on | ZCPH(s) = 7,3n, 57 ..., “Angle Condi-
the root locus? tion”

Fact 2. What is k for a value of s on the | |[KCPH(s)] = 1 so K = 1/|CPH(s)|.
RL? “Magnitude Condition”
Rule 1. Where do branches of the RL go | From poles of CPH(s) to zeros of M
as k — oo? CPH(s) or they diverge to |s| = oo
Rule 2. How many branches diverge to | ng = n, —n.. P
|s| = 00?
Rule 3. What angles do the asymptotes | 04 = ”flltim), m=20,1,2,3... A
have? ro
Rule 4. Where do asymptotes intersect | o, = W P
the real axis? P
Rule 5. What parts of the real axis are | A segment is ON the RL if the number of A
ON the RL? real poles and zeros to the right is ODD.
Rule 6. At which point do branches leave | at real values, s, where d% 28 =0 P,A
or join the real axis?
Rule 7. At what angle do branches depart | 84 = m — X% /poles + 3/ zeros A
from a complex pole? (or join a complex
zero?)

Notes:

A = “angle condition”, M = “magnitude condition”, P = theory of polynomials.

Rules 6 and 7 are from pre-computer days and no longer needed (in my opinion).

; 7.6 Hand Root Locus Examples
Example 7.3
K
G(s) =C(s)P(s) =
()= COP) =
1) Plot the poles and zeros.
2) Real Line: where Re(s) < —5 there is one pole & G o AV Tn.

terpretation: As gain K is increased, this system gets more stable and responds faster to input because et

gets faster as o gets more negative.

104 CHAPTER 7. ROOT LOCUS

Example 7.4

K 9

G(s) =C(s)P(s) = ———F——
() (5)P(s) (s+2)(s+5)

1) Plot the poles and zeros.

2) Real Line: where —5 < Re(s) < —2 there is

one pole to the right. Therefore RL goes on real

line for =5 <z < —2.

3) # of diverging asymptotes: n, —n, =2—0=2 Heanabnnd I
4) Angle of Asymptotes: (im:i)” = {r/2,3n/2} -5 -z n-

5) Intercept of asymptotes: =52 = —3.5

terpretation: After the two closed loop poles meet and diverge along the vertical line at -3.5, they get
a bigger and bigger imaginary component as the gain K increases. Thus the overshoot in the step response
will increase with gain K, and a resonant peak in will appear in the frequency response (underdamped

response).
Example 7.5
Glo) = CloP(s) = ot

1) Plot the poles and zeros.
2) Real Line: where —2 < Re(s) < —1 AND

x)
Re(s) <= —b, there is an odd number of poles € 8 "é. iy et
to the right. -
3) # of diverging asymptotes: n, —n, =2—-1=1

4) Angle of Asymptotes: (f;::iiﬂ = {r}

5) Intercept of asymptotes: N/A (because 7 is par-
allel to the real axis).

Interpretation: One pole will get faster as in the first example, but the other pole will converge on o = —1.
Since it is closest to the origin, this pole will dominate the response. Like the previous examples, the RL
stays in the right half plane and thus is stable for all values of K > 0.

7.6. HAND ROOT LOCUS EXAMPLES 105

Example 7.6

K

Cls) = CEPE) = (G T 35 + 1= 3))

1) Plot the poles and zeros.
2) Real Line: where Re(s) < —5 there are three

F72 S
=2 = 2.33. \

poles to the right. Therefore RL goes on real line -5 "y I
for z < —5. \ .
3) # of diverging asymptotes: n,—n, =3—-0=3 ‘”\\‘

4) Angle of Asymptotes: (im:i)” ={z,73 e

5) Intercept of asymptotes: =2

terpretation: The two complex conjugate poles cross into the left hand side at some value of K. This
system will thus go unstable for K > = (we will see how to find « later).

Example 7.7

K(s+4)

G = COPE) = TG r 148+ 1-3))

) Plot the poles and zeros b1
) Real Line: —5 < Re(s) < —4

) # of diverging asymptotes: n,—n, =3—1=2
)

)

4) Angle of Asymptotes: Z71T — {79 37 /2} . +
5) Intercept of asymptotes: % =15

terpretation: This is the same system as the previous example, except we added a zero at s = —4. Note
how the RL now stays entirely in the left half plane. The system is now stable for all values of K > 0.

106 CHAPTER 7. ROOT LOCUS

Example 7.8

_ K(s+4)(s+5) ‘{“SJ
(s+1+35)(s+1-3j)

) Plot the poles and zeros

) Real Line: —5 < Re(s) < —4 ¥ ;
) # of diverging asymptotes: n, —n, =0

) Angle of Asymptotes: N/A (because no asymp-

5) Intercept of asymptotes: N/A

terpretation: Adding a second zero “pulls” the RL even more to the left — makes it even more stable.
(Compare to Example 7.

7.7 Resources

A very nice web resource on the Root Locus:
http://lpsa.swarthmore.edu/Root_Locus/RootLocusReviewRules.html

5

http://lpsa.swarthmore.edu/Root_Locus/RootLocusReviewRules.html

5

10

15

Chapter 8

Introduction to Scilab

8.1 Problem Statement and Learning Objectives

This chapter will briefly introduce Scilab. The student should be able to

e Download and install Scilab
e Perform basic command line computations including:

— enter a transfer function using syslin(’c’, num, den).
— Generate Bode and Root Locus Plots

— Correct the axis scales on plots to increase quality and readability of graphics plots.

8.2 Quick Read

Scilab is an open source numerical computing environment very similar to Matlab. The cool thing about
Scilab is that it is 100% free and you may install it on Windows, Mac, or Linux, it is very powerful, and very
similar to Matlab. If you are comfortable with Matlab, you will easily adapt to Scilab.

8.3 Basics

Scilab has a multi-windowed interface similar to Matlab. Once you launch Scilab, you can define variables
and execute commands in a similar way. Here is a screen capture of a basic example:

107

108 CHAPTER 8. INTRODUCTION TO SCILAB

File Edit Control Applications ? Toolbaxes
; Y]
ZEB A0 % 88 8 X &@
File Browser 2 @ X Scilab 5.5 2 Console ? A X

B olakel ~ | &
! — --=x = 5.001

Name ~ ¥ =

~ B blake ¥
& 5.001 !

~

+ [B5 546tmp

[Admin -->y = sqrtix)
Ar’chwe y =
Backup_In
Courses 2.2362916
CryptBHb: File Tools Edit ?
Bocter ||t = wornsaoon; 3 Ra TV @ J
Document
Dotfiles
=
s | - -optocte,
DrophoxB N
FileView =
[E5 GmailBact 08
Images
Letters
Music
Org
PDF 0.4 |
Packages_
Papers 02
Phone
Pictures o
Projects
Propasals 0z
Public
[E5 Talks 04
[Templates
B vaur
[E5 Video_Inde
B videos |
backups 084
beagle_ete
bib 1 T T T T T T T T T
bin 0 10 20 30 10 50 &0 70 20 50 100
dot-texmf-
dot-texmf-
eagle

eagle-6.2.1 o

x

«/| Case sensiti...

number 0

- -y=sin(6%pi*t/100) ; Graphic window number 0 El

R R R R

A+

-0.6

N R E e R

An editor called SciNotes can edit your Scilab scripts (.sce files) and works well.

8.4 Links and details

For download and detailed documentation, please see
http://www.scilab.org
http://forge.scilab.org/index.php/p/docintrotoscilab/downloads/311/

8.5 Root Locus Example
Let’s do the Root locus plot of Example 6.8. The open loop gain is:

B K(s+4)(s+5)
(s +1+35)(s+1-3j)

We'll enter a script to do this in SciNotes:

http://www.scilab.org
http://forge.scilab.org/index.php/p/docintrotoscilab/downloads/311/

8.6. PLOTTING RANGES FOR HIGH QUALITY GRAPHICS

basicRL.sce (fhome/blake/Courses/447/Scilab447/RootLocusTools/basicRL.sce) - SciMotes

File Edit Format Options Window Execute 7

LB @B &5 6 00 8 DDk X O

basicRL sce [thomefblakefCoursesfa4 7 Scilabd4 ?fRootlocusToolsfbasicRL sce) - Scilotes

basicRLsce 3

clear;

xdel (winsid());
5=%5;

]=%1;

WO~ =Wk

11 Loop

real ((s+4)%(s+5))
real ((s+14+3#%])% (s41-2%§))

18| evans (o1tf])

109

Lines 13 and 14 define the numerator and denominator of the open loop transfer function (loop gain).

We set up the transfer function as a linear system object using the syslin() function.

evans() is the

root locus function, so named because of its original inventor Walter Evans. We have added the real()
s operator because the complex conjugate poles cause a +0j term which confuses evans () (Root locus requires

real-valued polynomial coefficients).
The resulting plot is

File Tools Edit 2
B a6 9Yvy @

Graphic window number 0 ?

Ewvans root locus

4
B¢ 3¢ open loop poles
& ¢ ¢ open loop zerces
3
|
1

Imaginary axis
o
1

Real axis

8.6 Plotting Ranges for high quality graphics

10 Sometimes autoranges provided by graphing software do not result in a graph which shows the desired

features.

110 CHAPTER 8. INTRODUCTION TO SCILAB

In Scilab, we can take control of the plotting axis ranges (as well as many other details) by a two step
process:

1. obtain a pointer or handle to the axes

2. setting new manually defined axis limits

8.6. PLOTTING RANGES FOR HIGH QUALITY GRAPHICS

111

Example 8.1
The following is a plot of a polynomial function (y = —20x + 22 — 0.007z%).

100 000 o
90 000—_
80 000—_
7o 000—_
60 000—_
S0 000 —
40 000
30 000 —
20 000 4
10 000—_

0

-10 000 o

-20 000 4———7 T . . T T)
-200 -150 -100 -50 0 50 100 150 200

We are only interested in the region for positive x. Replot this function for the ranges:
0 < <200 — 20,000 < y < 10,000

Oh, and by the way, make the plot background yellow!
Solution:

lear H lear-the workspace
lel {winsid()); lose-all graphics-windows - -which -might-be-open

®
¥

r

—20*%x -+ x."2 - L3

11| plotdix, v

13|=cf ()

15 plotZdix, vl

17la = gecal);
18| a. =-[0, . ‘ 1;
a.

10 000 4
8 000—_
3] 000—_
4 000+

2000

-2 000
-4 000
-6 000
-8 000
-10 000
-12 000

-14 000

-16 000

112 CHAPTER 8. INTRODUCTION TO SCILAB

All the things you can do to modify plots are documented in the Scilab help system.

10

15

20

25

30

35

Chapter 9

Closed Loop Control

9.1 Problem Statement and Learning Objectives

This chapter addresses the problem of what happens when we create a closed loop in our system in which
signals flow from input to output, but also back from output to input. We will see that this “feedback” has
profound effects on the system’s response. We will learn analysis and design methods to change this behavior
in order to meet specifications. After completing this chapter, the student will be able to:

e Identify and explain the “System Type” of a system transfer function and predict the steady state error
for step, ramp, and parabolic inputs.

e Quantify the performance of a system step response in terms of percent overshoot (%0S) and settling
time (7).

e Identify and draw regions in the s-plane which correspond to 2nd order dynamic systems which meet
given specifications of %0S and Tfs.

e Explain the concept of and draw a block diagram of a PID controller in terms of the three gains,
KP7 Kfv KD .

e Convert between three equivalent transfer function forms of the PID controller.
e Derive Kp, K7, Kp from the zeros of a controller transfer function.

e Explain why a regularization pole is necessary to simulate or build a PID controller and how to choose
its value.

e Explain the concept of control effort and identify where it can be computed or measured in a control
system block diagram.

e Design a PID controller for a given plant system using a combination of manual calculations and root
locus diagrams.

9.2 System Type and Steady State Error

In this section, we will examine the “error” we have computed in control systems at the summing junction
on the left side of the closed loop negative feedback system (Figure . Since in control systems, we most
often consider H(s) = 1, the error (E(s) = X(s) — H(s)Y (s)) is a direct comparison between the input and
the output. In some applications, (consider a medical device or a flight control system for an interplanetary
spacecraft) it is critical to eliminate error. In others (consider a temperature control system for buildings)
an error of one or two percent might not matter.

It turns out that a key variable in studying the magnitude of error in a closed loop negative feedback
system is the number of poles at the origin in the loop gain (C(s)P(s)H(s) of Figure [0.1)). We call this
number the system type. The error also critically depends on the kind of input. Some inputs are simply
easier to track than others.

Some key points about system type and steady state error:

113

10

114 CHAPTER 9. CLOSED LOOP CONTROL

e System “type” is # of poles at origin: S% in the controller/plant

Step %

e Input of amplitude A can be ¢ Ramp 4
S

Parabola S%

e If input is g, and your controller has at least n type, then there will be zero steady state error.

Example 9.1
Find the system type for a closed loop negative feedback system consisting of the following elements:

500 (s+0.1)
_ Y P(s) =
s(s + 10) (8) = $757+ 505 + 1500)

C(s) = H(s)=1

Every factor in the denominatory of s by itself (i.e. (s+ 0)) is a pole at the origin. The combined system
CPH(s) has two poles at the origin (s?) so it is of type 2.

9.2.1 Steady State Error Derivation

The key to computation of steady state error is the Final Value Theorem of basic Laplace Transform theory:

Jim (1) = lim sF(s) (9.1)
Applying this to the system error E(s),
tlgrolo e(t) = il_I)I%) sE(s) (9.2)

The quantity on the left is the steady state error, after all transient terms have died out. The Final Value

Theorem says we can find this final SSE by evaluating the limit on the right. However, this theorem only

applies if the limit on the left actually exists. For example, if e(t) = B sin(wt), then the limit does not exist.

Looked at in the complex plane, the poles of E(s) must be in the left half plane so that all transients die out.
Now let’s apply the FVT to the expression for error.

E(s) = X(s) — C(s)P(s)H(s)E(s)
abbreviating G(s) = C(s)P(s), and simplifying,
E(s)(1+GH) = X(s)

Controller Plant

+

Figure 9.1: A basic closed loop control system.

5

9.2. SYSTEM TYPE AND STEADY STATE ERROR 115

X(s)
W =1rem (6:3)
Let’s apply this result to a specific system where:
50 A
=1 P= H=1 X(s)=—
¢ 0 s+ 10 () S

Note that we have chosen a specific input (step function with amplitude A), for this analysis.

Using Equation

B(s) = Als _ A(s+10) A(s+10)
T (14500/(s+10)) s(s+10+500) s2+510s
Applying the FVT:
lim e(t) = lim s Als+10) = lim Als+10) = 104
t—o0 s—0 824 510s s—0 s+ 510 510

lim e(t) = 0.024

t—o0

In other words the Steady State Error (SSE) is 2%.

9.2.2 Steady State Error Examples

The following examples illustrate some key properties of steady state error.

Example 9.2
50 B
C=10 P=—— H=1 t) = Bt X(s) ==
ST 10 x(t) (5) =3
This is the same as above, but the input is now a ramp.
B/s? B(s+10) B(s+10)
B(s) = 5o = s2(s+ 10+ 500) 3 + 51052
(s+10)
Applying the FVT:
B 1 B 1
lim e(t) = lim s B(s +10) = limM =00
t—00 s—0 83 + 510s2 s—0 g2 + 510s

The system is the same, but with a ramp input the steady state error is infinite!

116

CHAPTER 9. CLOSED LOOP CONTROL

o
—‘{ [0 fk{—%

l

- 1o
C’s

\l

Figure 9.2: A simple controller which has a single pole at the origin can be called an Integral controller

Example 9.3
10 50 A
= — pP= H=1 t) = Au(t X(s)=—
€= — v(t) = Auft) X(s) ==
This is the same as the first example, but the controller, C(s), now adds a pole at the origin.
A A2 +1
E(s) = /;00 = (2 10
(1+ s(erlO)) s(s? + 10s + 500)
Applying the FVT:
A(s? 4+ 10s)

A e(t) = lim 05+ 500
The plant was the same, but by adding a pole at the origin to the controller, we have eliminated SSE for
step input to zero. Since this is such a nice result it is worth a look at this new controller (Figure .
This controller can be implemented by building an integrator. Two ways to implement an integrator are an
analog op-amp circuit with a feedback capacitor, and a software loop in a microcontroller which sums the
difference between input and output.

Example 9.4
10 50 B
C=— P= H=1 t) = Bt X(s)=—=
S s+10 z(t) (s) 52
This is the same as Example 93] but the input is now a ramp.
B(s®+1
B(s) = (s* + 10s)
s2(s? + 10s + 500)
Applying the FVT:
2
SSE = lim M — lim M
s—0 3 + 1052 + 500 s—0 s2 4 10s + 500
10
=—B=0.02B
500 0.0

With the new controller, we have changed the SSE for ramp input from co to 2%! Our controller has
increased the system type by one and this made a big difference on SSE with the ramp input.

Note that calling the error “2%” is somewhat unclear for a ramp input. Since B is a constant, but the input
signal is x(t) = Bt, the error is a smaller and smaller percentage of the total input as time goes on. In the
steady state this error is finite but 0%!.

10

15

9.2. SYSTEM TYPE AND STEADY STATE ERROR 117

Type | C(s)P(s) | Step (n=1) | Ramp (n = 2) | Parabola (n = 3)
0 K... finite 00 00
1 % 0 finite ()
2 g o 0 0 finite

Table 9.1: SSE vs. System Type and Input Type

9.2.3 Steady State Error Summary

We've seen examples of how changing the system type or changing the input can make a big difference in
the amount of steady state error. You might even notice a pattern in the examples above relating the “input
type” (the power of s in the Laplace transform of the input signal) and the system type to the nature of the
SSE. To see this relationship, let’s take a closer look at Example 9[]

Writing out the limit again without canceling any terms,

) sBs(s +10)
SSE = 1
530 52(s(s + 10) + 500)

We have two s’s on the top. One comes from the final value theorem, and the second one from the denominator
of C(s). On the bottom, we have s?, which comes from the ramp input. The FVT term and the C(s)
denominator term combine to cancel the s? from the ramp input. Thus, if the input is

A

sn

X(s) =

then we need at least n — 1 poles at the origin in the combined controller and plant (again assuming H = 1).

Example 9.5
Now we’ll consider a general system with a gain factor, K, and n poles at the origin in the controller, as
well as a general input (i.e. X(t) = Bt™) where m = 1 means a ramp input, m = 2 means a parabolic

input, etc. X “ .
C:S—n P:S+10 H=1 z(t) = Bt™ X(s):s—m
SHE = limy mm
57 (s+10)
lim ! Bs"(s +10) = lim Bs"(s +10)

50 51 (s7(s + 10) + 50K) 520 sn+m 4 10sn+m—1 + 50K sm—1

For this limit to be finite as s — 0, we need to have no remaining powers of s in the denominator after
cancelation. Thus if

n>m-—1
the error if zero. If n = m — 1 we have after cancellation

Bs™(s+ 10 10B
SSE = Ii =
550 5271 1 105272 4 B0ks” 50K

All of the relationships illustrated by these examples can be summed up in Table It is worth re-
membering that SSE only applies after transients (due to the non-zero poles) are over. Such transients are
illustrated for some typical situations in Figure [9.3

10

15

118 CHAPTER 9. CLOSED LOOP CONTROL

Input System Type Response/SSE

O

{07s ~

P

I R
P ’ ()

Figure 9.4: A step response with labels for percent overshoot (%0S) and settling time, Ts.

9.3 Time Domain Performance of 2nd Order Systems

In this section we will describe some ways to measure the performance of system response. While with steady
state error we focused on the response after the transients died out, here we will focus on the transient
characteristics of the step response in particular.

9.3.1 Transient Performance Specifications

The transient performance of second order systems (systems having 2 poles) is fairly easy to characterize. We
develop intuition about the relationship of pole locations to time response from these second order systems.
Although practical systems are usually higher order and we use computer techniques to fully understand their
dynamics, the relationship between time domain performance and 2nd order poles is important to learn.

Looking at a typical step response (Figure , the most basic measures are 1) the time it takes to settle
down, and 2) the amount the response overshoots the target before it settles down.

If the input step has amplitude A, Settling time, Ty is defined as the time it takes for the transient to
enter a window around the final value such that

0.984 < y(t) < 1.024 vt > Ty

In other words, Ty is the last time y(t) goes into a window of 2% around the final value. We know that the
sinusoidal component of the output response is bounded by the exponential envelope (Figure and that

9.3. TIME DOMAIN PERFORMANCE OF 2ND ORDER SYSTEMS 119

the exponential envelope is

env(t) = e7"

where o is the real part of the pole. For the output response to be 2% of the amplitude at t = T, we need
e?Ts = 0.02

In other words,

Example 9.6
Find the approximate settling time, T for the following system:

107

) = G 05 47— 10))

The poles are s = —4.7 + 105. Therefore,

Overshoot is expressed as a percentage of the input amplitude. In some applications a brief tansient
overshoot is acceptable. In other applications, (think of a elevator controller) overshoot is unacceptablﬂ
The analytical calculation of overshoot from second order systems is somewhat involved. A few computa-

tional results gives a lookup table (Table in which overshoot depends on the damping ratio, ¢ (Chapter
10 , and the angle formed by the complex conjugate poles (6 = cos™1(().)

%08S ¢ 0

10% | 0.587 | 54°
5% | 0.695 | 46°
2% | 0.777 | 39°

1% | 0.829 | 34°

Table 9.2: Table of numerically computed values of percent overshoot vs. damping ratio ().

9.3.2 S-plane Regions

The performance specifications, T, and %OS, correspond to constraints on where the poles can be located.
Since Ts = —4/0, requiring a specification for T requires that the poles lie somewhere along a vertical line
at 0 = —4/Ts (recall that o is the real part of the poles). Similarly, using Table we can see that an exact
15 overshoot specification requires that the poles lie on a line from the origin at the angle determined by the

IThere are other techniques called Trajectory Generators, beyond the scope of this chapter, which can be used to eliminate
overshoot.

120 CHAPTER 9. CLOSED LOOP CONTROL

lookup table.

Example 9.7
A 2nd order system has the following transient step response specifications.

T, = 0.01sec %08 = 5%

Find where the poles must be located.

We know the real part of the poles must be
o= -4/0.01 = —400

but at the same time, based on Table the angle the pole makes with the negative real axis must be 46°.
The only point which meets both specs is the intersection of these two lines.

T
\ﬂ/ Pole locatire
~
N
\\/_ 70 05=5%
N
'*\T’e
N
‘/Z"':TZS: 0,01 N, N
\
’\x>\\
N
. . ﬁéb N
e ~40D ~-200 AN
i H ™,
! RS

Sometimes specifications are expressed in terms of inequalities. For example, if the specification is Ty <

s 0.25, then any pole location to the left of ¢ = —0.25 meets the specification. In drawing inequality performance

specs in the s plane, we shade the region which the poles should NOT occupy to meet the spec. Two inequality

Ciﬁcations generate a region in the s-plane which the poles must be in to meet the specifications (Figure
9.5)

9.3. TIME DOMAIN PERFORMANCE OF 2ND ORDER SYSTEMS 121

~
N\

]
S
)

/

4

Want Poles
in
here

//'/,/’/ . ;']Ts.= 2sec

Figure 9.5: Any poles in the non-shaded region will meet the specs: %0S < 5% and Ts < 2ms.

9.3.3 S-plane Performance Region Examples

Example 9.8
Find the s-plane region in which poles of a 2nd order system meet the following specifications:

T, < 10sec %08 < 1%

Since these are inequality specs, we shade the regions above the diagonal (%0S) and to the right of the
vertical (Ts). Poles must be in the non-shaded region to meet the specs.

122 CHAPTER 9. CLOSED LOOP CONTROL

Example 9.9
Find the s-plane region in which poles of a 2nd order system meet the following specifications:

T, < 0.2sec %08 < 10%

As in the previous example, shade the region that DOES NOT meet the specs.

{szos <{O7

/?402

N\

I
") —LOV -0

Example 9.10
Find the s-plane region in which poles of a 2nd order system meet the following specifications:

T, < lsec 2% < %08 < 10%

-7 ”’\\ i
. \\A/’_ T;(1 see

\

10

15

9.4. PID CONTROLLER 123

Example 9.11
Find the s-plane region in which poles of a 2nd order system meet the following specifications:

0.5 < T, < 2.0sec %08 = 5%

/st =7
/

Note that since the %O.S spec is an equality, the “region” is actually a line segment.

9.4 PID Controller
9.4.1 Closed Loop Design Problem

The design problem of closed loop controllersﬂ can be summarized as follows (Assume for simplicity that
H=1).

Given a plant: P(s), specify a controller, C(s), for a closed loop system to improve some
performance measure compared to the open loop system, P(s). Where the closed loop response

is governed by %

The Proportional-Integral-Derivative (PID) controller is a class of controllers which has two zeros and
one pole at the origin. The PID controller is the most common controller in industry BY FAR. Design of the
PID controller consists of deciding on the desired location of the two zeros and a single gain term, Kp.

The PID controller an be expressed in three equivalent forms:

_Kp5+KD32+K1 KD(52+%3+%)_KD(S+21)(S+ZQ)
s s s

C(s) = (9.4)
All three depend on three positive real gains for engineer to design: Kp, K;, Kp. Lower order forms of the

PID controller with one or no zeros are also possible according to the values of the three gains. The response

2Sometimes the controller is referred to as a “compensator” but we will use “controller”.

10

15

20

124 CHAPTER 9. CLOSED LOOP CONTROL

1Kp

v\\{"\

s ko

Figure 9.6: The PID controller.

of the closed loop system depends only indirectly on the zeros and pole of the PID controller because the
closed loop system has a root locus and it’s response depends on were we are. However the zeros of the PID
controller can “pull” the closed loop root-locus pole pathways, usually towards the left, which drives faster
response and greater stability. The PID controller’s pole at the origin can increase the system type and thus
reduce steady state error.

9.4.2 Basics
The PID controller and a plant (P) are illustrated in Figure Interpreting the block diagram,

U(s)

Cpip(s) = E(s)

K
= Kp+ ?I + Kps (9.5)

and equivalently
Kps+ K; + Kps? _ Kp(s® + %3 + II%)

S S

Cpip(s) = (9.6)

Kp is the proportional gain. Looking at the first term of Equation you can see that Kp directly
multiplies the error (the input to the controller). If the other gains were zero, the control output, u, will be
linearly proportional to error.

u(t) = Kpe(t)

K7 is the integral gain. Looking at the second term of Equation we see that K; appears multiplied
by 1/s, the integral operator. If the other gains were zero, the control output, u, would be K; times the time
integral of the error:

u(t) = Ky /Ot e(t)dt

Kp is the derivative gain. Looking at the third term of Equation [9.5| we see that Kp appears multiplied
by s, the derivative operator. If the other gains were zero, the control output, u, would be Kp times the
time derivative of the error:

u(t) = Kp%e(t)

In fact, using the inverse Laplace transform we can write:
K d
u(t) = Kpe(t) + KI/ e(t)dt + Kp—e(t)
0

Some alternate forms of the PID controller are given in of Equation These form are useful as we
design the PID controller for a specific system.

10

15

20

25

9.4. PID CONTROLLER 125

Figure 9.7: A Commercial PID Controller. ($129, www.automationdirect.com)

9.4.3 Simulation of PID controllers

Looking again at equation , we can see from the far right hand side that the PID controller has two zeros
and one pole. A system with more zeros than poles cannot be physically realized and is called improper. Often
this condition is ignored because the plant has enough poles to make the overall forward path (C(s)P(s))
proper. However, what if you would like to make and sell a PID controller box (Figure .

We may also have this problem building a computer simulation if we define the controller in our script
as a separate system and our simulation package (such as Scilab or Matlab) cannot simulate an improper
system. To fix this we simply add another pole to the PID controller at a high enough frequency so that it
does not affect our response. This imediately raises two questions

1. Why doesn’t a high frequency pole affect the system?
2. How high is “high enough”?

For question one, consider the Bode plot of the basic one-pole system

P(s)=p/(s+p)

for w << p, P(jw) = 1. Its magnitude is 1 and its phase angle is 0. Thus for frequencies substantially
below p, P(s) has no effect.

For question two, let us set p to be 10 times higher than the highest pole or zero of our system. Technically
we should know the zeros of the PID controller to do this, but if we assume that the zeros of a good controller
will be in the neighborhood of the poles of the plant, then 10 times greater than the highest frequency plant
pole/zero will also be far from the PID controller zeros.

p =10 X pZmaz

where pzp,q. 18 the highest pole or zero in the system.

Thus we will add a pole, p, to the PID controller in our simulations as follows:

(Kps+K; + Kps?) _ pKp(s* + s+ 1f)
s(s +p) s(s +p)

Now Cprp2 is proper because it has the same number of poles and zeros, two. Thus, Scilab can simulate
it and it is also physically realizable.

Cpip2(s) = i

9.4.4 Control Effort

Control effort is the level of output needed by the controller to achieve the step response. All other things
being equal, a controller which achieves the specs with lower control effort is better. Often there is a limited
maximum effort that a given system can output. For example, a DC motor has a maximum torque that it
is capable of. In this case, it is meaningless to have a settling time that is very fast if that requires 10 times

10

15

20

126 CHAPTER 9. CLOSED LOOP CONTROL

= U

v
I

Figure 9.8: Control effort signal u(t) or U(s) comes from the output of the controller. We can easily get U
by analyzing the bottom system.

more torque that the motor’s maximum limit. For some plants, controller gains can be found to meet any
Ts and %OS spec if control effort limits are ignored.

Computing control effort is easy. Consider the system of Figure [0.8 which has a controller, plant and
feedback.

The top system looks conventional, except we have brought out the control effort signal. In the second
system we have simply rearranged the blocks without changing any connections. However we can now see
this as a new feedback system having feedforward path C' and feedback PH. Giving the traditional name U
to the control output,

U(s) C(s)
X(s) 1+4+C(s)P(s)H(s)

If we have a limit on our actuator, for example,

Tmaz = LONM

then an appropriate measure of performance would be the maximum value of u(t): does it exceed 1.5NM? .
On the other hand, if we are concerned with total energy consumption, an appropriate measure might be

Tmax
/ u?(t)dt
0

where T},q. defines a time window that makes sense for our application.

9.5 Manual Design of PID controller

In this section we will design PID control gains through a “manual” method. Specifically we will find the
values of Kp, K;, Kp for a given plant and a set of performance specifications, including control effort.
Although fully hand methods are discussed in standard textbooks, our “manual” method uses the computer
to speed Root Locus plotting and analysis. With all but the simplest plants, hand methods are not accurate
enough for real design. Hand methods are still valuable to give a starting point for more accurate computer
design methods discussed in the next chapter.

The computer optimization method of the next chapter will eventually find a great design (i.e. Kp, K1, Kp
values), and can take more performance criteria into account, but it will go significantly faster with an initial
starting guess. Unfortunately there is no “typical” range of PID parameter values which could be used as
a standard starting range so to get the most utility from computer methods we should generate the rough
initial design manually.

9.5. MANUAL DESIGN OF PID CONTROLLER 127

Example 9.12

We have a large industrial machine with the following plant model:

B (s+1)
P(s) = (s +2.0)(s+ 0.7+ 0.25)(s + 0.7 — 0.25)

Our desired performance specifications are:

H=1

Tsp = 1.33sec %08 = 10% SSEp =0

(Note that with these specs, there is a specific pole location rather than a region.)
It is decreed that we shall use a PID controller, but we have no initial values for Kp, K7, Kp.
To approach the manual design, we will use the root locus method to analyze performance of PID controllers.
Because we need to plot zeros and poles of the controller, the most useful form of the PID controller (for
this design method) is:
K(s+ 21)(s + 22)

s

(we can convert this to Kp, K;,andKp using Equation)

C(s) =

Problem Statement:

Find values of K, z1, z2 (or equivalently Kp, K;, Kp) that can be reasonably expected to meet the specifi-
cations.

Solution method

1. Make the assumption that the two complex conjugate plant poles closest to the origin are dominant
(false!).

Draw the s-plane and draw the region(s) corresponding to the performance specifications.
Plot the poles and zeros of the plant on the s-plane.
Place two zeros in places such that they will “pull” the root locus through the target regior”}

Use Scilab to plot the Root Locus (“evans(sys)” command)

S ok W N

If the root locus goes through the target region, use the mouse to find the value of K at the target
location.

7. Use the chosen z1, 2o and K values to derive Kp, K;, Kp (see Section [9.5.1))
8. If the root locus does NOT go through the target region, go back to step 4 and try again.

(continued next page)

2Assuming the plant poles do not already meet the specs(!)

128 CHAPTER 9. CLOSED LOOP CONTROL

Example 9.12 cont.

Method application

The specifications are equality constraints (as opposed to inequalities) so the only point which satisfies both
specs is the point where the vertical (Ts) and diagonal (%OS) lines intersect. For this problem that is the
point (—3 £ 54.13).

In this example, we make an initial try of PID controller zeros at s = —6 4 2j (step 4, above).

The following hand drawn root locus explains why these might be good locations for the zero.

0052150 ' /TS:.’,B?
rett o7 A// T o
_ ,7//“33
Y 3y

/

However when we compute the root-locus using Scilab, it does not pass through the target.

Trying different zero locations in Scilab we find better results with two real zeros: s = {—1, —4}. Click on
the small icon in upper left of the Root Locus graphics window to enable “Datatips” markers in the Scilab.
Then clicking on the root locus curve at or very near the target location, we find K = Kp = 4.0.

With Kp and our PID zeros ({—1,—4}) known, we use Equation and the technique in Section m
(below) as follows:

S S 82 S
0(3)24'0(+1)(s+4) _ A(s? + 55 +4)

S S

K K K
:D<82+Ps+1>

Kp Kp

9.5. MANUAL DESIGN OF PID CONTROLLER 129

Example 9.13
For the following system:

(s+3)
s(s+1+1.57)(s + 1 — 1.5j)

P(s) = H(s)=1

design a PID controller to achieve:

Ts <133 %0S <1% (34°,¢ =0.83)

Plotting the performance specs in the complex plane:

.06 ——)\’K
%o

-~
]

The PID controller adds 2 zeros and a pole at the origin. We hope that with some value of gain, it will
move the closed loop poles to the left of the shaded region.
Try 1: a double zero at s = —1 and a pole at the origin. The resulting controller is

(s+1)(s+1)

Ci(s) =

However, this cannot be simulated properly. Using Section we add a regularization pole at 20:

(s+1)(s+1)
s(s + 20)

Now we place this system into a Scilab script as follows:

Cl (S) =20

// EE447 Design Example 7.13 (Design a PID Controller)
s=%hs; j = %i;

//plant

p = (s+3)/(s*real((s+1+1.5%j)*(s+1-1.5%j)));

h = s/s; // H=1 (you have to express in terms of s!)
pp = 20; // regularization pole

// First guess controller

cl = pp * ((s+1)*(s+1))/(sx(s+pp));

Sys = syslin(’c’, clxp); // loop gain system

clf();
evans(Sys,200); // experiment with gain range (200)
al=get("current_axes"); //get the handle of the newly created axesctl

al.data_bounds=[-5,1, -3,3];
sgrid; // helps for the % overshoot performance line

130

CHAPTER 9. CLOSED LOOP CONTROL

Example 9.13 cont.
Running this script (and drawing some performance lines on the RL output) gives:

Evans root locus

——— asymptotic directions
X X X open loop poles
< <o < open loop zeroes

Imagindry axis
q

Real axis

Unfortunately, while some of the poles move into the region of acceptable performance, the two origin poles
will never get to the left of o0 = —1!

Try 2: Move the two zeros to {—5, —5}

// 2nd guess controller

pp=25;

cl = pp * ((s+4)*(s+4))/(s*x(s+pp));

Sys = syslin(’c’, clxp); // loop gain system

clf();
evans (Sys,2000); // experiment with gain range (200)
al=get ("current_axes"); //get the handle of the newly created axesctl

al.data_bounds=[-5,1, -3,3];
sgrid; // helps for the % overshoot performance line

9.5. MANUAL DESIGN OF PID CONTROLLER 131

Example 9.13 cont.
The resulting root locus is

Evans root locus

——— asymptotic directions
X X X open loop poles
[o < open loop zeroes

j(ry axis
(o]

Imagin.
1

[° |

Real axis

There is no need to draw on the performance region because the two origin poles are now going unstable!
Very bad option.

Further root locus experimentation did not yield any controller which could be stable and have poles in the
desired region!

What to do?? We must be sure to consider PID controllers where one of the paramters is zero. Since we
have a stability problem, we should take a hard look at adding a pole to the origin. The pole at s = 0
is good for steady state error, but makes stability harder. We can eliminate this pole if we get rid of the
integrator in the PID controller: K; = 0 but this also eliminates one zero. Using this “PD” controller we
have a zero and a gain as our remaining design parameters:

CPD:K(S+Z):KDS+KP

Try 3:
C3(s) = K(s+0.1)

// 3nd guess controller
cl = ppx(s+0.1)/(s+pp);

Sys = syslin(’c’, clxp); // loop gain system

clfQ);
evans (Sys) ; // experiment with gain range (200)
al=get("current_axes"); //get the handle of the newly created axesctl

al.data_bounds=[-5,1, -3,3];
sgrid; // helps for the % overshoot performance line

5

132

CHAPTER 9. CLOSED LOOP CONTROL

Example 9.13 cont.
The root locus is now:

Evans root locus

3—,

asymptotic directions
X X X open loop poles
o <o < open loop zeroes

o o

Imaginary axis

Real axis

which allows the poles to move into the zone (green circled parts of RL). Using the mouse to click on the
part of the RL indicated gives 5.6 < K < 6.4. Using K=6.0,

Kp=0.6,K;=0.0,Kp = 6.0

You might notice that the pole at the origin moves only slighlty and arrives at the PD controller zero we
placed at ¢ = —1. This one does not lie in the performance region. One way to look at this is that the pole
and zero being very close to each other “cancel each other out” in the closed loop response. This exposes a
limitation of the “Ty, %O0.S / s-plane region” approach to control design, which is that the regions are only
truely valid with a pure second order system with two poles and no zeros. For all other systems it is really
an approximate approach.

At this point we have reached a good starting point for computer optimization which will NOT make
simplifying assumptions about the system dynamics.

9.5.1 Deriving Kp, K;, Kp from controller zeros

There are several forms of the PID controller including;:

Let

9.5. MANUAL DESIGN OF PID CONTROLLER 133

Suppose that zero locations we like are
zi = (s + 1.7 £ 0.5j)
and that the result of step 5 above yields Kp = 1.85. Multiplying out gives
PC(s) = (s + 1.7+ 0.55)(s + 1.7 — 0.55) = s? + 3.4s + 3.14

Therefore,
1 1
C(s) = 1.85PC(s) = 1.85(s” + 3.5 + 3.14)
5.809 5.809
C(s) =1.858+6.29 + - = 6.29 + — +1.85s
Giving us

Kp =34x%x185=6.29 K =314 x 1.85 = 5.809 Kp =185

This gives us a rough design to start the computer optimization process.

134 CHAPTER 9. CLOSED LOOP CONTROL

10

15

30

Chapter 10

Search and Optimization with Scilab

10.1 Problem Statement and Learning Objectives
The problem of this chapter is to find a good set of PID control parameters (Kp, K;, Kp) by searching the
3D space created by those values. A key aspect of this search is careful definition of “good”. We will focus
on the step response and consider T (settling time), %O.S (percent overshoot), SSE (Steady State Error),
and Ctmay, the amount of effort applied by the controller to the plant (related to energy consumption).

In each case we will find the controller which achieves response closest to the desired value. We will

introduce and use a set of routines for Scilab which simply search a 3D space by nested iteration.
Upon completing this chapter, the succesful student will be able to

e Take an initial rough design of PID parameters, and, using a specific computational tool, refine it to
achieve one or more performance specifications without simplifying assumptions.

e Manage the trade-off between accuracy and computation time to get results in an efficient manner.

10.2 Design with Scilab
10.2.1 Polynomials in Scilab

First, we have to define the letter ’s’ as a symbolic variable:
-=> 8 = s // %s is a prestored polynomial variable named ’s’

Now, polynomials are entered as an expression, for example:

X = s" + 625 — 57425 + 689s + 27.2
-=> X = 874 + 62%s”3 + 5742%s72 + 689%s + 27.2
Note that you must use * to designate multiplication.
OR, if you know the roots you could enter:
-=> X = (s+5)*(s+27)*(s+2-6%j) * (s+2+6%])

However, for later use in some Scilab functions, we neeed to remove the imaginary part explicitly even
though we know that complex conjugate poles always work out to real coefficients. To prevent these problems,
always use the real () operator on CC poles:

-=> X = (s+b)*(s+27)*real((s+2-6%j)*(s+2+6%j))
or, if you keep your CC poles in second order form you can work with them as shown below:

-—> X = (8+5)*(s+27)* (s~ 2+4*s+40)

135

10

15

20

25

30

35

40

45

136 CHAPTER 10. SEARCH AND OPTIMIZATION WITH SCILAB

10.2.2 Overview
We will use a set of Scilab scripts to search the three dimensional space defined by
Kp,K;,Kp

for the “best” design.
Performance Criteria
We will look at the most common performance criteria, and one additional criterion: control effort

e Settling Time, Tg
Percent Overshoot, %08
Steady State Error, SSE.

e Control Effort, cu.
e Gain Margin, gm.

We supply a set of Scilab functions which can analyze a step response and determine Ts and %OS. The
functions are

e ts = settletime(t,y)

e 0 = overshoot(t,y)

e sse

e Cu

e Gain margin is computed by the scilab function margins().

Steady state error is approximated by the final value in the step response, and we compute maximum
control effort by simulating the system again using the equation in Section

10.2.3 Performance Functions

The scilab script stepperf.sce contains several functions which compute the performance measures from
the step response.

Settling Time: Tg

Settling time (Ts) is the time from the start of step input until the response stays within 2% of its final
value (not necessarily the desired final value if SSE is non zero).

Percent Overshoot: POS

POS is the percentage by which the step response exceeds its final value.

Steady State Error: SSE

SSFE is the difference between the final value of the step response and the amplitude of the input step
(usually 1.0).

Actuator Effort: Up;ax

Actuator effort (same as control effort) is the amount of output from your actuator which is given to the
plant. A controller design must achieve its step response specs without requiring excessive output from its
actuator. By including actuator effort into the cost function, we make sure that the controller we design is
practical. The measure of actuator effort will be the peak value during the simulation time, max u(t).

Gain Margin: gm

Gain Margin is described in Section In brief, if a system has gain margin GM (usually expressed
in dB), then the magnitude of the loop gain (|JCPH(s)|) can be increased by that amount of gain while still
remaining stable. For example, for a gain margin of 20dB, we can add +19dB of gain to CPH (s) and the
system will still be stable (but the new gain margin will be only 1dB).

We will specify a target or ‘desired value’ for each performance measure, for example Ty = 0.25 means
we set a goal to find a design with a settling time of 0.25sec. We will measure how good is our design by
minimizing the difference between our design’s performance and the desired value, in this case

|(Ts - Tsdl

If we only care about settling time, then our goal is to minimize this quantity. However, we have defined
multiple performance specifications or criteria above and sometimes they may conflict. For example,

10.2. DESIGN WITH SCILAB 137

10.2.4 Weights

We need a way to combine the different performance measures into a single ‘cost’. For example, what if we
get really good settling time, but horrible overshoot? We need a score which potentially combines all four of
our measures in to a single number. We will use a combined score as follows:

S =wy X (Ts — Tsq) +wa X (OS — %0Sy) +ws x (SSE — SSEy) +ws X (max(u(t))) +ws X (gm — gmyg)

s where w; are weights which add up to 1. We define the weight vector to be

There is one remaining problem with this scheme which is that the different performance measures have
different numerical values and units which can mess up the weights. For example, since T's might be only
0.2, if all weights are equal, it would not count much in the final score if max(u(t)) = 2000. To equalize the
influence of each performance criterion, we will normalize the difference as follows:

S = w1 X (Ts—Tsq)/Tsatwax (%OS—%0S54)/ %0S4+wsx (SSE—-SSE;)/SSE 4wy x (max(u(t)))/wmaz+ws X (gm—gmya) /gm

10 Generally all the specifications will be given as inputs to the design problem. 4, must be set by the
actuator (motors, hydraulics, etc) specification. Alternatively, if the actuator is not specified yet, we can
experiment to see what kind of actuator is necessary for a give set of specs.

The result, S, can be viewed as a ‘Cost’ of a given design, which is zero when all the specifications are
met.

15 Now the question is which weights to choose? This is another difficult question. However, since we are
searching the entire design space, we do not necessarily have to choose a single weight scheme. We could
define several and find the best design for each weight vector in a single pass through the space. In our
approach, we keep track of several weighting schemes simultaneously:

Scheme Name w1 wWa w3 Wy
Settling Time 1 0 0 0
Overshoot 0 1 0 0

Steady State Error 0 0 1 0

Control Effort 0 0 0 1

Balanced 0.25 | 0.25 | 0.25 | 0.25

» 10.2.5 Gain Space Searching and Optimization
Our strategy will be to
1. Choose initial values for the three gains Kp, K;, Kp.
2. Define a range of each value to search.

3. Define how many discrete values to search for each gain, Nvals

10

15

20

25

138 CHAPTER 10. SEARCH AND OPTIMIZATION WITH SCILAB

CosT

Figure 10.1: Idealized cost function which has a minimum (optimum) at Py = m, P, = n.

4. Try every combination of values and find those which produce the “best” step response.

As an example, consider a controller having two parameters, Py, P>. For each point {P;, P>}, there is a
certain step response and a certain resulting cost. In Figure [I0.1] the two values, P;, P, form a plane, and
we can represent the cost at each point in the third axis. In the illustration, the point {m,n} represents the
lowest value of cost over the whole plane. A simple function like a parabola can usually be easily optimized,
however the cost function for step responses is not so simple, and is not known analytically.

In our PID control design problem, the three parameters could be thought of as forming a 3 dimensional
space. Each controller is a single point in that space.

The simplest optimization method is to discretize the parameters and search all of the possible combi-
nations. When the space of all parameter values gets very large, it can be too computationally expensive
to try all the possible points in parameter space. In this case special algorithms are used or mathematical
assumptions are made to speed the process. In our PID control design however we have only a 3 dimensional
parameter space and simulation of step responses is sufficiently fast that we can do the brute-force exhaustive
search in a reasonable time:

for Kp = kmin:dk:kmax,
for Ki = kimin:dki:kimax,
for Kd = kdmin:dkd:kdmax,

*** simulation and optimization code here
end;

end;
end;

The algorithm will loop through a set of values for each of the three gains and keep track of which one
produced the highest performance by each of the weight schemes.

Search Range We will define our search range in terms of the center value and a multiplicative range r.
If our nominal value is Ky, then

Kmin = KO/\/; Kmaac = \/F X KO

With this scheme,
Kmaa; - TKmin (101)

This method is illustrated below with respect to the nominal (center) value.

10

15

20

10.3. USING THE SCILAB PACKAGES 139

Camx
Sraeen
E Reson P
S”&(‘Cj’\ ReSu.H"
True Ogtinum
Eﬂm
Pl
|Mw P’M/\x

Figure 10.2: Search range does not contain the true optimum of the function and finds a minimum in one
corner.

— -
Nom., NomINA L F(NM\

Other search range methods are possible but note that this approach will never generate negative gain
values (which are not allowed for PID controllers anyway).

It can be tricky to know a good initial value for the gains K, K;, Kp. Depending on the problem they
can range from much less than 1 to hundreds. One computer-only approach, is to start your search over a
wide range and then narrow it down on subsequent searches. However this takes many optimization runs to
find a good answer. A better approach is to do a rough manual PID design (Section . The result of your
manual design is a good starting point.

Search size Next we choose how many discrete values we will try within the search range for each of the
three gains, Nvals. The number of simulations we must run is then Nvals3. My computer can do about
500-1000 simulations per minute in Scilab.

10.2.6 Range Saturation

One way this scheme can fail is if an optimium exists outside the range of parameters that you specify. In
this case, the algorithm is likely to find a value at the extreme of its search range. If the algorithm reports
a value at the extreme of its range, this fact is annouced for you in the output and it is then a good idea to
run the simulation again, centering on the extreme of the output range. The algorithm will indicate that its
best weighted performance score was found at the edge of its “box” by printing, for example, kp min. This
would mean that the value of Kp which yielded the best value was at the edge of the search space.

Figure shows a two-dimensional example in which the search has saturated its range at Pjjq.: and
Popin- The actual best design is outside the search range and the search only found the closest point it
could. Clearly we should move the search range to the lower right and run again. Note that we have made
an assumption about the cost function in doing this, what is that assumption?

10.3 Using the Scilab packages

I have supplied three Scilab files:

10

15

20

25

30

35

140

CHAPTER 10. SEARCH AND OPTIMIZATION WITH SCILAB

e setup.sce This file contains code to initialize the simulation. In here you define your system, define

your specifications (requirements), and your initial values and search ranges. Make a new copy of this,
with a new name, for each problem you work on.

e stepperf.sce This file contains functions to evaluate Ts and %OS.

e optigain/N .sce This file searches for the best design according to different weight schemes and saves

the best ones. All “best” designs are plotted at the end of the search. This function takes on the order
of minutes to complete (N is the current version number).

10.3.1 optivis.sce

An experiental script is available to visualize the search space to make it easier to narrow your search.
optivis.sce can be substituted for optigain2.sce in your startup script to experiment with this feature.
optivis.sce

e Visualize the search space

e help to locate good start point(?)

o still experimental

10.4 Solving Design Problems

Here is the procedure to use these tools to solve a design problem. First, collect your information:

e Plant model (in the form of a Scilab “syslin()”). (Know the poles and zeros of your plant)

e Required step response specs: % Overshoot, Settling Time (2%), SSE (usually 0), and Gain Margin.

e For Control effort, you need the Actuator Effort normalization constant, t,,q, (sometimes also called

Clmaz- If you don’t care about actuator effort, set the constant to a really huge number.

Then follow these steps:

1.
2.

10.

Copy the file setup.sce to a new file such as setup_problem5.sce.
open the new file in a text editor

Set the simulation time where it says tmax = . This is how long the step response will be simulated
and it should be about 5 times your desired settling time: tmax ~ 5Ts4.

Enter the transfer function of the system you wish to control (plant) (not your PID controller) under
the comment //plant transfer function.

Identify the highest frequency pole or zero in your plant. Multiply it by 20 and set the pp variable to
that value. This is the controller normalization pole, p.

Edit the desired performance specs below their comment. Note that 5% overshoot should be entered
1.05, and gain margin should be entered in dB.

Enter nvals. This is the number of values which will be tried of each parameter. Note that the total
search time will be proportional to nvals® so keep this below 10 until you get a feel for how long the
searches take.

Enter scale_range. This is the range, r, from Equation [10.1]

Save your file.

Within scilab type exec(’setup_problem5.sce’); (or click on the SciNotes “save-and-run” icon T!)
and this will initiate the search.

10

15

20

25

10.5. DESCRIPTION OF SOFTWARE OPERATION 141

optigain2.sce (fhomefblakefCourses/447/Motes/ClosedLoopDesign2/Scilab_files/optigain2.sce) - SciNotes

Untitled 1 3¢ | optigain2.sce 3

(Xl IR I T, B VYR

t = dt:tmax;

10| start_time = getdate("=");

16| function [ts, po, ss, cu, y] = costPID(plant,Kp,Ki,Kd)

21 wpetll;

22

23 i I JoHy S

24 ctl_effort = ctl /. plant

25 y = csin(ones(t),t,sys);

26 ceinlones(t), t, ctl_effort);

27

28 IF (na(y) = maxwal | win(y) < -maxval) then
29 ts = ;opo o=

30 else

31 ts = settletine(t,y);

32 po = overshoot(t,y);

33 e — renl+ e v

Figure 10.3: Code listing from the scilab editor (SciNotes) showing how syntax highlighting makes the code
easier to read.

10.5 Description of Software Operation

Please refer to the code listings for each script file. You may want to open them in the Scilab editor so you
can see good syntax highlighting (Figure [10.3)).

10.5.1 setup.sce

After clearing the graphics windows and clearing all Scilab variables, we define two functions (getf () and
geti()) which are just simple ways of getting user input from the keyboard for use later.

Then we have some code which looks for a stored file (simrate_optigain) which tells how fast they
simulations are running on the current machine. This is used to predict runtime for the user.

Next, after setting up s,j, H = 1, we define the plant transfer function. Edit your numerator and
denominator polynomials here (see Section [10.2.1]).

After that we enter specifications for Ts(tsd), %0OS (pod), etc. We also enter our maximum actuator
output (Cmaz)-

Tinaz and dt are set next because they depend on the details of the problem. For example, if the expected
Ts is 0.1sec, we should not simulate for 10 minutes. Typically, set this to about 4-5 times the Ts specification.
Set dt to have at least 100 simulation steps during the 0 — T'max interval.

Next we enter the number of values we should search. The more values (nvals) that we select, the more
accurate our result. However computation time is proportional to nvals®. This is followed by the center
of the search ranges in terms of the three gains, Kp, K;, Kp. Finally, we enter the scale_range factor (r)
described in Section

10.5.2 optigain.sce

This code starts by setting up the time vector, t, and storing the start time of the simulation run (in seconds).

The function [ts, po, cu, gm, y] = costPID(plant, Kp, Ki, Kd) accepts the plant and the three
PID controller parameters, and returns the settling time, ts, the percent overshoot, po, the max control
effort, cu, the gain margin gm, and the step response, y. y is a vector of the same length as t which contains
the output of the control system with a unit step input, Y'(¢). This will be used to evaluate how good each
controller is in the search.

10

15

20

25

30

35

40

45

142 CHAPTER 10. SEARCH AND OPTIMIZATION WITH SCILAB

After definition of costPID() (we will return to it shortly), we set up weight schemes so that we can store
the “best” controller by several different definitions. Each weight scheme has a name such as “Overshoot”.

After we initialize the storage and set up the limits for each parameter, we start searching in the “Main
Loop”. Three for loops iterate through the 3D parameter space. For each point, we have values of Kp, Ki,
Kd to test with costPID().

Now we go back to go through the workings of costPID. After generating the new controller and the new
loopgain (CPH (s)), we use the scilab g_margin() function to get the gain margin from the loop gain. Some-
times the combination of gains we have picked results in an unstable system. There is no point in simulating
and evaluating the responses if the system is going to go unstable (because the gains have moved closed
loop poles into the right half plane). For each set of gains, costPID first determines stability by getting the
characteristic polynomial, solving the roots, and then checking for any positive real parts. The characteristic
polynomial (denominator) can be taken from the system by using the index 3 (denom = sys(3)). If there are
any poles with positive real parts, the simulation step is skipped and flag values are returned for performance
measures. Assuming the system is stable, then the system and control effort are simulated (csim()) and the
performance measures are computed.

Now we return back from costPID to the “Main Loop”. If the system was stable, the different weighted
scores are compared with the stored best ones and if better they replace the previous value so that the best
controller (i.e. best set of values for K, K1, Kp) is saved for each different weighted score.

Finally, the results are printed and plotted for the user.

10.5.3 stepperf.sce

This file contains a set of functions to compute two performance measures from the step response, settling
time, and overshoot. They are called by optigain.sce.

10.6 Example Design

(This problem is Example 9.5 from Nice, page 483). The output of this example was generated before the
control effort and gain margin computations were added to optigain.sce.
Problem: Design a PID controller for a system where the plant is:

(s+78)

PO = 536106+ 10

Step response must have
Ts = 0.55(sec) %08 = 20% SSE =0

Solution Procedure

Edit setup.sce to input the plant and the performance specfications above. Probably you should rename
setup.sce so that you can keep this problem around. Set the initial values of Kp = K; = Kp = 1 (note
K1, K2, K3 are used in the code instead of Kp, K;, Kp). Set Nvals = 10. (the code actually searches 11
values each).

Search 1

From the Scilab console, enter --> exec(’setup.sce’,-1) This runs the script and the -1 suppresses
junky output. The script will call optigainN.sce to perform the search of 112 = 1331 systems having
different values of the three gains and finds the combination of gains that gives the best step response for
each weight scheme.

At the end of the search the five best step responses are ploted automatically and the gains are reported
on the console.

The results are pretty horrible! This is because we have just picked arbitrary initial gains. Let’s focus on
the “Balanced” result (which looks the best anyway). On the console we get:

[Balanced] Kp: 3.2 Ki: 0.3 Kd: 2.024
Overshoot: 16.1 percent Settling Time: 2.23
Search boundary reached: Kp max Ki min

Note the last line “Search boundary reached.” This means that the best value is on at least one edge of
the search space. This implies we need to change the range to look outside.
Search 2 Let’s re-search starting with the current best “Balanced” values.

10

15

20

25

30

35

40

45

10.6. EXAMPLE DESIGN 143

Kp=32 K;=03 Kp=2024

Let’s also search over a larger range: scale_range = 100.
This time we get

[Balanced] Kp: 32.0 Ki: 1.2 Kd: 16.232
Overshoot: 6.5 percent Settling Time: 0.55
Search boundary reached: Kp max

Note we are still “maxing out” on Kp.
Search 3 Let’s start over with the new “best” gain values, namely the “Balanced” result.
Next we get:

[Balanced] Kp: 26.6 Ki: 3.7 Kd: 162.000
Overshoot: 8.9 percent Settling Time: 0.55
Search boundary reached: Kd max

Search 4 We need to get bigger on Kp, so let’s search again at this value, but narrow the search range
to 20.

This time we note that the “SSE” step response is the “nicest” looking even though it ignores %0OS and
Ts! Let’s continue to search around that optimum:

[SSE] Kp: 1147.6 Ki: 16.5 Kd: 36.224
Overshoot: 7.2 percent Settling Time: 0.12
Search boundary reached: Kp max Ki max Kd min

Note there still seems to be room to go higher on Kp, K.

Search 5 Let’s simply start again at these new values. Note that this re-centers the search space around
the curent optimum.

This time the “Overshoot” step response looks the best. The only problem is the SSFE is about 5%. Note
that the SSFE result has a K; value which is higher

[Overshoot = 1.20] Kp: 744.2 Ki: 45.7 Kd: 8.095
Overshoot: 20.0 percent Settling Time: 0.28
Search boundary reached: Kd min

[SSE] Kp: 5132.2 Ki: 73.8 Kd: 23.474
Overshoot: 54.0 percent Settling Time: 0.30
Search boundary reached: Kp max Ki max

Search 6 Let’s this time increase the K (because the SSE output improves SSI and has a bigger K7).
Lets start with

Kp = 744 Ki = 73,8 Kd = 8.9

Bingo!!
The “Balanced” response meets our specs quite well (Figure[10.4]). The “Overshoot” design is pretty good
as well. Complete output:

[Ts = 0.550] Kp: 482.5 Ki: 79.4 Kd: 14.915
Overshoot: 3.1 percent Settling Time: 0.55

[Overshoot = 1.20] Kp: 1114.6 Ki: 205.2 Kd: 14.915
Overshoot: 20.0 percent Settling Time: 0.23

[SSE] Kp: 166.4 Ki: 299.5 Kd: 24.686
Overshoot: 0.0 percent Settling Time: 0.98
Search boundary reached: Kp min

144 CHAPTER 10. SEARCH AND OPTIMIZATION WITH SCILAB
Balanced

1.0

0.5

0.0 T T T T T T T T T T T T T T T T ¥ T T T

0.0 0.5 1.0 15 2.0 25
Figure 10.4: Simulation result of final design.

[Balanced] Kp: 798.5 Ki: 330.9 Kd: 5.143

Overshoot: 23.7 percent
Search boundary reached:

Search Time: 2 minutes.

Settling Time: 0.55
Ki max Kd min

N = 1000

10

15

20

Chapter 11

Conversion to Discrete Time: Tustin’s
Method

11.1 Problem Statement and Learning Objectives
The student will be able to:

e Explain how the Nyquist sampling rate applies to discrete time controllers and how to apply it to select
a sampling rate.

e Use Tustin’s method by hand to convert a continuous time/frequency domain controller to discrete
time.

e Use Tustin’s method in the computer to covert a transfer function to discrete time.
e Convert a discrete time transfer function, using the inverse Z transform, to a difference equation.

e Program a loop in pseudo-code which can implement the designed discrete time controller.

11.2 Overview

In these notes, we will describe a procedure to convert a continuous time transfer function (such as a controller
you might design on the computer) into a line of code you could build into a software application.

In the following, it will help if you have been exposed to some discrete time signals and systems theory
(the Z-Transform), but full knowledge of Z-transforms is not required to calculate this conversion.

Our procedure will boil down to the following process for converting your continous time controller into
computer code.

1. Model your system

2. Design your controller as in previous weeks (for example with sisotool)

3. Convert controller from continuous time to discrete time

4. Convert your discrete time controller to a digital filter which can be easily coded.

5. Code and test your filter in the computer.

145

146 CHAPTER 11. CONVERSION TO DISCRETE TIME: TUSTIN’S METHOD

11.3 Discrete Time and Z transform review/intro

1
"
A
> o

Period, T is the time between samples.
A discrete time signal, also known as a “sampled data signal”, is a series of unit impulses, scaled by the

s signal values, and delayed by multiples of T'. If there is a continuous signal, x(¢), the discrete time version of
that signal is

x(n):Z(?(tfnT)xz(nT) n=20,1,2...

where 2 is a complex number (like s), usually represented Ae/?.

The Z-Transform can be used like the Laplace transform to analyze systems expressed as digital filters.

11.4. TUSTIN’S METHOD 147

11.3.1 Discrete and Continuous Comparison Table

Sampled World Continuous World
z(n) n=0,1,2... x(t)
Digital Filter Differential Equation
z(n) =4.2z(n—1) — 2.7x(n — 2) Z(t) = 6.7 — 3.2z + 10
Digital Convolution: Continuous Convolution:
F) = SEEX hkye(e—n) | F(0) = [72% h(r)a(t - r)dr
Z-Transform Laplace Transform
Discrete Transfer Function Continuous Transfer function
G(2) = (3 G(s) = x5
Stability: Outside Unit Circle Stability: Left Half Plane

11.3.2 Sampling Theorem
A powerful theorem due to Nyquist and Claude Shannon, states that

5 If a continuous signal has bandwidth, B radians per second, and it is sampled (converted
to a sampled signal) with a sampling interval 7' < %, then the continuous time signal can be
reconstructed perfectly from the discrete time signal.

Equivalently,

If a continuous signal has bandwidth, b Hertz, and it is sampled (converted to a sampled
10 signal) at a sampling rate fy > 2b, then the continuous time signal can be reconstructed perfectly
from the discrete time signal.

fn is called the “Nyquist Rate”. Although this theorem is commonly applied to signals (i.e. sample some
music and make it sound good when you play it back) we will use fx to decide how to sample control systems.

11.4 Tustin’s Method

15 Suppose we have a continuous time system (i.e. a Laplace Transform transfer function), H(s). Arnold Tustin
developed the following way to derive a Z-transform transfer function which is a digital approximation to
H(s). His result is

H(z) = H(s)|

2(2—1)

=TT

Where T is the sampling time.

In words, to generate a discrete version of H(s), substitute 721((22111)) for s in H(s).

20 Let’s put these ideas to work on a control system such as that of Figure [L11.1] We want to implement
the control system in a computer. The Plant, P(s), of course stays outside the computer system since it is
NOT a simulation. A control system implemented by computer would thus look like the parts of Figure [11.2
which are inside the dashed line. Refering to Figure @ an input x(n) is provided, for example from a user
interface, the actual system output is sensed and sampled, and error, e(n), is computed in the computer. The

s controller C(n) is a digital filter creating the force output, f(n), which is applied to the plant by the output
device (typically a digital-to-analog converter plus amplifier).

N

11.4.1 Tustin’s method example 1

148 CHAPTER 11. CONVERSION TO DISCRETE TIME: TUSTIN’S METHOD

ol 1Ral
Xes) O Cen 19 Py —> Y¢s)

Figure 11.1: Closed loop continuous time control system. Assume that we have designed a transfer function
C(s) which gives us a satisfactory system response.

- R A Y (O S 20
\
™. ey
+ e NB ! f / S,
(4 « %_,Eii) ng%fﬁb} >{ - Nt

‘ _____

| ——— “ &Miﬂ"
| senp ler

i

Figure 11.2: Closed loop control system using a computer, an output device, and a sensor to implement the
controller. C(n) refers to a discrete time implementation of C(s). Parts inside dashed lines are implemented
in a computer such as a microcontroller.

Example 11.1

Apply Tustin’s method to convert C(s) into G(z) for T=1 sec. where

_F(s) 50
)= F6) ~ Gr10)
Applying Tustin’s method,
F(z 50
C(Z):E(- 2G-1)
(=) (3% +10)
Clz) = 50T (z+ 1)

C2(z—1)+ 10T (2 + 1)
Applying T =1,

50(z + 1) (z+1)
Ce) =10 510~ Y1258
C(2) = 50 (z2+1)

12 (2 + 0.6667)

As with continuous time transfer functions, we get a ratio of polynomials (this time in z) and we want to
normalize them.

Note: For reasons we will see in Section [11.6] 7"= 1 would NOT be fast enough for this control system.

11.4. TUSTIN’S METHOD 149

11.4.2 Tustin’s method example 2

10

15

20

150 CHAPTER 11. CONVERSION TO DISCRETE TIME: TUSTIN’S METHOD

Example 11.2
Apply Tustin’s method to convert G(s) into G(z) for T=0.01 sec. where

10(s +4)
(s +0.1)(s + 100)

G(s) =

Gy = MO+ 10s+4)
T (5+0.1)(s+100) 2+ 100.1s + 10

2(z—1)
10(75m +4)

2(z—1 2(z—1
(242 +100.1 (223 +10

G(z) =

Let’s multiply through by T?2(z + 1)2:

10(2(z —)T(2+ 1) + 4T%(2 + 1)?)
4(22 =22+ 1) +100.1(2(z — DT(Z + 1)) + 10T2(z + 1)2

Here’s a couple of intermediate results we can plug in twice below:

20z = DT (z+1) =002z -1) T?*(z+1)*=10"*(*+22+1)

10(0.02(2% — 1) +4 x 107%(22 + 22 + 1))
422 — 82 +4+2.02(22 — 1)+ 1073(22 + 22 + 1)
~0.2042% + 0.008z — 0.1960
T 6.02122 — 8.002z + 1.981

22 4+ 0.03922z — 0.9608
22 —1.3290z + 0.3290

Note: For reasons we will see in Section [11.6] 7" = 0.01 would NOT be fast enough for this control system.

G(z) =

G(z) = 0.339

11.4.3 Conversion by Computer

MATLAB

Matlab has a function called c2d() which converts continuous to discrete time systems. It has multiple
methods it can use but one of them is Tustin’s. The arguments to the c2d function are: the system, T, and
the name of the method in string form:

Matlab computation:

>> g

Zero/pole/gain:
10 (s+4)

(s+0.1) (s+100)
>> sz = c2d(g,0.01, ’tustin’)

Zero/pole/gain:
0.033983 (z-0.9608) (z+1)

(z-0.999) (z-0.3333)

Sampling time: 0.01

10

15

20

25

30

35

11.4. TUSTIN’S METHOD

>>

SCILAB
In Scilab we will apply Tustin’s method more directly:
-->T = 0.01;

-=>m = (2/T)*(z-1)/(z+1)

- 200 + 200z

-=>pz = 10*(m+4)/((m+0.1)* (m+100))
pz =

2
- 0.0326503 + 0.0013327z + 0.0339830z

0.3330002 - 1.3323338z + z

You can verify that this result is the same as Matlab’s.

151

Note that in this type of computation we should NOT round our results. An exact rule for how much
precision we need in the coefficients of the digital filter is beyond the scope of the course. However you should

use at least 6 digits in the problems we will work on.

Now that we have our controller in Z-transform form, we need one more step before we can code it: we

need to convert it to a digital filter.

11.4.4 Conversion of discrete transfer function to digital filter

First, we “unwrap” the transfer function so that it is now the Z transform of a digital filter. Unwrapping is

actually a simple step. For example, using our first example above,

Oz = £ 50

E(z) 12 (z+0.6667)

becomes

F(2)(2 + 0.6667) = %E(z)(z +1)

or

zF(z) + 0.6667F(z) = 4.1667(zE(z) + E(z))

Now, there is an important property of the Z-transform:

Z{z[n —k]} = 27k X (2)

In words, shifting a signal in the time domain by k samples is equivalent to multiplying by 2=* in the Z

domain. Looking at it another way, we have a transform pair:
z[n + k] < 2" X (2)
Returning to our example, and multiplying through by z~! will prove useful so we get:
F(2) +0.66672"'F(2)) = 4.1667(E(z) + 2 ' E(2))
and applying the delay property to our unwrapped transfer function (and using linearity) gives:

f(n) +0.6667f(n — 1) =4.1667(e(n) + e(n — 1))

152

CHAPTER 11. CONVERSION TO DISCRETE TIME: TUSTIN’S METHOD

b

ey Cemy P> £

Figure 11.3: Just the controller part of the system.

> 'C(M)

e(™y

Figure 11.4: A way to implement the example digital controller. The memory stores previous values for

e(n), f(n).

Let’s step back a bit and recall that our controller is a relationship between the sampled error in our
control system (e(n)) and the sampled controller output (f(n), Figure [L1.3). Isolating f(n),

f(n) =4.1667(e(n) + e(n — 1)) — 0.6667f(n — 1)

This is essentially the line of computer code which defines our controller!
We could implement this equation with the block diagram of Figure

: 11.5 Code Example

Let’s put this equation into some computer code. We will not worry about many details such as the operating
system or exact computer syntax, and we will assume that functions are available to do the I/O for us.

1 /* EE447, U. of Washington. Example of basic digital control code */

2 double
103 double
1 double
5 double
¢ double

7 enl =

158

e, x, f; //
ys; //
enl, fnil; //
T=1.0; //
t, ti1; //
fnl = 0.0; //

o // loop forever

define our system loop variables

this will be our sensed y for feedback
these will be e(n-1) etc.

sampling time in seconds.

variables for keeping track of time.

we have to start them with something!

get_command_input (); // get our input from somewhere

// get feedback from our system
// compute error (H=1)

4.1667 * (en+enl) - 0.6667*fnl; // compute controller output

// send controller output to plant

// store previous values of e, f

10 while (1) {

11 t = get_current_time ();
12 X =

203 ys = read_sensor ();

14 e = X-ys;

15

16 f =

17

238 output_to_plant (f);

19

20 enl e;

21 fnl = f;

22

s tl = get_current_time();

24

10

15

20

11.6. LIMITATIONS AND PROPERTIES 153

wait (T-(t-t1)); // wait for next sample time
}

The code runs in an infinite loop (line 10) and executed the controller over and over. First, we note the
current time and store it in t. We get the controller input, for example from a user interface or a trajectory
generator, in line 12. Then we read a sensor to measure the actual output ys (line 13). After we compute
the error, we are ready to compute the controller output (line 16) using the equation we derived above. Note
that the coefficients in line 16 are specific to T = 1.0 and will be wrong if we arbitrarily change T in the
code. After we put the controller output out to the plant (line 18) we store the current values of e, f in the
previous values for use in the next cycle. Finally, we figure out how much time has elapsed between lines 11
and 23, and use that to derive the correct argument for a wait (t) function so that our timing is accurate.

11.6 Limitations and properties

Tustin’s method creates a controller which only approximates the continuous time controller. However useful
discrete time controllers can be made if the following properties and limitations are taken into account.

If the continous time TF is stable then the discrete time version will be stable.

The DT controller will have the same “features” of its frequency response (number and frequency order
of poles and zeros) as the CT controller.

e Frequencies of the poles and zeros will in general be shifted.

For frequencies much less than the Nyquist rate (fy), the approximation will be very accurate.

To make sure the discrete time controller is accurate, make sure that 7' << 27 /pz where pz is the
frequency of the highest pole or zero in the CT system (including both C(s) and P(s). For example, let

500(s + 10)

C =—
1) = G306 1 100)
For this controller, pz = 100rad/sec. This is about 16Hz. We need to double this to account for Nyquist
sampling and THEN multiply by 10 to make the frequencies of the poles “much less” than the Nyquist rate.
Thus a suitable sampling frequency would be 16 x 2 x 10 = 320 samples/second. We would convert C (s)
to discrete time using 7" = 0.003125sec.

154 CHAPTER 11. CONVERSION TO DISCRETE TIME: TUSTIN’S METHOD

10

15

20

Appendix A

Complex Numbers and Logs Review

A.1 Problem Statement and Learning Objectives

This appendix contains quizes to determine if you need to review complex numbers and/or logarithms, as
well as some material to support that review.
Be able to

e Pass the Complex Number quiz below.

e Pass the Logarithms quiz below.

A.2 Complex Number Quiz

Take this quiz then check your answers on Page Use only the following functions on your calculator (or
fewer as instructed):

x =+ -

It should be easy for you to get exact answers. If not, then you need to review the concepts in this
quiz and section Some Kahn Academy videos are pre-linked in Section

1. What is v/—16 ?

2. Evaluate
—b+ v4dac
X=—
2a

for the following values:

3. Evaluate
(6 +j16) + (=7 — j6) =

(27 — j0.75) — (1.6 + j0.27) =
4. Evaluate M x N where
M | N
(2+67) (1+3j5)
(1.7-0.65) | (3.24+0.45)

155

156 APPENDIX A. COMPLEX NUMBERS AND LOGS REVIEW

5. Plot the following points on the complex plane:

a=-3+1.5j b=2—-j c=j

Convert Xy = (4 + 3j) to polar (magnitude-angle) form
Convert Xy = (—16 + 3.75) to polar (magnitude-angle) form

Represent X3 = (—1 4 67) in exponential form

e

For '
a=3e"* b =2/45°

Convert them to “a + b5” form and multiply a * b without using a calculator.

A.3 Complex Number Concepts required for EE447
o j=v-1

10 e complex number is the sum of a real part, o 4+ an imaginary part jw (where w is a real number to be
multiplied by j.)

e The magnitude of a complex number is the Pythagorean sum of the real and imaginary parts: If
x = a + jb is a complex number, then the magnitude is

2| = Va2 + b2

e To add together two complex numbers, add their real and imaginary parts separately.

T =a+bj y=c+dj
15

z+y=(a+c)+jb+d)

e To multiply two complex numbers, multiply them together like two first order polynomials in j (using
the definitions above)

zxy = (a+bj)*(c+dj) = ac+ adj + bej + bdj>
since j2 = —1 we have
z*y = (ac — bd) + (ad + bc)j

e Complex numbers describe a point in the complex plane. The X axis of the complex plain is the real
20 part of the complex number and the Y axis is the imaginary part.

e To plot the point a + jb on the complex plane, plot a point at X =a, Y =b.

10

15

20

25

A4

KAHN ACADEMY VIDEOS 157

The magnitude of a complex number is the distance from the origin to its point on the complex plane.

The angle of a complex number is the angle formed from the positive real axis (X > 0) and the line
between the origin and the point.

There is an lexponential form| of any complex number:
e’ = cos(f) + jsin(h)
To convert a complex number to exponential form we invert the previous equation:
a+bj=la+ bj|ejta“71(b/a)

The tan~1() function traditionally limits us to quadrants I and IV of the complex plain. More generally
we can use the 4-quadrant 2-argument arctan function |(atan2(b,a)) .

A consequence of multiplication of complex numbers and the exponential represenation of complex
numbers is that when we multiply two complex numbers:

“angles add and magnitudes multiply”

if A, B,C are complex numbers and C = A *x B
/C=/A+/B |C| = |A| = |B|

A.4 Kahn Academy Videos

complex numbers
exponential form of complex numbers

A.5 Logs

Although logarithms are pretty basic material, experience shows that many students are rusty on logs at the
start of EE447. We all know how to press the LOG button on a calculator, the problems come in some of
the concepts.

A.6 Logarithms Quiz

Take this quiz then check your answers on Page [I58] If the problem is numerical, you may use only the
following functions on your calculator (or fewer as instructed):

* =+ =

It should be easy for you to get exact answers. If not, then you need to review the concepts

1.

2.

Find the log of A* B
Find the log of (a?) * 1/(b)

: 1,000,000
Find the log (base 10) of ===
27.4

Find the natural log of e
Find the base 10 log of ¢274

http://en.wikipedia.org/wiki/Euler%27s_formula
http://en.wikipedia.org/wiki/Atan2
https://www.khanacademy.org/math/algebra/complex-numbers/complex_numbers/v/complex-numbers
https://www.khanacademy.org/math/trigonometry/imaginary_complex_precalc/complex_analysis/v/exponential-form-to-find-complex-roots

10

15

158

A.

1.

2
3.
4
)

6
7

8.

9

APPENDIX A. COMPLEX NUMBERS AND LOGS REVIEW

7 Complex Number Quiz Answers
4]
C—145V2 2445 — 74523
—14410 1.1—31.02
. —16+125 5.68—1.24j
. graphing points a, b, c:
r ::)
a r23
cq;
¥ T ¥ ']
> -2 -1 \ 2 3
__.'s cb
L-24

JIXi|=5 /X; = tan—'(4/3) = 53.1°
CXa| = 1642 /X, = 167°
X3 = 6.08¢/1™ (note radians must be used in the exponential)
. la| =3, |b] =2, La = 45°, /b = 45° by inspection.
a=3x0.707T+ 33 x0.707 = .2121 + 5.2121 b=2x.707T+ j2%.707 = .1414 + 5.1414

using angles add, magnitudes multiply, a *b =3 x2e72 = 6e’ = 6

A.8 Log Quiz Answers

1

=~ W

. log(A) + log(B)
. 2log(a) + &®
. 6 —log(R)

. 27.4/In(10)

	Introduction, Review
	Problem Statement and Learning Objectives
	LODE
	Basic definition
	Solution of First Order LODE

	Laplace Transform Review
	Partial Fraction Expansion
	Linearization

	Translational Dynamical Systems
	Problem Statement and Learning Objectives
	System Elements
	Displacements and Derivatives
	Forces
	Mechanical Network Schematic Diagram

	Equations of Motion
	Parallel and Series Combinations
	Multiple Masses and EOMs

	Conversion to Transfer Function
	Examples
	Finding Errors through Dimensional Analysis

	Rotational Dynamical Systems
	Problem Statement and Learning Objectives
	System Elements & constitutive relations.
	Torque
	Elements of Rotational Dynamical Systems

	Equations of Motion
	Gears
	Gear Kinematic Relationships

	Rotary to Linear Motion

	Basics of State Space
	Problem Statement and Learning Objectives
	Introduction
	System Matrices from Equations of Motion
	State Space in Scilab
	Sources

	Transient Response and Frequency Response
	Problem Statement and Learning Objectives
	Introduction
	The basic 2nd order dynamical system
	Pole Location and Step Response

	Frequency Response
	Magnitude
	Phase
	Decibels
	Bode Plot Sketching
	Combining Magnitude Plots
	Bode Asymptotic Phase Plot
	Poles or zeros at the origin
	Complex Conjugate Poles
	Complex Conjugate Zeros

	Feedback
	Problem Statement and Learning Objectives
	Block Diagram Transformations
	Signals vs. Energy Flows
	Block Diagrams
	Transformations

	Closed Loop Negative Feedback Gain
	Sensitivity Analysis
	Disturbance Rejection
	Disturbance Rejection in the Frequency Domain
	Location of Disturbance

	Stability
	Calculation of Roots

	Stability in the Frequency Domain
	Gain and Phase Margins

	Root Locus
	Problem Statement and Learning Objectives
	Introduction to Root Locus
	Problem Definition
	Summary

	Root Locus Examples
	Root Locus Steps
	Root Locus FAQ
	Hand Root Locus Examples
	Resources

	Introduction to Scilab
	Problem Statement and Learning Objectives
	Quick Read
	Basics
	Links and details
	Root Locus Example
	Plotting Ranges for high quality graphics

	Closed Loop Control
	Problem Statement and Learning Objectives
	System Type and Steady State Error
	Steady State Error Derivation
	Steady State Error Examples
	Steady State Error Summary

	Time Domain Performance of 2nd Order Systems
	Transient Performance Specifications
	S-plane Regions
	S-plane Performance Region Examples

	PID Controller
	Closed Loop Design Problem
	Basics
	Simulation of PID controllers
	Control Effort

	Manual Design of PID controller
	Deriving KP, KI, KD from controller zeros

	Search and Optimization with Scilab
	Problem Statement and Learning Objectives
	Design with Scilab
	Polynomials in Scilab
	Overview
	Performance Functions
	Weights
	Gain Space Searching and Optimization
	Range Saturation

	Using the Scilab packages
	optivis.sce

	Solving Design Problems
	Description of Software Operation
	setup.sce
	optigain.sce
	stepperf.sce

	Example Design

	Conversion to Discrete Time: Tustin's Method
	Problem Statement and Learning Objectives
	Overview
	Discrete Time and Z transform review/intro
	Discrete and Continuous Comparison Table
	Sampling Theorem

	Tustin's Method
	Tustin's method example 1
	Tustin's method example 2
	Conversion by Computer
	Conversion of discrete transfer function to digital filter

	Code Example
	Limitations and properties

	Complex Numbers and Logs Review
	Problem Statement and Learning Objectives
	Complex Number Quiz
	Complex Number Concepts required for EE447
	Kahn Academy Videos
	Logs
	Logarithms Quiz
	Complex Number Quiz Answers
	Log Quiz Answers

