一、简介

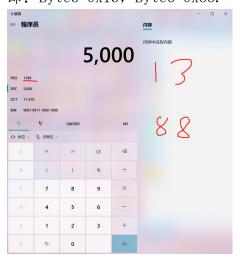
- 1、供电电压: 6S; 最大电流 10A. 有保险丝保护
- 2、指示灯含义:绿色,正常运行;蓝色:设置模式,此时可以对电调参数进行设置, 并在转动时发送转速数据到上位机;红色:堵转保护或设置模式写入完成后。
- 3、串口波特率: 115200
- 4、设置转速后,转速不会瞬间升高以防瞬时电流过大,有一段缓起过程,在设置转速 后需延迟一段时间等待转速上升到设定值。


二、匿名地面站设置 PID 参数和电调 ID

- 1、使用 USB 转串口模块将电调连接到电脑,波特率为 115200。
- 2、按住电调上的按键, 然后给电调上电, 成功后电调灯亮蓝色, 此时进入设置模式。
- 3、使用匿名地面站的飞控设置功能, PID11 的参数为电调速度的 PID 参数, 类型为 uint16; PID12 的 P 参数为电调的 ID, 类型为 uint8。通过读取飞控与写入飞控来读取和写入参数。

4、参数设置完成后可按照速度帧格式使用基本收发设置电机转速,通过数据波形观察 参数效果。

5、设置并调试参数完成后,短按电调上的按键,这之后电调灯亮红色,代表参数保存完成。如果没有进行这一步,相关参数在断电后会丢失。

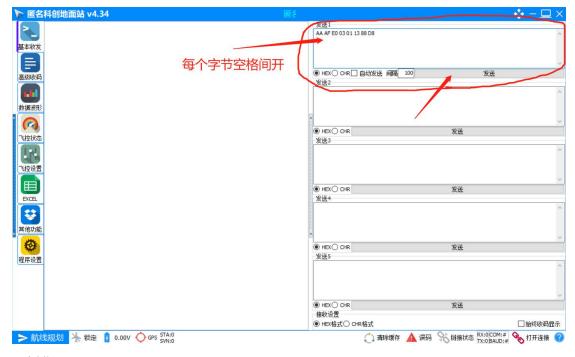

三、设置速度

速度的数据类型为 int16, 帧格式如下

Bit0	0xAA	
Bit1	0xAF	
Bit2	0xE0	
Bit3	0x03	
Bit4	电调 ID	
Bit5	速度高位	
Bit6	速度低位	
Bit7	校验和(除这一位之外所有位之和)	

以下为示例运用

借助 win10 计算器,比如期望速度是 5000rpm,5000 的十六进制表示就是 0x1388,需要 16 为存储,分成两个 8 位用于数据传输,那么高八位就是 0x13,低八位就是 0x88,把至两个分布赋值给表格里数据帧相应的数据字节就行了。即: Byte5=0x13, Byte6=0x88.


校验和是之前所有字节和,全是8位数据,如果和大于255(8位数据最大值),就会溢出,那么和就是溢出后的数值,比如和一共是258的话,那么和最终就是3。

同样利用计算器 (假设电调 ID 是 0x01)

和为 0x2D8, 因为溢出, 8 位只能存下 0xD8, 因此校验和为 0xD8

Byte0	0xAA	0xAA
Byte1	0xAF	0xAF
Byte2	0xE0	0xE0
Byte3	0x03	0x03
Byte4	电调 ID	0x01
Byte5	速度高位	0x13
Byte6	速度低位	0x88
Byte7	校验和(除这一字节之外所有位之和)	0xD8

示例代码

void uart_send_speed(int16_t speed,uint8_t ID)//speed 为设置的转速, 单位为 rpm;ID 为电调 ID

```
| Uint8_t tx_buf[8];

| tx_buf[0]=0xaa;

| tx_buf[1]=0xaf;

| tx_buf[2]=0xe0;

| tx_buf[3]=0x03;

| tx_buf[4]=ID;

| tx_buf[5]=(speed>>8)&0xff;

| tx_buf[6]=speed&0xff;

| tx_buf[7]=0;

| for(uint8_t i=0;i<=6;i++)

| tx_buf[7]+=tx_buf[i];

| HAL_UART_Transmit_DMA(&huart1,tx_buf,8);//串口发送函数
```